
Using Imported Graphics in LATEX 2ε

Keith Reckdahl
reckdahl@am-sun2.stanford.edu

Version 2.0
December 15, 1997

Summary

This document explains how to use imported graphics in LATEX 2ε documents.
While reading the entire document is certainly worthwhile, most users should be
able to locate the necessary information by browsing the table of contents on
pages 3-5 or the index on pages 84-86.

While LATEX can import virtually any graphics format, Encapsulated PostScript
(eps) is the easiest graphics format to import into LATEX. For example, eps files
are inserted by specifying

\usepackage{graphicx}

in the document’s preamble and then using the command

\includegraphics{file.eps}

Optionally, the graphic can be scaled to a specified height or width

\includegraphics[height=4cm]{file.eps}

\includegraphics[width=3in]{file.eps}

Additionally, the angle option rotates the included graphic

\includegraphics[angle=45]{file.eps}

The \includegraphics command and the rest of the LATEX 2ε graphics bundle are
covered in Part II of this document.

This document is divided into the following four parts

Part I: Background Information

This part provides historical information and describes basic LATEX terminol-
ogy. It also describes the Encapsulated PostScript (eps) format, differences
between eps and ps files, and methods for converting non-eps graphics to
eps.

Part II: The LATEX Graphics Bundle

This part describes the commands in the graphics bundle which import, scale,
and rotate graphics. This part covers much of the information in the graphics
bundle documentation (reference [5]).

Part III: Using Graphics Inclusion Commands

This part describes how the graphics bundle commands are used to import,
rotate, and scale graphics. Three situations where graphics inclusion is mod-
ified are also covered:

• Compressed eps files and non-eps graphic formats (tiff, gif, jpeg,
pict, etc.) can also be inserted on-the-fly when dvips is used with an
operating system which supports pipes (such as Unix). When using
other operating systems, the non-eps graphics must be converted to
eps beforehand.
Since neither LATEX nor dvipshas any built-in decompression or graphics-
conversion capabilities, that software must be provided by the user.

c© Copyright 1995-97 by Keith Reckdahl. All rights reserved. Reproduction and distribution is allowed
under terms of the gnu General Public License.

1

• Since many graphics applications support only ascii text, the psfrag
system allows text in eps files to be replaced with LATEX symbols or
mathematical expressions.

• When an eps graphic is inserted multiple times (such as a logo behind
the text or in the page header) the final PostScript includes multiple
copies of the graphics. When the graphics are not bitmapped, a smaller
final PostScript file can be obtained by defining a PostScript command
for the graphics.

Part IV: The figure Environment

There are several advantages to placing graphics in figure environments. Fig-
ure environments automatically number graphics, allowing them to be ref-
erenced or included in a table of contents. Since the figures can float to
avoid poor page breaks, it is much easier to produce a professional-looking
document.

In addition to general information about the figure environment, this section
describes the following figure-related topics:

• How to customize the figure environment, such as adjusting figure place-
ment, figure spacing, caption spacing, and adding horizontal line be-
tween the figure and the text. Caption formatting can also be cus-
tomized, allowing users to modify the style, width, and font of captions.

• How to create marginal figures and wide figures which extend into the
margins.

• How to produce figures with landscape orientation in a portrait docu-
ment.

• How to place captions beside the figure instead of below or above the
figure.

• For two-sided documents, how to ensure that a figure appears on an odd
or even page. Also, how to ensure that two figures appear on facing
pages.

• How to create boxed figures.
• How to form side-by-side graphics, side-by-side figures, and side-by-side

subfigures.
• How to construct continued figures which can span multiple pages.

Where to Get this Document

This document is available in PostScript form as CTAN/info/epslatex.ps or in pdf

form as CTAN/info/epslatex.pdf, where CTAN can be replaced by any of the following
ctan (Comprehensive TEX Archive Network) sites and mirrors

England ftp://ftp.tex.ac.uk/tex-archive/
Deutschland ftp://ftp.dante.de/tex-archive/
Eastern U.S. ftp://tug2.cs.umb.edu/tex-archive/
Western U.S. ftp://ftp.cdrom.com/pub/tex/ctan/
Australia ftp://unsw.edu.au/tex-archive/
Japan ftp://ftp.riken.go.jp/pub/tex-archive/

A complete list of ctan mirrors can be obtained from the CTAN.sites file at any
ctan site, or by fingering ctan@ftp.dante.de

2

Contents

I Background Information 6

1 Introduction 6

2 LATEX Terminology 7

3 Encapsulated PostScript 8
3.1 Forbidden PostScript Operators . 8
3.2 The EPS BoundingBox . 8
3.3 Converting PS files to EPS . 9
3.4 Fixing Non-standard EPS files . 9

4 How EPS Files are Used by LATEX 10
4.1 Line Buffer Overflow . 10

5 Obtaining GhostScript 11

6 Graphics-Conversion Programs 12
6.1 Level 2 EPS Wrappers . 12
6.2 Editing PostScript . 13

II The LATEX Graphics Bundle 14

7 EPS Graphics Inclusion 14
7.1 The includegraphics Command . 14

8 Rotating and Scaling Objects 16
8.1 The scalebox Command . 16
8.2 The resizebox Commands . 16
8.3 The rotatebox Command . 17

9 Advanced Commands 17
9.1 The DeclareGraphicsExtensions Command 18
9.2 The DeclareGraphicsRule Command . 18

III Using Graphics-Inclusion Commands 20

10 Horizontal Spacing and Centering 20
10.1 Horizontal Centering . 20
10.2 Horizontal Spacing . 20

11 Rotation, Scaling, and Alignment 21
11.1 Difference Between Height and Totalheight 21
11.2 Scaling of Rotated Graphics . 21
11.3 Alignment of Rotated Graphics . 22
11.4 Minipage Vertical Alignment . 24

12 Using Subdirectories 26
12.1 TEX Search Path . 26
12.2 Graphics Search Path . 27
12.3 Conserving Pool Space . 27

3

13 Compressed and Non-EPS Graphics Files 28
13.1 Compressed EPS Example . 28
13.2 TEX Search Path and dvips . 29
13.3 Non-EPS Graphic Files . 30

14 The PSfrag Package 31
14.1 PSfrag Example #1 . 33
14.2 PSfrag Example #2 . 33
14.3 LATEX Text in EPS File . 34
14.4 Figure and Text Scaling with PSfrag . 34
14.5 PSfrag Incompatibilities . 35

15 Including An EPS File Multiple Times 35
15.1 Defining a PostScript Command . 36
15.2 Graphics in Page Header or Footer . 37
15.3 Watermark Graphics in Background . 39

IV The Figure Environment 41

16 The Figure Environment 41
16.1 Creating Floating Figures . 41
16.2 Figure Placement . 42
16.3 Clearing Unprocessed Floats . 43
16.4 Too Many Unprocessed Floats . 44

17 Customizing Float Placement 45
17.1 Float Placement Counters . 45
17.2 Figure Fractions . 45
17.3 Suppressing Floats . 47

18 Customizing the figure Environment 47
18.1 Figure Spacing . 47
18.2 Horizontal Lines Above/Below Figure 48
18.3 Caption Vertical Spacing . 49
18.4 Caption Label . 50
18.5 Moving Figures to End of Document . 50

19 Customizing Captions with caption2 51
19.1 Caption Styles . 51
19.2 Changing the Caption Style . 52
19.3 One-Line Captions . 53
19.4 Caption Widths . 54
19.5 Caption Delimiter . 55
19.6 Caption Font . 56
19.7 Custom Caption Styles . 57
19.8 Linebreaks in Captions . 58
19.9 Adjusting Caption Linespacing . 58

20 Non-Floating Figures 59
20.1 The float Package’s [H] Placement Option 60

21 Marginal Figures 61

4

22 Wide Figures 61
22.1 Wide Figures in One-sided Documents 62
22.2 Wide Figures in Two-sided Documents 62

23 Landscape Figures 63
23.1 Landscape Environment . 63
23.2 Sidewaysfigure Environment . 64
23.3 Rotcaption Command . 64

24 Captions Beside Figures 66
24.1 Caption to Left of Figure . 66
24.2 Caption on Binding Side of Graphic . 67
24.3 The Sidecap Package . 67

25 Figures on Even or Odd Pages 68
25.1 Figures on Facing Pages . 69

26 Boxed Figures 70
26.1 Box Around Graphic . 70
26.2 Box Around Figure and Caption . 71
26.3 Customizing fbox Parameters . 72
26.4 The Fancybox Package . 72

27 Side-by-Side Graphics 73
27.1 Side-by-Side Graphics in a Single Figure 74
27.2 Side-by-Side Figures . 75
27.3 Side-by-Side Subfigures . 77

28 Stacked Graphics 79

29 Placing a Table Beside a Figure 80

30 Continued Figures 81

References 83

Index 84

Acknowledgements

I thank David Carlisle for providing me with a great deal of assistance. I also thank
Donald Arseneau, Robin Fairbairns, Jim Hafner, Piet van Oostrum, and other contrib-
utors to the comp.text.tex newsgroup, whose posts provided much of the information
for this document. Thanks also goes to the many people who provided me with valuable
suggestions and bug reports for this document.

5

Part I

Background Information

1 Introduction

When TEX was written, PostScript/eps, jpeg, gif, and other graphic formats didHistory
not exist. As a result, Knuth’s dvi format does not have direct support for imported
graphics. However, TEX allows dvi files to contain \special commands which pass
commands to programs which use dvi files. This allows TEX and LATEX to import any
graphic format which is supported by the dvi program being used.

Since dvi files are often converted to PostScript, the best-supported imported-
graphic format is Encapsulated PostScript (eps) which is a subset of the PostScript
language. Inserting eps graphics in LATEX originally required the low-level \special
command. To make graphic-insertion easier and more portable, two higher-level pack-
ages epsf and psfig were written for LATEX2.09. In epsf, the graphics insertion was done
by the \epsfbox command, while three other commands controlled graphic scaling.
In psfig, the \psfig command not only inserted graphics, it also scaled and rotated
them. While the psfig syntax was popular, its code was not as robust as epsf. As a
result, the epsfig package was created as a hybrid of the two graphics packages, with
its \epsfig command using the \psfig syntax and much of the more-robust \epsfbox
code. Unfortunately, \epsfig still used some of the less-robust \psfig code.

With the release of LATEX2ε in 1994, the LATEX3 team addressed the general problemLATEX
Graphics

Bundle
of inserting graphics in LATEX2ε. Their efforts produced the “LATEX graphics bundle1,”
which contains totally re-written commands that are more efficient, more robust, and
more portable than other graphics-insertion commands.

The graphics bundle contains the “standard” graphics package and the “extended”
graphicx package. While both packages contain an \includegraphics command, the
packages contain different versions of \includegraphics. The graphicx version uses
“named arguments” (similar to the \psfig syntax) which, although convenient, vio-
late the LATEX syntax guidelines which require that optional arguments be positional.
As a compromise, two versions of \includegraphics were written, with the graphics
package following the LATEX syntax guidelines and the graphicx package using the more-
convenient named arguments. The graphicx \includegraphics supports scaling and ro-
tating, but the graphics \includegraphics command must be nested inside \rotatebox
or \scalebox commands to produce rotating or scaling.

This document uses the graphicx package because its syntax is more convenient than
the graphics syntax. Since both packages have the same capabilities, the examples in this
document can also be performed with the graphics package, although the resulting syntax
may be more cumbersome and slightly less efficient. For a more-detailed description of
the packages, see the graphics bundle documentation [5].

For backward-compatibility, the graphics bundle also includes the epsfig package
which replaces the original LATEX2ε epsfig package. The new epsfig package defines
the \epsfbox, \psfig, and \epsfig commands as wrappers which simply call the
\includegraphics command. Since these wrappers are less efficient, the wrapped
packaged should be used only for old documents, with \includegraphics used for all
new documents.

In addition to improving eps graphics-inclusion, the LATEX graphics bundle alsoNon-EPS
Graphics addressed the problem of including non-eps graphic formats such as jpeg and gif.

Since dvi converters generally do not support direct inclusion of most non-eps formats,
these graphics must be converted to eps for insertion into LATEX documents. In many

1Note that there is a plain TEX version of the LATEX graphics bundle. See the files in the directory
CTAN/macros/generic/graphics/

6

cases, this graphics conversion can be performed on-the-fly by the dvi-to-ps converter.
Section 6 describes graphics-conversion programs while Section 13 describes how to use
non-eps graphics in LATEX.

2 LATEX Terminology

A box is any LATEX object (characters, graphics, etc.) that is treated as a unit (see
[1, page 103]). Each box has a reference point on its left side. The box’s baseline is a
horizontal line which passes through the reference point (see Figure 1). When LATEX
forms lines of text, characters are placed left-to-right with their reference points aligned
on a horizontal line called the current baseline, aligning the characters’ baselines with
the current baseline. LATEX follows the same process for typesetting graphics or other
objects; the reference point of each object is placed on the current baseline.

Baseline
depth

totalheight

height

width

Point
Reference

Figure 1: Sample LATEX Box

The size of each box is described by three lengths: height, depth, width. The height
is the distance from the reference point to the top of the box. The depth is the distance
from the reference point to the bottom of the box. The width is the width of the box.
The totalheight is defined as the distance from the bottom of the box to the top of the
box, or totalheight=height+depth.

The reference point of a non-rotated eps graphic is its lower-left corner (see left

Reference depth

height

width

depth

width

height

Point

EPS Graphics
EPS Graphics E

P
S G

raphics

width

Figure 2: Rotated LATEX Boxes

7

box in Figure 2), giving it zero depth and making its totalheight equal its height. The
middle box in Figure 2 shows a rotated graphic where the height is not equal to the
totalheight. The right box in Figure 2 shows a rotated graphic where the height is zero.

3 Encapsulated PostScript

The PostScript language can describe graphics and text. The PostScript language is
used in conventional PostScript (ps) files to describe multiple-page documents and also
in Encapsulated PostScript (eps) files to describe graphics for insertion into documents.
There are two main differences between PS and EPS files
• EPS files can contain only certain PostScript operators.

• EPS files must contain a BoundingBox line which specifies the size of the EPS
graphic.

3.1 Forbidden PostScript Operators

Since eps graphics must share the page with other objects, the commands in an eps

file cannot perform page operations such as selecting a page size (such as letter or a4)
or erasing the entire page with erasepage. The following PostScript operators are not
allowed in eps files:
a3 a4 a5 banddevice clear

cleardictstack copypage erasepage exitserver framedevice

grestoreall initclip initgraphics initmatrix letter

legal note prenderbands quit renderbands

setdevice setglobal setpagedevice setpageparams setsccbatch

setshared startjob stop

Although the following PostScript operators can be used in eps files, they may cause
problems if not used properly.
nulldevice setcolortransfer setgstate sethalftone

setmatrix setscreen settransfer undefinedfont

Some of the above operators may cause the dvi-to-ps process to fail, while others
may cause strange problems like misplaced or invisible graphics. Since many of these
operators do not affect the PostScript stack, these problems can often be eliminated
by simply deleting the offending operator. Other cases may require more complicated
hacking of the PostScript.

3.2 The EPS BoundingBox

By convention, the first line of a PostScript file specifies the type of PostScript and
is then followed by a series of comments called the header or preamble. (Like LATEX,
PostScript’s comment character is %). One of these comments specifies the Bounding-
Box. The BoundingBox line contains four integers

1. The x-coordinate of the lower-left corner of the BoundingBox.

2. The y-coordinate of the lower-left corner of the BoundingBox.

3. The x-coordinate of the upper-right corner of the BoundingBox.

4. The y-coordinate of the upper-right corner of the BoundingBox.
For example, the first 5 lines of an eps file created by gnuplot are

%!PS-Adobe-2.0 EPSF-2.0

%%Creator: gnuplot

%%DocumentFonts: Times-Roman

%%BoundingBox: 50 50 410 302

%%EndComments

8

Thus the gnuplot eps graphic has a lower-left corner with coordinates (50, 50) and an
upper-right corner with coordinates (410, 302). The BoundingBox parameters have units
of PostScript points which are 1/72 of an inch, making the above graphic’s natural width
5 inches and its natural height 3.5 inches. Note that a PostScript point is is slightly
larger than a TEX point, which is 1/72.27 of an inch. In TEX and LATEX, PostScript
points are called “big points” and abbreviated bp while TEX points are called “points”
and abbreviated pt.

3.3 Converting PS files to EPS

Single-page PostScript files without any improper commands can be converted to eps

by using one of the following methods for adding a BoundingBox line. Since these
methods do not check for illegal PostScript operators, they do not produce
usable EPS files unless the PS files are free of forbidden operators.

1. The most convenient option is to use the ps2epsi utility distributed with Ghostscript
(see Section 5), which reads the PostScript file, calculates the BoundingBox pa-
rameters, and creates an eps file (complete with a BoundingBox) which contains
the PostScript graphics.

The resulting file eps file is in epsi format, which means it contains a low-
resolution bitmapped preview at the beginning of the file. Since this preview is
ascii-encoded, it does not cause the Section 4.1 bufsize errors. However, this
epsi preview increases the file size.

2. Alternatively, the BoundingBox parameters can be calculated and inserted in the
PostScript file’s BoundingBox line or specified in the graphics-insertion command
(e.g., the \includegraphics command’s bb option). There are several ways to
calculate the BoundingBox parameters

(a) Use Ghostview/GSview to display the PostScript graphic. As the pointer
is moved around the graphic, the pointer’s coordinates (with respect to the
lower-left corner of the page) are displayed. To determine the BoundingBox
parameters, record the pointer coordinates at the lower-left corner of the
graphic and the upper-right corner of the graphic.

(b) Print out a copy of the PostScript graphics and measure the horizontal and
vertical distances (in inches) from the lower-left corner of the paper to the
lower-left corner of the graphics. Multiply these measurements by 72 to get
the BoundingBox’s lower-left coordinates. Likewise, measure the distances
from the lower-left corner of the paper to the upper-right corner of the graph-
ics to get the BoundingBox’s upper-right coordinates.

(c) The bbfig script uses a PostScript printer to calculate the BoundingBox.
bbfig adds some PostScript commands to the beginning of the PostScript
file and sends it to the printer. At the printer, the added PostScript com-
mands calculate the BoundingBox of the original PostScript file, printing the
BoundingBox coordinates superimposed on the PostScript graphic.

3.4 Fixing Non-standard EPS files

Some applications produce non-standard eps files which cannot be used in other pro-
grams such as LATEX. Some applications have developed their own “improved” flavor of
PostScript with additional features, while other applications use poor PostScript pro-
gramming. Fortunately, there are utilities which fix the non-standard eps files created
by the following applications.

Mathematica eps files produced by Mathematica 2.x are written in Mathematica’s
extended PostScript. To use the eps file in non-Mathematica programs, the file

9

must be fixed to remove the non-standard extensions. dos versions of Mathemat-
ica 2.x include a utility called either printps.exe or rasterps which removes the
non-standard extensions. On Unix versions of Mathematica 2.x, this can be done
with the psfix utility. Reference your Mathematica documentation or contact
Wolfram Research for more information.

FrameMaker PostScript produced by FrameMaker fails to follow Adobe’s specification
for page independence. PostScript files produced by FrameMaker Version 4 and 5
can be respectively fixed using the scripts

ftp://ftp.irisa.fr/pub/FrameMaker/Filters/fixfm4-1.3.tar.gz

ftp://ftp.irisa.fr/pub/FrameMaker/Filters/fixfm5-2.0.tar.gz

Correction scripts for FrameMaker Version 3 and 4 are also available from

ftp://ftp.frame.com/pub/techsup/framers/platform.ind/filters/fixfm3ps.sh

ftp://ftp.frame.com/pub/techsup/framers/platform.ind/filters/fixfm4ps.sh

4 How EPS Files are Used by LATEX

The eps files are used by both LATEX and the dvi-to-ps converter.
1. LATEX scans the eps file for the BoundingBox line, which tells LATEX how much

space to reserve for the graphic.

2. The dvi-to-ps converter then reads the eps file and inserts the graphics in the
ps file.

This has the following ramifications
• LATEX never even reads the eps file if the BoundingBox parameters are specified

in the graphics-insertion command (e.g., the bb option of \includegraphics is
used).

• Since TEX cannot read non-ascii files and cannot spawn other programs, LATEX
cannot read the BoundingBox information from compressed or non-eps graph-
ics files. In these cases, the BoundingBox parameters must be specified in the
graphics-insertion command (e.g., in the bb option of the \includegraphics com-
mand) or stored in a non-compressed text file (see Section 13).

• The eps graphics are not included in the dvi file. Since the eps files must be
present when the dvi file is converted to ps, the eps files must accompany dvi

files whenever they are moved.

• The eps graphics do not appear in most dvi viewers. To help the user with
placement of the graphics, dvi viewers generally display the BoundingBox in
which the graphics will be inserted. (Some viewers, such as xdvi, use ghostscript
to interpret the eps graphics and display them in the dvi viewer.)

4.1 Line Buffer Overflow

LATEX reads ascii files one line at a time, putting each line in its line buffer, which is
usually about 3000 characters long. If any of the lines of the eps file is longer than the
line buffer, the following error is displayed

Unable to read an entire line--bufsize=3000.

Please ask a wizard to enlarge me.

Since eps rarely have lines longer than 3000 characters, there are two possible causes
of such an error

10

1. The EPS file contains a long binary preview.

Some applications place a binary preview of the graphics at the beginning of the
eps file. This allows applications (such as dvi viewers) to display the graphics
even though the application cannot interpret PostScript. Currently, relatively few
TEX-related applications use such previews.

If the binary preview is smaller than the line buffer, the \includegraphics com-
mand skips over the preview (this is not the case with \psfig and other obsolete
graphics commands). However, the overfull bufsize error occurs if the binary
preview is larger than the line buffer. There are a couple work-arounds for this
problem

(a) If the preview won’t be used, the problem can be avoided by either deleting
it with a text editor or by preventing the original graphics application from
creating the preview.

(b) Since LATEX reads the eps file to only obtain the BoundingBox param-
eters, LATEX does not read the eps file if the BoundingBox parameters
are provided by the graphics-insertion command (e.g., the bb option to
\includegraphics)

2. The file’s end-of-line characters are corrupted by an improper transfer.

(The problem described in this section does not occur with the latest web2c distri-
bution and some commercial distributions whose TEX are smart enough to identify
all end-of-line characters.)

Different platforms use different end-of-line characters: Unix uses a line feed char-
acter (^J), Macintosh uses a carriage return (^M), while dos/Windows uses a
carriage return and line feed pair (^M^J). For example, if an eps file is transferred
in binary mode from a Macintosh to a Unix machine, the Unix TEX doesn’t see any
^J end-of-line characters and thus thinks the entire file is one big line, overfilling
the line buffer.

If the eps file has no binary sections (e.g., no binary preview and no embedded
graphics) this problem can be avoided by transferring the eps file in text mode.
However, eps files with binary sections must be transferred with binary mode,
since the text mode transfer may corrupt the binary section. However, such binary
transfer results in incorrect end-of-line characters, requiring the BoundingBox
information be provided by the graphics-insertion command (e.g., the bb option
to \includegraphics).

5 Obtaining GhostScript

Ghostscript is a PostScript interpreter which runs on most platforms and is distributed
for free2 by Aladdin Enterprises. This allows PostScript and EPS files to be displayed
on the screen and printed to non-PostScript printers. Aladdin Ghostscript is avail-
able from CTAN/support/ghostscript/aladdin/. It is also available directly from the
Ghostscript home page

http://www.cs.wisc.edu/~ghost/index.html

whose html interface provides better directions than do the ctan ftp sites.
These sites contains pre-compiled Windows/dos/OS/2 and Macintosh executables,

along with ready-to-compile source code for Unix/vms. Also available are graphi-
cal interfaces (GSview for Windows3.1/95/NT/OS/2, Ghostview for Unix/vms) for
Ghostscript which makes the viewing of PostScript much easier.

2Although Aladdin Ghostscript is distributed for free, it is not in the public domain. It is copyrighted
and comes with certain limitations such as no commercial distribution. When versions of Aladdin
Ghostscript become approximately one year old, Aladdin releases them as “GNU Ghostscript” whose
use is governed by the less-restrictive GNU Public License.

11

6 Graphics-Conversion Programs

The following freeware and shareware programs convert non-eps graphics to eps. Some
of the programs allow command-line conversion which makes it possible to convert the
graphics on-the-fly during dvips conversion (see Section 13.3).

• ImageMagick is a very good graphics-conversion utility that is distributed for free
from ftp.wizards.dupont.com and other sites. See

http://www.wizards.dupont.com/cristy/ImageMagick.html

In addition to Unix and Linux, it now also runs under Windows NT, Macintosh,
and vms.

• xv is $25 shareware which provides graphics viewing and conversion programs for
X-Windows systems. Note that xv does not provide command-line conversion
capabilities for on-the-fly graphics conversion. For xv information, see

http://www.sun.com/sunsoft/catlink/xv/note.html

an on-line xv manual is available from
http://is.rice.edu/~shel/xv-3.10a/

• DISPLAY is dos freeware which converts between many types of graphic formats.
It is available as disp189a.zip and disp189b.zip from the SimTel archives

http://www.simtel.net/simtel.net/msdos/graphics-pre.html

http://oak.oakland.edu/simtel.net/msdos/graphics-pre.html

Future versions will increment the 189 version number.
• WMF2EPS is a freeware wmf-to-eps conversion program which runs on Win-

dows 95 and NT. It is available from
CTAN/support/wmf2eps/readme.txt

It requires an Adobe-compatible printer driver on your system.
• KVEC is $25 shareware which converts bitmap graphics (bmp, gif, tiff) into

PostScript and other vector formats. KVEC is available for Windows, OS/2, next

and Unix.
http://ourworld.compuserve.com/homepages/kkuhl/

• NetPBM is a maintained and improved version of the unsupported PBMPLUS package.
It runs under Unix, vms, and reportedly even dos.

http://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/

• ImageCommander ($19 shareware) is a graphics-conversion program for Win-
dows 3.1/95/NT which reads many types of graphics formats (gif, jpeg, pict,
wmf, etc) and writes eps and other formats. For more information, see

http://www.jasc.com/

JASC’s Paint Shop Pro painting program ($69 shareware) has the same graphics-
conversion capabilities.

6.1 Level 2 EPS Wrappers

Unlike conventional PostScript, Level 2 PostScript supports compressed binary graphics.
This produces better quality and smaller files than converting the graphics to conven-
tional eps. If one has a Level 2 PostScript printer, it is better to use the following
wrapper programs instead of the conversion programs listed above. Since the resulting
PostScript files can only be printed on Level 2 printers, the documents are less portable.

• A jpeg graphic can be converted to level 2 PostScript by the C program jpeg2ps
which is available from

http://www.muc.de/~tm/free/free.html

jpeg2ps can be compiled for Unix, dos, and other systems.

12

• A tiff graphic can be converted to lzw-encoded Level-2 PostScript by using
tiff2ps, whose source is available from

ftp://ftp.sgi.com/graphics/tiff/tiff-v3.4-tar.gz

A tar.Z file is also available. tiff2ps can be compiled on Unix, dos, Mac,
and vms platforms. Although the lzw PostScript files are small, they require a
Level-2 PostScript printer.

6.2 Editing PostScript

While the graphics in an eps file can be modified by editing the file’s PostScript com-
mands, this is difficult for most people. Instead, it is easier to use the following programs
to edit eps graphics
• pstoedit is a free program for Unix, dos, Windows, and OS/2 whose C++

source code is available from
ftp://ftp.x.org/contrib/applications/pstoedit/pstoedit.html

http://www.cdrom.com/pub/X11/contrib/applications/pstoedit/

when used with ghostscript, pstoedit translates PostScript and pdf graphics
into other vector formats (such as xfig’s .fig format).

• Mayura Draw (formerly known as PageDraw) is a drawing program for Windows
3.1/95/NT which is available from

http://www.wix.com/PageDraw

When used with ghostscript, Mayura Draw can edit PostScript files.
Older versions of Mayura Draw are distributed for free, while more recent versions
are $15 shareware. Note that Mayura Draw requires Adobe Type Manager (ATM)
to place text on the graphics. Although ATM is now commercial software, Adobe
formerly distributed it for free with Acrobat Reader 2.0, which is available from
Winsite at

ftp://ftp.winsite.com/pub/pc/win3/util/acroread.zip

• xfig is a free drawing program for Unix/Xwindows available from
ftp://ftp.x.org/contrib/applications/drawing_tools/

http://www.cdrom.com/pub/X11/contrib/applications/drawing_tools/

xfig can import EPS drawings and add annotations, but currently cannot modify
the original eps graphics.

13

Part II

The LATEX Graphics Bundle

7 EPS Graphics Inclusion

The best reference for the graphics and graphicx packages is the graphics guide [5] or the
LATEX Graphics Companion [4]. The coverage of the graphicx package in other LATEX
references is sporadic: [2] covers both the graphics and graphicx packages, [1] only covers
the graphics package and [3] describes neither.

7.1 The includegraphics Command

Syntax: \includegraphics[options]{filename}

where the options are listed in Tables 1, 2, and 3. Since \includegraphics does not
end the current paragraph, it can place graphics within text such as or . The
commands

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\includegraphics{file.eps}

\end{document}

include the graphics from file.eps at its natural size.
When the specified filename has no extension \includegraphics appends the ex-

tensions in the \DeclareGraphicsExtensions extension list (See Section 9.1). Since
the default extension list does not include the null extension, \includegraphics{file}
does not read file unless the null extension is added to the extension list.

Table 1: includegraphics Options

height The height of the graphics (in any of the accepted TEX units).
totalheight The totalheight of the graphics, in any of the accepted TEX units. (Added 6/95)
width The width of the graphics, in any of the accepted TEX units.
scale Scale factor for the graphic. Specifying scale=2 makes the graphic twice as large as

its natural size.
angle Specifies the angle of rotation, in degrees, with a counter-clockwise (anti-clockwise)

rotation being positive.
origin The origin command specifies what point to use for the rotation origin. By default,

the object is rotated about its reference point. (Added 12/95)
The possible origin points are the same as those for the \rotatebox command in
Section 8.3. For example, origin=c rotates the graphic about its center.

bb Specifies BoundingBox parameters. For example bb=10 20 100 200 specifies that
the BoundingBox has its lower-left corner at (10,20) and its upper-right corner at
(100,200).
Since \includegraphics automatically reads the BoundingBox parameters from the
eps file, the bb option is usually not specified. It is useful if the BoundingBox pa-
rameters in the eps file are missing or incorrect.

The commandSpecifying
Width \includegraphics[width=3in]{file.eps}

includes the graphics from file.eps scaled such that its width is 3 inches. Instead of
making the width be a fixed length such as 3 inches, making the width of function of
\textwidth or \em makes a document more portable. For example, the command

14

Table 2: includegraphics Cropping Options

viewport Specifies what portion of the graphic to view. Like a BoundingBox, the area is specified
by four numbers which are the coordinates of the lower-left corner and upper-right
corner. The coordinates are relative to lower-left corner of the BoundingBox. (Added
6/95)
For example, if the graphic’s BoundingBox parameters are 50 50 410 302,
viewport=50 50 122 122 displays the 1-inch square from the lower left of the graphic,
and viewport=338 230 410 302 displays the 1-inch square from the upper right of
the graphic.
The clip option (see Table 3) must be used to prevent the portion of the graphic
outside the viewport from being displayed.

trim An alternate method for specifying what portion of the graphic to view. The four
numbers specify the amount to remove from the left, bottom, right, and top side,
respectively. Positive numbers trim from a side, negative numbers add to a side.
(Added 6/95)
For example, trim=1 2 3 4 trims the graphic by 1 bp on the left, 2 bp on the bottom,
3 bp on the right, 4 bp on the top.
The clip option (see Table 3) must be used to prevent the trimmed portion from
being displayed.

Table 3: includegraphics Boolean Options

noclip (default) The entire graphic appears, even if portions appear outside the viewing
area.

clip When clip is specified, any graphics outside of the viewing area are clipped and
do not appear.

draft When draft is specified, the graphic’s BoundingBox and filename are displayed
in place of the graphic, making it faster to display and print the document. The
draft package option \usepackage[draft]{graphicx} causes all the graphics
in a document to be inserted in draft mode.

final (default, unless \usepackage[draft]{graphicx} is specified.) final causes the
graphics to be displayed, it is used to override \usepackage[draft]{graphicx}.

keepaspectratio When keepaspectratio is not specified, specifying both the width and either
height or totalheight causes the graphic to be scaled anamorphically to fit
both the specified height and width.
When keepaspectratio is specified, specifying both the width and either height
or totalheight makes the graphic as large as possible such that its aspect ratio
remains the same and the graphic exceeds neither the specified height nor width.
(Added 9/95)

15

\includegraphics[width=\textwidth]{graphic.eps}

scales the included graphic such that it is as wide as the text. The command
\includegraphics[width=0.80\textwidth]{graphic.eps}

makes the included graphic 80% as wide as the text. When the calc package is used,
the following command make the graphic width 2 inches less than the width of text

\includegraphics[width=\textwidth-2.0in]{graphic.eps}

(This requires graphicx version 12/95 or later).

8 Rotating and Scaling Objects

In addition to the \includegraphics command, the graphicx package includes 4 other
commands which rotate and scale any LATEX object: text, eps graphic, etc.

\scalebox{h-scale}[v-scale]{argument}
\resizebox{width}{height}{argument}
\resizebox*{width}{totalheight}{argument}
\rotatebox[options]{angle}{argument}

Since the graphicx \includegraphics command supports rotating and scaling options
such as angle and width, the commands in this section rarely need to be used with
eps graphics. For example,

\includegraphics[scale=2]{file.eps}

\includegraphics[width=4in]{file.eps}

\includegraphics[angle=45]{file.eps}

produce the same three graphics as
\scalebox{2}{\includegraphics{file.eps}}

\resizebox{4in}{!}{\includegraphics{file.eps}}

\rotatebox{45}{\includegraphics{file.eps}}

However, the first syntax is preferred because it is faster and produces more efficient
PostScript.

8.1 The scalebox Command

Syntax: \scalebox{h-scale}[v-scale]{argument}

The \scalebox command scales an object, making its width be h-scale times its
original width and making the object’s height be v-scale times its original height. If
v-scale is omitted, it defaults to h-scale, keeping the aspect ratio constant. Negative
values reflect the object.

8.2 The resizebox Commands

Syntax: \resizebox{width}{height}{argument}
\resizebox*{width}{totalheight}{argument}

The \resizebox command resizes an object to a specified size. Specifying ! as either
height or width makes that length be such that the aspect ratio remains constant. For
example, \resizebox{2in}{!}{argument} scales the argument to be 2 inches wide.

The standard LATEX2ε arguments \height, \width, \totalheight, \depth can be
used to refer to the original size of argument. So \resizebox{2in}{\height}{argument}
makes argument keep its same height but have a width of 2 inches.

The \resizebox* command is identical to \resizebox, except the second argument
specifies the totalheight of the object.

16

8.3 The rotatebox Command

Syntax: \rotatebox[options]{angle}{argument}

The \rotatebox command rotates an object by an angle given in degrees, with a
counter-clockwise rotation being positive. By default, the object is rotated about its
reference point. The \rotatebox options allow the point of rotation to be specified.

1. Specifying the [x=xdim,y=ydim], the object is rotated about the point whose
coordinates relative to the reference point are (xdim,ydim).

2. The origin option specifies one of 12 special points shown in in Figure 3.

Reference
Point

Baseline

Centerlines

[lt]

[lc]

[lB]

[lb]

[ct]

[c]

[cB]

[cb]

[rt]

[rc]

[rB]

[rb]

Figure 3: Available Origin Points

The horizontal position of the origin points is specified by one of three letters:
lcr (which stand for left, center, right, respectively), while the vertical position
is specified by one of four letters: t,c,B,b (which stand for top, center, Baseline,
bottom, respectively). For example

[rb] specifies the bottom-right corner
[lt] specifies the top-left corner
[cB] specifies the center of the graphic’s Baseline

Note that

• The order of the letters is not important, making [br] equivalent to [rb].
• c represents either the horizontal center or vertical center depending what

letter is used with it.
• If only one letter is specified, the other is assumed to be c, making [c]

equivalent to [cc], [l] equivalent to [lc], [t] equivalent to [tc], etc.

9 Advanced Commands

This section describes advanced commands which are needed in the following situations
1. When the specified filename has no extension. For example

\includegraphics{file}

2. When compressed eps graphics are used (see Section 13.1).

3. When non-EPS graphics are used (see Section 13.3).
In these situations, the \DeclareGraphicsRule and \DeclareGraphicsExtensions
commands are needed to control how LATEX deals with files specified in \includegraphics.

17

• The \DeclareGraphicsExtensions command specifies the extensions to attempt
(e.g., .eps, .ps, .eps.gz, etc.) when the specified filename does not have an
extension.

• The \DeclareGraphicsRule specifies a command which operates on the file. The
execution of this command requires an operating system which support pipes. For
example, Unix supports pipes while dos does not.

Making this command a decompression command allows compressed eps graphics
to be used. Making this command a graphics-conversion command allows non-eps

graphics to be used.

9.1 The DeclareGraphicsExtensions Command

The \DeclareGraphicsExtensions command tells LATEX which extensions to try if a
file with no extension is specified in the \includegraphics command.

For convenience, a default set of extensions is pre-defined depending on which graph-
ics driver is selected3. For example if dvips is used, the following graphic extensions
(defined in dvips.def) are used by default

\DeclareGraphicsExtensions{.eps,.ps,.eps.gz,.ps.gz,.eps.Z}

With the above graphics extensions specified, \includegraphics{file} first looks for
file.eps, then file.ps, then file.eps.gz, etc. until a file is found. This allows the
graphics to be specified with

\includegraphics{file}

instead of
\includegraphics{file.eps}

The first syntax has the advantage that if you later decide to compress file.eps, you
need not edit the LATEX file.

Note thatFilenames
Without

Extensions
\includegraphics{file}

does not attempt to open file unless the null extension {} is included in the extension
list. For example,

\DeclareGraphicsExtensions{.eps,.eps.gz,{}}

causes file to be attempted if file.eps and file.eps.gz are not found.

Specifying no file extension and relying on LATEX to choose the correct extension fromPool Space
Problems the \DeclareGraphicsExtensions extension list can aggravate pool space problems

(see Section 12.3). If pool space is a concern, \includegraphics{file} should only be
used with a \DeclareGraphicsExtensions command containing a minimal number of
extensions, such as

\DeclareGraphicsExtensions{.eps,.eps.gz}

9.2 The DeclareGraphicsRule Command

The \DeclareGraphicsRule command specifies how \includegraphics should treats
file, depending on their extensions. Multiple \DeclareGraphicsRule commands may
be issued.

Syntax: \DeclareGraphicsRule{ext}{type}{sizefile}{command}

For example, the command
\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

3Specifying a graphics-driver package option such as \usepackage[dvips]{graphicx} overrides the
default graphics driver specified in the graphics.cfg file.

18

Table 4: DeclareGraphicsRule Arguments

ext The file extension.
type The graphics type for that extension.
sizefile The extension of the file which contains the BoundingBox information for the graph-

ics. If this option is blank, then the size information must be specified by the
\includegraphics command’s bb option.

command The command to be applied to the file. (often left blank). The command must be
preceded by a single backward quote (not to be confused with the more common
forward single quote.) Currently, only dvips allows execution of such a command.
See Section 13 for examples of using this command for use with compressed and non-
eps graphics.

specifies that any file with a .eps.gz extension is treated as compressed eps file, with
the the BoundingBox information stored in the file with a .eps.bb extension, and the
gunzip -c command uncompresses the file. (Since LATEX cannot read BoundingBox
information from a compressed file, the BoundingBox line must be stored in an uncom-
pressed file.)

The \DeclareGraphicsRule allows * to signify any unknown extension. For exam-
ple,

\DeclareGraphicsRule{*}{eps}{*}{}

causes any unknown extension to be treated as an eps file. For example, this causes
file.EPS) to be treated as a an eps file.

The extension is defined as the portion of the filename after the first period, whichPeriods In
Filenames makes it possible for files ending in eps.gz to be identified as compressed eps files. To

avoid confusion, the base portion of the filename should not contain a period. For ex-
ample, specifying file.name.eps.gzmakes \includegraphics look for a graphics rule
associated with the extension name.eps.gz. Since such a graphics rule probably does
not exist, the graphics rule for the unknown extension is used. (Filenames with multiple
periods work if their type happens to be the default type. For example, when files with
unknown extensions are treated as eps, the filename file.name.eps is coincidently
treated correctly.)

For convenience, a default set of graphics rules is pre-defined depending on whichPre-defined
Commands graphics driver is selected4 . For example if the dvips driver is used, the following

graphic rules (defined in dvips.def) are used by default
\DeclareGraphicsRule{.eps}{eps}{.eps}{}

\DeclareGraphicsRule{.ps}{eps}{.ps}{}

\DeclareGraphicsRule{.pz}{eps}{.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.eps.Z}{eps}{.eps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.ps.Z}{eps}{.ps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}{‘gunzip -c #1}

\DeclareGraphicsRule{.pcx}{bmp}{}{}

\DeclareGraphicsRule{.bmp}{bmp}{}{}

\DeclareGraphicsRule{.msp}{bmp}{}{}

\DeclareGraphicsRule{*}{eps}{*}{}

The first two commands define the .eps and .ps extensions as eps files. The next five
commands define extensions for compressed eps files. The next three commands define
extensions for bitmaps (see Section 13.3.2). The last command causes filenames with
unknown extensions to be treated as an eps file.

4Specifying a graphics-driver package option such as \usepackage[dvips]{graphicx} overrides the
default graphics driver specified in the graphics.cfg file.

19

Part III

Using Graphics-Inclusion Commands

10 Horizontal Spacing and Centering

10.1 Horizontal Centering

The placement of the graphic is controlled by the current text justification. To center
the graphic, put it inside a center environment

\begin{center}

\includegraphics[width=2in]{graphic.eps}

\end{center}

If the \includegraphics command is inside an environment (such as minipage or
figure), the \centering declaration centers the remaining output of the environment.
For example

\begin{figure}

\centering

\includegraphics[width=2in]{graphic.eps}

\end{figure}

is similar to
\begin{figure}

\begin{center}

\includegraphics[width=2in]{graphic.eps}

\end{center}

\end{figure}

The \centering syntax is preferred because the \begin{center} syntax produces dou-
ble vertical space above and below the figure due to the space produced by the figure
environment and by the center environment. If extra vertical space is desired, the
commands in Section 18.1 should be used.

Bugs in the \psfig and \epsfbox commands made it difficult to produce horizontally-Obsolete
Syntax centered graphics. The TEX commands \centerline and \leavevmode were used as

work-arounds for bugs in \psfig and \epsfbox. Since the \includegraphics command
is written correctly, the \centerline and \leavevmode are no longer needed, allowing
graphics to be centered with the \centering command or the center environment.

10.2 Horizontal Spacing

It is important to realize that LATEX arranges graphics the same way it formats other
objects such as letters. For example, an interword space is introduced between LATEX
input lines unless the line ends with a %. For example, just as

Hello

World

put an interword space between “Hello” and “World”
\includegraphics{file.eps}

\includegraphics{file.eps}

puts an interword space between the graphics. Ending the first line with a comment
character

\includegraphics{file.eps}%

\includegraphics{file.eps}

puts no space between the graphics. When horizontal spacing is desired between graph-
ics, the \hspace command inserts a specific amount of space5 while \hfill inserts a
rubber length which provides which expands to fill the available space. For example,

5Instead of making the \hspace amount a fixed length such as 1 inch, making the \hspace amount
a function of \textwidth or \em increases a document’s portability.

20

\includegraphics{file.eps}\hfill\includegraphics{file.eps}

pushes the graphics to the left and right margins, while
\hfill\includegraphics{file.eps}%

\hfill\includegraphics{file.eps}\hspace*{\fill}

puts equal spacing before, between, and after the graphics. Since \hfill commands
which occur before a linebreak are ignored, the \hspace*{\fill} was needed to supply
the trailing space.

11 Rotation, Scaling, and Alignment

Since the \includegraphics options are interpreted from left to right, the order in
which the angle and size are specified makes a difference. For example

\begin{center}

\includegraphics[angle=90,totalheight=1cm]{graphic.eps}

\includegraphics[totalheight=1cm,angle=90]{graphic.eps}

\end{center}

produces

G
ra

ph
ic G

ra
ph

ic
The first box is rotated 90 degrees and then scaled such that its height is one centimeter.
The second box is scaled such that its height is one centimeter and then it is rotated 90
degrees.

11.1 Difference Between Height and Totalheight

Users must be careful when using the height option, as they often mean the overall
height which is set by the totalheight option (see Figure 1 on Page 7). When the object
has zero depth, the totalheight is the same as the height and specifying height works
fine. When the object has a non-zero depth, specifying height instead of totalheight
causes either an incorrectly-sized graphic or a divide-by-zero error. For importing eps

files, the distinction between height and totalheight is most important when rotating
and then scaling a graphic. For example,

\includegraphics[angle=-45,totalheight=1in]{file.eps}

\includegraphics[angle=-45,height=1in]{file.eps}

The first command scales the rotated graphic such that its total height is 1 inch. The
second command scales the rotated graphics such that the portion above its reference
point is 1 inch tall.

11.2 Scaling of Rotated Graphics

When the height or width of a graphic is specified, the specified size is not the size of
the graphic but rather of its BoundingBox. This distinction is especially important in
the scaling of rotated graphics. For example

\begin{center}

\includegraphics[totalheight=1in]{rosette.eps}

\includegraphics[angle=45,totalheight=1in]{rosette.eps}

\includegraphics[angle=90,totalheight=1in]{rosette.eps}

\end{center}

21

produces

Although it may seem strange that the graphics have different sizes, it should make
sense after viewing the BoundingBoxes

Each graphic is scaled such that its rotated BoundingBox is 1 inch tall.

11.3 Alignment of Rotated Graphics

When graphics are rotated, the objects may not align properly. For example
\begin{center}

\includegraphics[totalheight=1in]{rosette.eps}

\includegraphics[totalheight=1in,angle=-45]{rosette.eps}

\includegraphics[totalheight=1in,angle=-90]{rosette.eps}

\end{center}

produces

Again, this is better illustrated by the BoundingBoxes

22

In this case, the objects’ reference points (original lower-left corners) are aligned on a
horizontal line. If it is desired to instead have the centers aligned, the origin option of
\includegraphics can be used

\begin{center}

\includegraphics[totalheight=1in]{rosette.eps}

\includegraphics[totalheight=1in,origin=c,angle=-45]{rosette.eps}

\includegraphics[totalheight=1in,origin=c,angle=-90]{rosette.eps}

\end{center}

This aligns the centers of the graphics

Similarly, the commands
\begin{center}

\includegraphics[width=1in]{graphic.eps}

\hspace{1in}

\includegraphics[width=1in,angle=-90]{graphic.eps}

\end{center}

rotate the right graphic around its lower-left corner, producing

Graphic

G
raphic

To align the bottoms of the graphics, use the following commands
\begin{center}

\includegraphics[width=1in]{graphic.eps}

\hspace{1in}

\includegraphics[width=1in,origin=br,angle=-90]{graphic.eps}

\end{center}

which rotate the right graphic about its lower-right corner, producing

Graphic

G
raphic

23

11.4 Minipage Vertical Alignment

It is often useful to place graphics inside of minipage environments (for example, see
Section 27). When minipages are placed side-by-side, LATEX places them such that their
reference points are vertically aligned. By default, the minipage’s reference point is
vertically centered on its left edge. An optional argument modifies the location of a
minipage’s reference point.

[b] causes the minipage’s reference point to be vertically aligned with the reference
point of the bottom line in the minipage.

[t] causes the minipage’s reference point to be vertically aligned with the reference
point of the top line in the minipage.

Note the [b] does not put the reference point at the bottom of the minipage (unless
the bottom line’s reference point happens to be at its bottom.) Likewise, the [t] does
not put the reference point at the top of the minipage (unless the top line’s reference
point happens to be at its top.)

When the minipage contains only one line, the [b] and [t] options produce the
same results. For example, both

\begin{center}

\begin{minipage}[b]{.25\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\end{minipage}%

\begin{minipage}[b]{.25\textwidth}

\centering

\includegraphics[width=1in,angle=-90]{graphic.eps}

\end{minipage}

\end{center}

and
\begin{center}

\begin{minipage}[t]{.25\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\end{minipage}%

\begin{minipage}[t]{.25\textwidth}

\centering

\includegraphics[width=1in,angle=-90]{graphic.eps}

\end{minipage}

\end{center}

produce Figure 4. In both of these cases, reference point of the minipage is the reference
point (original lower-left corner) of the eps graphic.

Graphic

G
raphic

Figure 4: minipages with [b] or [t] options

24

11.4.1 Aligning the Bottoms of Minipages

One method for aligning the bottoms of minipages is to make the minipage baseline be
the bottom of the minipage. If a line with zero height and zero depth is added inside
the minipage after the graphics then the [b] option makes the bottom of the minipage
be minipage’s baseline. The command \par\vspace{0pt} creates such a zero-height,
zero-depth line. Since the baseline of this zero-depth line is the bottom of the minipage,
the [b] option now aligns the bottom of the minipage. For example
\begin{center}

\begin{minipage}[b]{.25\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\par\vspace{0pt}

\end{minipage}%

\begin{minipage}[b]{.25\textwidth}

\centering

\includegraphics[width=1in,angle=-90]{graphic.eps}

\par\vspace{0pt}

\end{minipage}

\end{center}

produces Figure 5.

Graphic

G
raphic

Figure 5: Minipages with Bottoms Aligned

11.4.2 Aligning the Tops of Minipages

To align the tops of the minipages, one must add a zero-height, zero-depth line to the
top of the minipage. Then the [t] option makes the minipage baseline be the top
of the minipage. Preceding \includegraphics command by \vspace{0pt} inserts a
zero-height, zero-depth line above the graphic. Since the baseline of this zero-height
line is the top of the minipage, the [t] option now aligns the top of the minipage. For
example
\begin{center}

\begin{minipage}[t]{.25\textwidth}

\vspace{0pt}

\centering

\includegraphics[width=1in]{graphic.eps}

\end{minipage}%

\begin{minipage}[t]{.25\textwidth}

\vspace{0pt}

\centering

\includegraphics[width=1in,angle=-90]{graphic.eps}

\end{minipage}

\end{center}

produces Figure 6.
This aligns the tops of the minipages with the current baseline. If it is instead desired
to align the tops of the minipages with the top of the current line of text, replace
\vspace{0pt} with \vspace{-\baselineskip}. This topic is mentioned in [3, pages
456-457].

25

Graphic G
raphic

Figure 6: Minipages with Tops Aligned

12 Using Subdirectories

When importing a large number of graphics files, it may be desirable to store the
graphics files in a subdirectory. For example, when the subdirectory is named sub, one
may be tempted to then include the file file.eps with the following command

\includegraphics{sub/file.eps}

While this syntax works for most Unix and dos TEX distributions, there are problems
with such usage

Inefficiency

Whenever TEX opens a file, the filename is saved in TEX memory. When open-
ing a large number of files, this lost memory may cause a poolsize error (see
Section 12.3). Since specifying subdirectories increases the filename length, it
aggravates this pool space problem.

Unportability

One of LATEX’s advantages is that its files can be used on any platform. However,
embedding the subdirectory in the filename results in the file becoming operating-
system dependent. The file now cannot be used on vms or Macintosh computers
without significant modification.

Instead of embedding the subdirectory in the filename, there are two other options
1. The best method is to modify the TEX search path (see Section 12.1).

2. Another method is to specify sub/ in a \graphicspath command (see Section 12.2).
However, this is much less efficient than modifying the TEX search path.

Both of these options causing \includegraphics to automatically search the graphics
subdirectory, allowing

\includegraphics{sub/file.eps}

to be replaced with
\includegraphics{file.eps}

12.1 TEX Search Path

Since the method for changing the directories in which TEX looks depends on the TEX
distribution, it becomes very complicated to provide a general description. As an ex-
ample, this section describe the strategy used by the web2c/teTeX Unix distributions.
Although the method for changing the search path differs for other TEX distributions,
most employ similar strategies.

For web2c/teTeX Unix distributions, the TEX search path can be modified by setting
the TEXINPUTS environment variable. When using csh shells,

setenv TEXINPUTS /dir1:/dir2:

causes /dir1 and /dir2 to be searched before the default directories. Without the
trailing colon, the default directories are not be searched. Setting TEXINPUTS with

setenv TEXINPUTS :/dir1:/dir2

26

causes /dir1 and /dir2 to be searched after the default directories, while
setenv TEXINPUTS /dir1::/dir2

causes /dir1 to be searched before the default directories and /dir2 to be searched
after the default directories.

Putting // after a directory causes all of its subdirectories to be searched. For
example,

setenv TEXINPUTS /dir1//:/dir2:

causes all the subdirectories (and sub-subdirectories) of /dir1 to be searched. Be careful
in using // as it may slow down the searching if the directory contains many files.

These examples also work for sh shells, although the syntax should be changed to
TEXINPUTS="/dir1:/dir2:"; export TEXINPUTS

When LATEX finds files on the TEX path, it does not include the entire filename in the
dvi file. As a result, old versions of dvips or xdvi which do not search the TEX path
cannot find the file (see Section 13.2).

12.2 Graphics Search Path

By default, LATEX looks for graphics files in any directory on the TEX search path.
In addition to these directories, LATEX also looks in any directories specified in the
\graphicspath command. For example,

\graphicspath{{dir1/}{dir2/}}

tells LATEX to also look for graphics files in dir1/ and dir2/. For Macintosh, this
becomes

\graphicspath{{dir1:}{dir2:}}

It is important to note that the file-searching associated with \graphicspath directories
is much slower than that associated with TEXINPUTS directories. Furthermore, each
file search done in a \graphicspath directory consumes additional pool space (see
section 12.3).

Due to these inefficiencies, it is recommended that the \graphicspath not be used.
Instead, subdirectories should be specified by modifying the TEXsearch path (see Sec-
tion 12.1).

12.3 Conserving Pool Space

TEX reserves a portion of its memory called pool space for its internal passing of strings.
Whenever TEX opens a file (or tries to open a file), some pool space is permanently
used. When opening a large number of files, this lost memory may cause TEX to run
out of pool space, causing an error similar to

! TeX capacity exceeded, sorry [poolsize=72288]

Since the amount of lost pool space is a function of the length of the filename, specifying
subdirectories aggravates this pool space problem.

With the exception of the latest web2c version and some commercial distributions,
the only way to increase the pool size is to recompile TEX. Fortunately, the following
pool-conservation rules usually solves the problem.
• Avoid excessively-long file names.
• Don’t include the subdirectory names

\includegraphics{sub/file.eps}

Instead, change the TEX search path or move the files out of the subdirectory.
• Don’t use the \graphicspath command.

27

\graphicspath{{dir1/}{dir2/}}

...

\includegraphics{file.eps}

causes \includegraphics to try to open the following files
file.eps

dir1/file.eps

dir2/file.eps

Each of these attempts consumes pool space. Instead of using \graphicspath,
modify the TEX search path.

• Specify the entire filename, do not omit the files extension/suffix (e.g., .eps).
With the default \DeclareGraphicsExtensions (see Section 9.1), the command

\includegraphics{file}

causes \includegraphics to try to open the following files
file.eps

file.ps

file.eps.gz

file.ps.gz

file.eps.Z

This is especially inefficient when used in conjunction with \graphicspath.

Issuing a \DeclareGraphicsExtensions command with a minimal number of
extensions minimizes the inefficiency of omitting the extension.

13 Compressed and Non-EPS Graphics Files

When using dvips, users can specify an operation to be performed on the file before it is
inserted. Making this operation a decompression command allows compressed graphics
files to be used. Making this operation a graphics-conversion command allows non-eps

graphics files can be used. Since dvips is currently the only dvi-to-ps converter with
this capability, everything in this section requires dvips. Users need to pass the dvips
option to the graphicx package. This can be done by either specifying the dvips global
option in the \documentclass command

\documentclass[dvips,11pt]{article}

or by specifying the dvips option in the \usepackage command
\usepackage[dvips]{graphicx}

Specifying the dvips option in \documentclass it is preferred because it passes the
dvips option to all packages.

When using an operating system which supports pipes6, the \DeclareGraphicsRule
(see Section 9.2) specifies a command which operates on the file. Making this command a
decompression command allows compressed eps files to be used. Making this command
a graphics-conversion command allows non-eps graphics files to be used. When using
operating systems which do not support pipes, such on-the-fly conversion is not possible
and all graphics must be stores as uncompressed eps files.

13.1 Compressed EPS Example

The steps for using compressed eps files are
1. Create an eps file (file1.eps for example)

2. Store the BoundingBox line in another file (file1.eps.bb)
3. Compress the eps file. For example, the Unix command

gzip -9 file1.eps

6For example, Unix supports pipes while dos does not.

28

creates the compressed file file1.eps.gz. The -9 (or -best) option specifies
maximum compression.

4. Include the proper \DeclareGraphicsRule command before the \includegraphics
command in the LATEX file. The \DeclareGraphicsRule command informs LATEX
how to treat the particular suffix (see Section 9.2). For example

\documentclass[dvips]{article}

\usepackage{graphicx}

\begin{document}

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

\begin{figure}

\centering

\includegraphics[width=3in]{file1.eps.gz}

\caption{Compressed EPS Graphic}

\label{fig:compressed:eps}

\end{figure}

\end{document}

In this particular case, the \DeclareGraphicsRule command is actually not necessary
because it happens to be one of the graphics rules pre-defined in dvips.def. If another
compression program or suffixes were used, the \DeclareGraphicsRule command would
be mandatory. For example, if the BoundingBox file had been stored in file1.bb, the
corresponding \DeclareGraphicsRule would be

\DeclareGraphicsRule{.eps.gz}{eps}{.bb}{‘gunzip -c #1}

13.2 TEX Search Path and dvips

When LATEX encounters an \includegraphics command, it looks in the current direc-
tory for the file. If it does not find the file in the current directory, it searches through
the TEX path for the file. When the dvi file is converted to PostScript, dvips per-
forms the same search routine and everything works well. However, when an on-the-fly
command is specified in the \DeclareGraphicsRule command, the on-the-fly command
prevents dvips from properly searching the TEX path.

For example, the rule
\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

specifies that the gunzip -c command be used on files having a .eps.gz suffix. Suppose
the following command is used

\includegraphics{file.eps.gz}

If file.eps.gz and file.eps.bb are in the current directory, the path-searching is
not needed and everything works well. LATEX uses file.eps.bb and dvips executes
gunzip -c file.eps.gz to uncompress the file.

However, things don’t work if file.eps.gz and file.eps.bb are not in the cur-
rent directory. If they are instead in the directory /a/b/c/ (on the TEX path), LATEX
searches the path to find /a/b/c/file.eps.bb. However, problems occur when dvips
executes ‘gunzip -c file.eps.gz because gunzip cannot find file.eps.gz. If the
TEX distribution uses a recent kpathsea library (as does the teTeX distribution), this
problem can be solved by the following graphics rule

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}%

{‘gunzip -c ‘kpsewhich -n latex tex #1‘}

which uses kpsewhich to find the file for gunzip. The ‘kpsewhich -n latex tex #1
command causes dvips look for the compressed file on the TEX search path. The
full filename (including subdirectories) is then appended to the gunzip -c command,
allowing gunzip to find the file even though it is not in the current directory.

While this new \DeclareGraphicsRule command can be placed at the beginning of
every document, it may be more convenient to add the following to the graphics.cfg
file

29

\AtEndOfPackage{%

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}%

{‘gunzip -c ‘kpsewhich -n latex tex #1‘}}

and leaving the existing \ExecuteOptions{dvips} line.

Since older versions of dvips do not search the TEX path, dvips cannot find files onOld dvips
Versions the TEX path. The following command uses kpsewhich to search the TEX search path

for non-compressed eps files for dvips
\DeclareGraphicsRule{.eps}{eps}{.eps}{‘cat ‘kpsewhich -n latex tex #1‘}

(Although the better solution is to update your TEX distribution.)

13.3 Non-EPS Graphic Files

While it is easy to insert eps graphics into LATEX documents, it is not as straight-forward
to insert non-eps graphics (gif, tiff, jpeg, pict, etc.). A simple solution is to
determine whether the application which generated the non-eps graphic also generates
eps output. If not, a graphics-conversion program (see Section 6) must be used to
convert the graphics to PostScript.

Since a non-eps graphics file may be smaller than the corresponding eps file, it may
be desirable to keep the graphics in a non-eps format and convert them to PostScript
when the dvi file is converted to PostScript. If dvips is used, this on-the-fly conversion
can be specified by the command option in \DeclareGraphicsRule. For example, using
on-the-fly conversion to insert file2.gif into a LATEX document requires the following
steps

1. Find a gif-to-eps conversion program (assume it’s called gif2eps)

2. One needs to create a BoundingBox file which specifies the natural size of the
file2.gif graphics. To do this, convert file2.gif to PostScript and

(a) If the PostScript file contains a BoundingBox line, save the BoundingBox
line in file2.gif.bb

(b) If the PostScript file contains no BoundingBox line, determine the appropri-
ate BoundingBox (see Section 3.2) and place those numbers in a %%BoundingBox:
line in file2.gif.bb

3. Keep file2.gif and file2.gif.bb and delete the PostScript file.

4. Include \DeclareGraphicsRule{.gif}{eps}{.gif.bb}{‘gif2eps #1}
before the \includegraphics command in the LATEX file.

When \includegraphics{file.gif} is issued, LATEX reads the BoundingBox from
file.gif.bb and tells dvips to use gif2eps to convert file.gif to eps.

13.3.1 GIF Example

While the commands necessary for including non-eps graphics are dependent on the
operating system and the graphics conversion program, this section provides examples
for two common Unix conversion programs. The commands

\DeclareGraphicsRule{.gif}{eps}{.gif.bb}{‘convert #1 ’eps:-’ }

\begin{figure}

\centering

\includegraphics[width=3in]{file2.gif}

\caption{GIF Graphic}

\end{figure}

use the convert program (part of the ImageMagick package) package to translate the
gif file into eps. The command

convert file2.gif ’eps:-’

30

translates file2.gif into eps format (specified by the “eps:” option), sending the
result to standard output (specified by the “-” specification).

Alternatively, one can use the ppm utilities in which giftoppm, ppmtopgm, and
pgmtops convert the gif file to eps via the ppm and grayscale pgm formats. In Unix,
the piping between these programs is specified by the following \DeclareGraphicsRule
command

\DeclareGraphicsRule{.gif}{eps}{.gif.bb}{‘giftoppm #1 | ppmtopgm | pgmtops}

13.3.2 Direct Support for Non-EPS Graphics

It is often requested that LATEX and dvips support the direct inclusion of non-eps

graphic formats, making it as easy as inserting eps files. While this would be conve-
nient, there unfortunately are problems with this.
• To determine the size of EPS graphics, LATEX scans the eps file for the Bound-

ingBox parameters. Since TEX can read only ascii files, the binary format of
most non-eps graphic files prevents LATEX cannot extract the graphic’s size.

• Furthermore, supporting non-eps graphics would require dvips to incorporate
graphics-conversion capabilities (gif-to-ps, tiff-to-ps, etc.). This would re-
quire much initial programming and much future maintenance.

Rather than directly incorporating graphics-conversion routines, dvips provides a mech-
anism for calling external conversion programs. This mechanism can be accessed from
LATEX by use command argument of \DeclareGraphicsRule. This is more flexible than
direct support because it keeps the graphics-conversion uncoupled from the dvi-to-ps

conversion, allowing users to use the graphics-conversion program of their choice.
While LATEX and dvips generally do not support the direct inclusion of non-eps

graphics, there are some exceptions.

1. If dvips is compiled with -Demtex, it supports some EmTEX \special commands,
allowing it to include pcx, bmp, or msp bitmaps.

2. Oztex 2.1, a shareware Macintosh TEX/LATEX distribution, includes the dvi-to-
ps converter OzDVIPS, which allows MacPaint and PICT files to be included via
\special commands. See

http://www.kagi.com/authors/akt/oztex.html

3. Some commercial versions of LATEX support non-eps graphics

(a) Textures for the Macintosh supports pict graphics. See
http://www.bluesky.com/

(b) Y&Y’s TEX package for Windows includes the dvi-to-ps converter dvip-

sone which supports tiff files. See
http://www.YandY.com/

Check your documentation or contact the company’s customer service for the
correct syntax.

Even with the above direct support for non-EPS, TEX can still not determine the size
of graphics with binary-format files. In order for LATEX to know how much space to
allocate for the graphic, the user must still use a .bb file or specify the bb parameters
explicitly in the \includegraphics command.

14 The PSfrag Package

While there are many drawing and analysis packages which produce eps files, most
of them do not support symbols and equations as well as LATEX. The psfrag package
allows LATEX users to replace text strings in eps files with LATEX text or equations.

psfrag 3.0, which was released in November 1996, has been totally re-written. Previ-
ous versions of psfrag required running a preprocessor (such as ps2frag or ps2psfrag)

31

to identify and tag all the text in the eps file. Since psfrag 3.0 requires no preprocess-
ing, it does not require any external programs such as perl or ghostscript. psfrag
3.0 only requires a recent LATEX (12/95 or later) and the graphics bundle distributed
with LATEX. Reference [7] provides complete documentation on psfrag 3.0.

An additional benefit of psfrag rewrite is that it now supports compressed eps

graphics. However, the \tex command (described in Section 14.3) cannot be used to
embed LATEX text in compressed graphics.

To use psfrag, create an eps file and then perform the following steps
1. Include \usepackage{psfrag} in the preamble of the LATEX document.
2. In the document, use the \psfrag command to specify the eps text to replace

and the LATEX string to replace it. This makes the specified substitution occur in
any subsequent \includegraphics command issued in the same environment.

3. Use the \includegraphics command as usual.
The LATEX \psfrag command has the following syntax

\psfrag{PStext}[posn][PSposn][scale][rot]{text}

with its arguments described in Table 5.

Table 5: PSfrag Options

PStext Text in eps file to be replaced.
posn (Optional, Defaults to [Bl].) Position of placement point relative to new LATEX text.
PSposn (Optional, Defaults to [Bl].) Position of placement point relative to existing eps

text.
scale (Optional, defaults to 1.) Scaling factor for the text. For best results, avoid using the

scaling factor and instead use LATEX type-size commands such as \small and \large
rot (Optional, defaults to zero.) When an angle is specified, it is the angle of rotation

of the new text relative to the existing text. The angle is in degrees with a counter-
clockwise rotation being positive.
This option is especially useful when dealing with applications which only allow hori-
zontal text in their eps files.

text The LATEX text to insert into the eps graphic.
Like regular LATEX text, math formulas must be enclosed by dollar signs (e.g.,
$\frac{1}{2}$ or x^2).

The posn and PSposn options are one of the 12 points (such as [tl], [br], [cc]) shown
in Figure 3 on page 17. If the optional arguments are not issued, the point defaults to
[Bl]. Any missing letters default to c (e.g., [] and [c] are equivalent to [cc], [l] is
equivalent to [lc]). See [7] for examples of various combinations of placement points.

Note that \psfrag matches entire text strings. Thus the command
\psfrag{pi}{π}

replaces the string pi with π, but does not affect the strings pi/2 or 2pi. Separate
\psfrag commands must entered for these strings.

psfrag cannot perform the replacement unless the entire eps string is constructed
with a single ps command. Some programs break string up into sub-strings or individual
letters in order to perform kerning. For example, Corel Draw produced the following
eps code to place the string “Hello World”

0 0 (Hello W) @t

1080 0 (orld) @t

Since psfrag sees this as two unrelated strings “Hello W” and “orld”, it cannot perform
any replacement of “Hello World”. If the kerning cannot be manually turned off, using
Courier or other monospaced fonts often prevents the kerning. If the kerning cannot be
avoided, only single-character replacement strings can be used.

32

14.1 PSfrag Example #1

The commands
\includegraphics{pend.eps}

include the graphic without any psfrag replacement, producing Figure 7. The com-
mands

\psfrag{q1}{θ_1}

\psfrag{q2}{θ_2}

\psfrag{L1}{L_1}

\psfrag{L2}{L_2}

\psfrag{P1}[][]{P_1}

\psfrag{P2}[][]{\large P_2}

\includegraphics{pend.eps}

include the graphic with psfrag replacement, producing Figure 8. The first four \psfrag
commands position the new LATEX text such that its left baseline point corresponds to
the left baseline point of the eps text. The last two \psfrag commands use the [][]
options to position the LATEX text such that its center corresponds to the center of the
eps text. Note that all eps text need not be replaced. For example, the N tag is left
unchanged in Figure 8.

P2

L1 N

P1q1

q2

L2

Figure 7: Without PSfrag Replacement

N

θ1

θ2

L1

L2

P1
P2

Figure 8: With PSfrag Replacement

14.2 PSfrag Example #2

This example demonstrates how the \shortstack, \colorbox, and \fcolorbox com-
mands can be used with \psfrag.

shortstack The \shortstack command allows text to be stacked vertically, which can
be used to substitute multiple lines of text for a single line of text. The lines of
text are separated by the \\ command.

colorbox The \colorbox command (part of the color package, which is distributed with
LATEX) places a rectangular color background behind an object. The distance that
the background extends beyond the object is controlled by the \fboxsep length.
For example,

\colorbox{white}{text}

places a rectangular white background behind text. See reference [5] for more
details on \colorbox.

With psfrag, \colorbox is useful for placing text at a location where lines or
shading would make it difficult to view the text. Placing a white background
behind the text prevents the drawing from obstructing the text.

33

fcolorbox The \fcolorbox command (also part of the color package) is similar to the
\colorbox command, except that a frame is drawn around the background. The
command \fcolorbox{black}{white}{text} puts a white background with a
rectangular black frame behind text.

The thickness of the frame is controlled by the length \fboxrule and the spacing
between the frame and the text/object is controlled by the length \fboxsep.

Figure 9 and 10 demonstrate the use of these commands with psfrag. Figure 9 shows
the graphic without psfrag substitution. The commands

\psfrag{q1}[][]{\colorbox{white}{q_1}}

\psfrag{base}{\fcolorbox{black}{white}{Base}}

\psfrag{Actuator}[l][l]{\shortstack{Hydraulic\\ Actuator}}

\includegraphics{mass.eps}

use psfrag to produce the graphics in Figure 10.

q1 Actuator

base

Figure 9: Without PSfrag Replacement

q1

Base

Hydraulic
Actuator

Figure 10: With PSfrag Replacement

14.3 LATEX Text in EPS File

The recommended and most popular method for using psfrag is the \psfrag command
described in the previous section. An alternative, less efficient, method for using psfrag
is the \tex command, which embeds the LATEX text directly in the eps file. See [7] for
more information.

14.4 Figure and Text Scaling with PSfrag

If a graphic using psfrag is scaled, the psfrag text is scaled along with the graphic. As
a result, a subtlety of the graphicx package affects the size of the text.
• When the width, height, or totalheight options are used to size the graphic

\includegraphics[width=3in]{file.eps}

the psfrag text is inserted after the scaling. Conversely,
\resizebox{3in}{!}{\includegraphics{file.eps}}

Includes the graphic at its natural size, inserts the psfrag text, and then scales
both the graphics and the text.

• Similarly, when scaling options are specified before rotation
\includegraphics[width=3in,angle=30]{file.eps}

the scaling is implicitly handled by the graphics inclusion function. However,
when scaling options are specified after rotation

\includegraphics[angle=30,width=3in]{file.eps}

the graphic is first included at its natural size, then rotated, and then scaled. Since
psfrag replaces the new text during the graphics inclusion, the second command
scales the new psfrag text while the first command does not. When the included
size of the eps graphic greatly differs from its natural size, the two commands
produce very different results.

See [7] for more information on the scaling of psfrag text.

34

14.5 PSfrag Incompatibilities

While psfrag3.0 has many advantages over version 2, it currently has an incompatibility
with eps files produced by Xfig which contain pattern-filled objects. The psfrag distri-
bution includes the file readme.xfg which describe this incompatibility. A work-around
for this problem is described in Section 14.5.1.

The psfrag distribution also includes the file readme.sem which describes an incom-
patibility between psfrag and the Seminar package. Fortunately, the latest version of
seminar.cls on ctan no longer has this incompatibility.

14.5.1 Xfig EPS files

Problems occur when psfrag is used with eps files which are created with the xfig
drawing program and use xfig’s “pattern fill.’ The problem stems from the fact that
psfrag and xfig both redefine PostScript’s show command. The redefinitions shouldn’t
conflict with each other, but apparently they do.

The psfrag maintainers haven’t determined a long-term solution but the following
work-around seems to work:

1. Inside the eps file, look for the /PATfill command.

2. Inside the /PATfill definition, look for the show command (there is only one
occurrence).

3. Replace show with oldshow (oldshow is the place where XFig stores the “old”
version of the show routine, before it redefines “show” for its own purposes.)

If you can determine what xfig and/or psfrag can do differently to avoid this problem,
contact the psfrag maintainers at psfrag@rascals.stanford.edu

15 Including An EPS File Multiple Times

When the same eps graphic is inserted multiple times, its eps code appears multiple
times in the final ps file. In particular, this often happens when a logo or other graph-
ics are inserted into a document’s header or footer. This section describes improved
methods for inserting a graphic multiple times.

There are four common methods for including the same eps graphics many times
1. Use \includegraphics{file.eps} wherever you want the graphic. This has two

problems

(a) LATEX must find and read the file every time \includegraphics is used.
(b) The eps graphics commands are repeated in the final ps file, producing a

large file.

2. Save the graphics in a LATEX box and use the box wherever you want the graphic.
This saves LATEX time since it must only find and read the file once. However, it
does not reduce the size of the final PostScript file.
At the beginning of the file, include the following commands

\newsavebox{\mygraphic}

\sbox{\mygraphic}{\includegraphics{file.eps}}

Then use the command \usebox{\mygraphic} wherever you want the graphic.
(The graphics can be scaled by placing the \usebox command inside a \scalebox
or \resizebox command.)

3. When the eps file contains vector graphics (as opposed to bitmapped graphics), it
is possible to write a PostScript command which draws the graphics. The graphic
can then be included by issuing the PostScript command wherever the graphic is
needed. Section 15.1 describes this procedure.

35

Since the final PostScript file includes the graphics commands only once, the final
PostScript file is much smaller. Note that since the graphics commands are stored
in printer memory while the final PostScript file is being printed, this method may
cause the printer to run out of memory and not print the document.

Although this method results in a small final PostScript file, it still requires LATEX
to find and read the file containing the PostScript commands.

4. Like the previous method, define a PostScript command which draws the graphics,
but include this command in a LATEX box. This results in a small final PostScript
file and only requires LATEX to find and read the file once.

15.1 Defining a PostScript Command

This section describes how to created a PostScript command which draws the graphics
from an eps file containing vector graphics. This procedure does not work if the eps

file contains bitmapped graphics.
To convert the eps graphics into a PostScript command, the eps file must be broken

into two files, one which defines the PostScript dictionary and the graphics commands,
and another which includes the header information and the uses the previously-defined
PostScript command. For example, an eps file created by xfig has the form

%!PS-Adobe-2.0 EPSF-2.0

%%Title: /tmp/xfig-fig017255

%%Creator: fig2dev Version 2.1.8 Patchlevel 0

%%CreationDate: Sun Sep 3 15:36:01 1995

%%Orientation: Portrait

%%BoundingBox: 0 0 369 255

%%Pages: 0

%%EndComments

/$F2psDict 200 dict def

$F2psDict begin

...

%%EndProlog

$F2psBegin

...

$F2psEnd

Where ... indicates unlisted commands. The eps file generally contains three parts
1. The header commands which begin with %

2. The Prolog section which starts with
/$F2psDict 200 dict def

and ends with
%%EndProlog

The Prolog defines the commands in the PostScript dictionary used by the eps

file. In this example, the dictionary is named $F2psDict although other names
can be used.

3. The last part contains the commands used to draw the graphics.
Suppose the above eps file is named file.eps. Create the files file.h and file.ps
where file.h contains

/$F2psDict 200 dict def

$F2psDict begin

...

%%EndProlog

/MyFigure {

$F2psBegin

36

...

$F2psEnd

} def

and file.ps contains
%!PS-Adobe-2.0 EPSF-2.0

%%Title: /tmp/xfig-fig017255

%%Creator: fig2dev Version 2.1.8 Patchlevel 0

%%CreationDate: Sun Sep 3 15:36:01 1995

%%Orientation: Portrait

%%BoundingBox: 0 0 369 255

%%Pages: 0

%%EndComments

$F2psDict begin MyFigure end

file.h defines the dictionary and defines the PostScript command /MyFigure, while
file.ps contains the header information and uses the PostScript command defined in
file.h. In particular, it is important that the file.ps header includes the %!PS...
line and the BoundingBox line. The graphics can then be used in the LATEX document
as

\documentclass{article}

\usepackage{graphicx}

\special{header=file.h}

\begin{document}

...

\includegraphics[width=2in]{file.ps}

...

\includegraphics[totalheight=1in]{file.ps}

...

\end{document}

Note that the original file file.eps is not used. Since the graphics commands in
file.h are only included once, the final PostScript file remains small. However, this still
requires LATEX to find and read file.ps whenever the graphics are used. The following
commands save the graphics in a LATEX box to produce a small final PostScript file
while reading file.ps only once.

\documentclass{article}

\usepackage{graphicx}

\special{header=file.h}

\newsavebox{\mygraphic}

\sbox{\mygraphic}{\includegraphics[width=2in]{file.ps}}

\begin{document}

...

\usebox{\mygraphic}

...

\resizebox*{1in}{!}{\usebox{\mygraphic}}

...

\end{document}

Like the previous example, these commands produce a 2-inch wide graphic and another
graphic whose totalheight is 1 inch.

15.2 Graphics in Page Header or Footer

An easy method of including graphics in the heading is to use the fancyhdr package
(an improved version of the old fancyheadings package) which is documented by [12].
The header consists of three parts: its left field, its center field, and its right field. The
\fancyhead command specifies the contents of the header fields, with the L,C,R options
specifying which field(s) the command modifies. For example

37

\pagestyle{fancy}

\fancyhead[C]{My Paper}

causes the center header field to be “My Paper”, while
\pagestyle{fancy}

\fancyhead[L,R]{\textbf{Confidential}}

causes both the left and right header fields to be “Confidential”. If no L,C,R option
is specified, it applies to all three header fields. Thus \fancyhead{} is used to clear
all the header fields. The \fancyfoot command similarly specifies the left, center, and
right footer fields.

The commands in the fancyhdr package can insert graphics in the headers and footers.Graphics in
Page

Header/Footer
For example, after splitting the eps file file.eps into the two file file.h and file.ps
as described in Section 15.1, the commands

\documentclass{article}

\usepackage{fancyhdr,graphicx}

\renewcommand{\headheight}{0.6in} %% must be large enough for graphic

\renewcommand{\textheight}{7.5in}

% Define PostScript graphics command

\special{header=file.h}

% Save graphics in LaTeX box

\newsavebox{\mygraphic}

\sbox{\mygraphic}{\includegraphics[totalheight=0.5in]{file.ps}}

\pagestyle{fancy}

\fancyhead{} % clear all header fields

\fancyhead[L]{\usebox{\mygraphic}}

\fancyfoot{} % clear all footer fields

\fancyfoot[C]{\thepage}

\renewcommand{\headrulewidth}{0.5pt}

\renewcommand{\footrulewidth}{0pt}

\begin{document}

...

\end{document}

places the graphics at the top left of each “fancy” page with a 0.5 pt horizontal line
drawn under the header. Additionally, the page number is placed at the bottom center
of each page, with no horizontal line drawn above the footer. Note that this does not
affect “plain” pages.

When the [twoside] documentclass option is used, one may want to individually specifyOdd/Even
Headings the odd and even page headers/footers. The E,O \fancyhead options specify the even

and odd page headers, respectively. If the E,O options are not specified, the command
applies to both even and odd pages. Likewise the E,O \fancyfoot options specify the
even and odd page footers. For example,

\pagestyle{fancy}

\fancyhead[LE]{My Paper}

\fancyhead[RO]{My Name}

\fancyfoot[C]{\thepage}

places “My Paper” in the upper left of even fancy pages, “My Name” in the upper
right of odd fancy pages, and the page number in the bottom center of all fancy pages.
Replacing the

\fancyhead[L]{\usebox{\mygraphic}}

command in the above example with
\fancyhead[LE,RO]{\usebox{\mygraphic}}

38

places the graphic at the top outside (the left side of even pages, right side of odd pages)
of all fancy pages.

The \fancyhead commands only apply to pages whose style are “fancy”. Even thoughModifying
Plain Pages \pagestyle{fancy} causes the document to have a fancy page style, some pages (title

pages, table of contents pages, the first page of chapters, etc.) are still given a plain
pagestyle by default.

The \fancypagestyle command can be used to modify the plain pagestyle. For
example, adding the following code to the above example causes the graphic to also be
placed at the upper left of plain pages.

\fancypagestyle{plain}{%

\fancyhead{} % clear all header fields

\fancyhead[L]{\usebox{\mygraphic}}

\fancyfoot{} % clear all footer fields

\fancyfoot[C]{\thepage}

\renewcommand{\headrulewidth}{0.5pt}

\renewcommand{\footrulewidth}{0pt}}

When the twoside documentclass option is used, replacing both of the
\fancyhead[L]{\usebox{\mygraphic}}

commands with
\fancyhead[LE,RO]{\usebox{\mygraphic}}

places the graphic at the top outside of every page (both plain and fancy).

15.3 Watermark Graphics in Background

In addition to adding graphics to the headers and footers, the fancyhdr package can
place graphics behind in the text, which is useful for creating a logo or seal watermark.

The following example places the graphics in file.eps on every page (both fancy
and plain).

\documentclass{article}

\usepackage{graphicx,fancyhdr}

%%% store graphics in a box

\newsavebox{\mygraphic}

\sbox{\mygraphic}{\includegraphics[keepaspectratio,

height=0.8\textheight,

width=0.8\textwidth]{file.eps}}

\pagestyle{fancy}

\fancyhead{}

\fancyhead[C]{\setlength{\unitlength}{1in}

\begin{picture}(0,0)

\put(-2.2,-6){\usebox{\mygraphic}}

\end{picture}}

\fancypagestyle{plain}{%

\fancyhead{}%

\fancyhead[C]{\setlength{\unitlength}{1in}

\begin{picture}(0,0)

\put(-2.2,-6){\usebox{\mygraphic}}

\end{picture}}}

\begin{document}

...

\end{document}

39

The above example places the graphics such that their lower left corner is 2.2 inches
to the left and 6 inches below the center of the header. The graphic position can be
adjusted by changing these two numbers.

Since the header is typeset before the text, this example causes the text to appear
on top of the graphics. Since the footer is typeset after the text, putting the graphics
in the footer causes the graphics to appear on top of the text.

If the contents of file.eps contain vector (not bitmapped) graphics, a much smaller
final PostScript file can be obtained by using the procedure described in Section 15.1.

40

Part IV

The Figure Environment

16 The Figure Environment

When using a word processor, figures appear exactly where the user places them. Since
these figures cannot be split, they often lead to poor page breaks which leave large chunks
of blank space at the bottom of pages. To achieve a professional-looking document, the
author must manually rearrange the figures to avoid these poor page breaks. This
figure-shuffling becomes quite tedious, especially since it must be repeated whenever
the document is modified.

To produce professional-looking documents without the figure-moving drudgery,
LATEX provides floating figures which automatically move to estheticly-pleasing loca-
tions. While these floating figures make it much easier to produce professional-looking
documents, they often bother new users who are used to manual figure placement.
Taking advantage of floating figures requires the following
• Don’t compose text which is dependent on figure placement. Using the

phrase “This figure...” or “The following figure...” requires the figure to be in a
certain location. Using the phrase “Figure 14...” allows the figure to be positioned
anywhere.

• Relax. Some users get quite worried when a figure isn’t placed exactly where
they want it. Figure placement is LATEX’s job; users should generally not worry
about it.

The following pages describe how the LATEX determines float locations which obey type-Summary
of Advice setting rules for a professional-looking document. For convenience, the solutions to the

most-common float-placement problems are listed below.

1. Don’t handcuff LATEX. The more float placement options are given to LATEX, the
better it handles float placement. In particular, the [htbp] and [tbp] work well.
See Section 16.2.

2. Many people find the default float parameters are too restrictive. The following
commands

\renewcommand{\textfraction}{0.15}

\renewcommand{\topfraction}{0.85}

\renewcommand{\bottomfraction}{0.65}

\renewcommand{\floatpagefraction}{0.60}

set the float parameters to more-permissive values. See Section 17.2.

3. LATEX allows figures to float to the top of the current page, thus appearing before
the reference in the text. Users who do not like this should use the flafter package.
No commands are necessary, simply include \usepackage{flafter}.

4. To guarantee that a figure does not float past a certain point, use the placeins
package and issue a \FloatBarrier command. See Section 16.3.

Warning, overuse of \FloatBarrier indicates that either the float-placement is
being micro-managed or the float parameters are set incorrectly, neither of which
are good.

16.1 Creating Floating Figures

Floating figures are created by putting commands in a figure environment. The con-
tents of the figure environment always remains in one chunk, floating to to produce good
page breaks. The floating figures can be automatically numbered by using the \caption

41

command. For example, the following commands put the graphic from graph.eps inside
a floating figure

\begin{figure}

\centering

\includegraphics[totalheight=2in]{graph.eps}

\caption{This is an inserted EPS graphic}

\label{fig:graph}

\end{figure}

The graph in Figure~\ref{fig:graph} on Page~\pageref{fig:graph}...

Notes about figures
• The optional \label command, can be used with the \ref, and \pageref com-

mands to reference the caption. The \label command must be placed immedi-
ately after the \caption command.

• If the figure environment contains no \caption commands, it produces an un-
numbered floating figure.

• If the figure environment contains multiple \caption commands, it produces mul-
tiple figures which float together. This is useful in constructing side-by-side graph-
ics (see Section 27) or complex arrangements such as Figures 14-20 on page 53.

• A list of figures is generated by the \listoffigures command.
• By default, the caption text is used as the caption and also in the list of figures.

The caption has an optional argument which specifies the list-of-figure entry. For
example,

\caption[List Text]{Caption Text}

causes “Caption Text” to appear in the caption, but “List Text” to appear in the
list of figures. This is useful when using long, descriptive captions.

• The figure environment can only be used in outer paragraph mode, preventing it
from being used inside any box (such as parbox or minipage).

• Figure environments inside of paragraphs
....text text text text text text

\begin{figure}

....

\end{figure}

text text text text text text...

are not processed until the end of the paragraph.

16.2 Figure Placement

The figure environment has an optional argument which allows users to specify possible
figure locations. The optional argument can contain any combination of the following
letters

h Here: Place the figure in the text where the figure command is located. This option
cannot be executed if there is not enough room remaining on the page.

t Top: Place the figure at the top of a page.

b Bottom: Place the figure at the bottom of a page7.

p Float Page: Place the figure on a containing only floats.

Notes on figure placement:
• If no optional arguments are listed, the placement options default to [tbp].

7When a figure is placed at the bottom of a page, it is placed below any footnotes on the page.
Although this may be objectionable, there currently is no way to change this arrangement.

42

• The order in which the placement options are specified does not make any differ-
ence, as the placement options are always attempted in the order h-t-b-p. Thus
[hb] and [bh] are both attempted as h-b.

• The more float placement options are given to LATEX, the better it handles float
placement. In particular, the [htbp], [tbp], [htp], [tp] options usually work
well.

• Single-location options [t], [b], [p] [h] are problematic8. If the figure doesn’t
fit in the specified location, the figure becomes stuck, blocking the subsequent
figures. A “Too Many Unprocessed Floats” error occurs if this logjam of figures
exceeds LATEX’s limit of 18 unprocessed floats (see Section 16.4).

When LATEX “tries” to place a figure, it obeys the following rulesAlso see Reference
[1, pg 198]. 1. A figure can only be placed in the locations specified by its placement options.

2. The figure cannot cause the page to be overfull.

3. The float must be placed on the page where it occurs in the text, or on a later
page9. Thus figures can “float later” but cannot “float earlier”

4. Figures must appear in order. Thus a figure cannot be placed until all previous
figures are placed. Two ramifications of this rule are

• A figure can never be placed “here” if there are any unprocessed figures.
• One “impossible-to-place” figure prevents any subsequent figure from being

placed until the end of the document or until LATEX’s float limit is reached.
See Section 16.4.

Similarly, a table cannot be placed until all previous tables are placed. However,
tables can leapfrog figures and vice-versa.

5. The esthetic rules in Section 17 must be followed. For example, the number of
floats on a page cannot exceed totalnumber. Specifying an exclamation point
in the placement options (e.g., \begin{figure}[!ht]) makes LATEX “try really
hard” by ignoring the esthetic rules which apply to text pages (! does not affect
the esthetic rules which apply to float pages).

16.3 Clearing Unprocessed Floats

A big advantage for using floats is that LATEX is not required to place them immediately
in the text. Instead, LATEX can hold the float until it can place it at a better location.
When a float has been read by LATEX but not yet placed on the page, it is called
a “unprocessed float.” While the float-placing algorithm works well, sometimes it is
necessary to force LATEX to process any unprocessed floats.

Below are three methods for clearing processed floats. These commands should
be used sparingly; their overuse is either a sign you are micro-managing your float
placement or your float placement parameters have bad values (see Section 17).

clearpage

The most basic method for clearing the unprocessed figures backlog is to issue a
\clearpage command, which places all unprocessed floats and starts a new page.
While this is effective, it is undesirable as it generally produces a partially-filled
page.

8In fact, the [h] option should never be used. It is so bad that recent versions of LATEX automatically
change it to [ht].

9Since a float can appear at the top of the page where it occurs in the text, it can appear before
its occurrence in the text. If this is objectionable, the flafter package can be used to prevent this. No
command is necessary to activate flafter; just include it in a \usepackage command.

43

FloatBarrier

For most situations, the best method for forcing float placement is the \FloatBarrier
command provided by the placeins package. There are three ways of using placeins

• The \FloatBarrier command causes all unprocessed floats to be processed
immediately. Unlike \clearpage, it does not start a new page.
• Since it is often desirable to keep floats in the section in which they were

issued, the section option

\usepackage[section]{placeins}

redefines the \section command, inserting a \FloatBarrier command be-
fore each section.
Note that this option is very strict. For example, if a new section start in
the middle of a page, the section option does not allow a float from the old
section to appear at the bottom of the page, since that is after the start of
the new section.
• The below option

\usepackage[below]{placeins}

is a less-restrictive version of the section option. It allows floats to be placed
after the beginning of a new section, provided that some of the old section
appears on the page.

afterpage/clearpage
The afterpage package provides the \afterpage command which executes a com-
mand at the next naturally-occurring page break. Therefore, using

\afterpage{\clearpage}

causes all unprocessed floats to be cleared at the next page break.

Using \afterpage{\clearpage} command may not always solve float limit prob-
lems (see Section 16.4). Since it puts does not execute the \clearpage until the
end of the page, additional unprocessed floats may accumulate before the page
break.

\afterpage{\clearpage} is especially useful when producing small floatpage
figures. The \floatpagefraction (see Section 17.2) prevents floatpage floats
which are “too small” from being placed on a float page. Furthermore, since the
! float-placement modifier does not apply to float pages, [!p] does not over-
ride the \floatpagefraction restriction. Using \afterpage{\clearpage} is an
easy method to override the \floatpagefraction restriction without causing a
partially-filled text page.

16.4 Too Many Unprocessed Floats

If a float cannot be processed immediately, it is placed on the unprocessed float queue
until it can be processed. Since, LATEX only has room for 18 floats on this queue, having
more than 18 unprocessed floats produces a “Too Many Unprocessed Floats” error.
There are four possible causes for this error:

1. The most common problem is that the float placement options are incompatible
with the float placement parameters. For example, a [t] figure whose height is
larger than \topfraction becomes stuck. Since the other single-position options
have similar problems, specify as many float placement options as possible.

2. Incompatible float fraction values may make it impossible to place certain floats.
To avoid this, make sure any float fraction values satisfy the Section 17.2 guide-
lines.

44

3. In rare situations, users with many floats and many \marginpar notes (which use
the same queue), may need a larger unprocessed float queue. Using the morefloats
package increases the size of the unprocessed float queue from 18 to 36.

4. LATEX’s float placement queue is exceeded if more than 18 figures are specified
without any text between them. Possible solutions include

(a) Scatter the figures in the text. This allows enough text to accumulate to
force natural pagebreaks, making it easier for LATEX to process the floats.

(b) Put \clearpage between some of them. This is inconvenient because it
requires some iterations to avoid partially-full pages. (Since

\afterpage{\clearpage}

causes a \clearpage at the next naturally-occurring pagebreak, it does not
help in this situation because the float queue limit is reached before the
pagebreak.)

(c) Since there is no text, the figures don’t need to float. Therefore, the best so-
lution is to use the Section 20 procedure for constructing non-floating figures,
separated by \vspace or \vfill commands to provide vertical spacing.

17 Customizing Float Placement

The following style parameters are used by LATEX to prevent awkward-looking pages
which contain too many floats or badly-placed floats. If these style parameters are
changed anywhere in the document, they do not apply until the next page. However, if
the parameters are changed in the document’s preamble, they apply at the beginning
of the document.

17.1 Float Placement Counters

Table 6: Float Placement Counters

topnumber The maximum number of floats allowed at the top of a text page
(the default is 2).

bottomnumber The maximum number of floats allowed at the bottom of a text
page (the default is 1).

totalnumber The maximum number of floats allowed on any one text page (the
default is 3).

The three counters in Table 6 prevent LATEX from placing too many floats on a text
page. These counters do not affect float pages. Specifying a ! in the float placement
options causes LATEX to ignore theses parameters. The values of these counters are set
with the \setcounter command. For example,

\setcounter{totalnumber}{2}

prevents more than two floats from being placed on any text page.

17.2 Figure Fractions

The commands in Table 7 control what fraction of a page can be covered by floats
(where “fraction” refers to the height of the floats divided by \textheight). The first
three commands pertain only to text pages, while the last command pertains only to
float pages. Specifying a ! in the float placement options causes LATEX to ignore the
first three parameters, but \floatpagefraction is always used. The value of these
fractions are set by \renewcommand. For example,

\renewcommand{\textfraction}{0.3}

45

Table 7: Figure Placement Fractions

\textfraction The minimum fraction of a text page which must be occu-
pied by text. The default is 0.2, which prevents floats from
covering more than 80% of a text page.

\topfraction The maximum fraction of a text page which can be occu-
pied by floats at the top of the page. The default is 0.7,
which prevents any float whose height is greater than 70%
of \textheight from being placed at the top of a page. Sim-
ilarly, if the combined height of multiple t floats is greater
than 60% of \textheight, they all cannot be placed at the
top of a page, even if they number less than topnumber.

\bottomfraction The maximum fraction of a text page which can be occupied
by floats at the bottom of the page. The default is 0.3,
which prevents any float whose height is greater than 40%
of \textheight from being placed at the bottom of a text
page.

\floatpagefraction The minimum fraction of a float page that must be occupied
by floats. Thus the fraction of blank space on a float page
cannot be more than 1-\floatpagefraction. The default
is 0.5.

lets floats cover no more than 70% of a text page.
The default placement fraction values prevent many and/or large floats from domi-Placement

Fraction
Guidelines

nating text pages and also prevent small figures from being placed in a sea of whitespace
on a float page. While the default values generally work well, sometimes they may be
a bit too restrictive, resulting in figures floating too far from where they are issued. In
these cases it may be desirable to set the placement fractions to more permissive values
such as

\renewcommand{\textfraction}{0.15}

\renewcommand{\topfraction}{0.85}

\renewcommand{\bottomfraction}{0.65}

\renewcommand{\floatpagefraction}{0.60}

One must take care when adjusting placement fraction values, as unreasonable values
can lead to poor formatting and/or “stuck” floats. To avoid such problems, the following
guidelines should be used:

\textfraction

Setting \textfraction smaller than 0.15 is discouraged as it produces hard-to-
read pages. If a figure’s height is more than 85% of \textheight, it almost
certainly looks better by itself on a float page than squeezed on a text page with
a couple of lines of text below it.

Furthermore, never set \textfraction to zero as permits a text page to have no
text, which confuses LATEX and leads to badly-formatted pages.

\topfraction

Never set \topfraction larger than 1 - \textfraction, as that causes contra-
dictions in the float-placing algorithm.

\bottomfraction

Since “good typesetting style” discourages large bottom figures, \bottomfraction
is generally smaller than \topfraction. Never set \bottomfraction larger than
1 - \textfraction, as that causes contradictions in the float-placing algorithm.

46

\floatpagefraction

If \floatpagefraction is set very small, every float page contains exactly one
float, resulting in excessive whitespace around small p figures.

If \floatpagefraction is larger than \topfraction , [tp] figures may be-
come “stuck.” For example, suppose the height of a [tp] figure is larger than
\topfraction but smaller than \floatpagefraction, it becomes “stuck” because
it is too large to be placed on a text page and too small to be placed on a float
page. To prevent such stuck figures, \floatpagefraction and \topfraction
should satisfy the following inequality:

\floatpagefraction≤ \topfraction− 0.05

The 0.05 term is due to the difference in the accounting of vertical space for text
pages and float pages10. Likewise, if [bp] or [hbp] figures are used, \floatpagefraction
and \bottomfraction should also satisfy

\floatpagefraction≤ \bottomfraction− 0.05

Note that the default values do not satisfy the second inequality, which may
occasionally cause problems with [bp] and [hbp] figures.

17.3 Suppressing Floats

Table 8: Suppressfloats Options

\suppressfloats[t] Prevents additional figures from appearing at the top of the
current page.

\suppressfloats[b] Prevents additional figures from appearing at the bottom of
the current page.

\suppressfloats Prevents additional figures from appearing at either the bot-
tom or the top of the current page.

The \suppressfloats prevents additional floats from appearing at the top or the bot-
tom of the current page. They do not affect figures with “here” placement or those with
! in the placement options.

Putting \suppressfloats[t] immediately before a figure, prevents that float from
appearing above the place where it appears in the text. The flafter package redefines
LATEX’s float algorithm to prevent this for the entire document.

18 Customizing the figure Environment

18.1 Figure Spacing

The lengths in Table 9 control how much vertical spacing is added between two figures
or between a figure and text. Unlike most other LATEX lengths, these three are rubber
lengths, which provides spacing which can shrink or expand to provide better page
formatting. These lengths are set with the \setlength command. For example,

\setlength{\floatsep}{10pt plus 3pt minus 2pt}

10Specifically, \textfloatsep and the other text-page float spacing is counted when comparing a
figure with \topfraction, but the float page spacings are not counted in testing if a figure exceeds
\floatpagefraction. As a result, \textfloatsep divided by \textheight (which is ≈ 0.05) should be
subtracted from \topfraction. See Section 18.1 for information on figure spacing.

47

sets the “nominal” value of \floatsep to be 10 points. To improve page formatting,
the float separation can be as small as 8 points or as large as 13 points.

The lengths listed in Table 9 do not affect the spacing of floats on float pages. Their
spacing is controlled by the lengths listed in Table 10. The fil unit allows infinite
stretchability, similar to the vertical space produced by \vfill. When multiple fil
spaces appear in the same space, they expand proportionally to fill the space.

Table 9: Figure Spacing for Text Pages

\floatsep For floats at the top or bottom of a page, this is the vertical spacing
between floats. The default is 12pt plus 2pt minus 2pt

\textfloatsep For floats at the top or bottom of a page, this is the vertical spacing
between the float The default is 20pt plus 2pt minus 4pt

\intextsep For floats placed in the middle of a text page (i.e., with the h
placement option), this is the vertical spacing above and below
the float. The default is 12pt plus 2pt minus 2pt

Table 10: Figure Spacing for Floatpages

\@fptop This is the vertical spacing above the top floatpage float. The default is
0pt plus 1.0fil

\@fpsep This is the vertical spacing between floatpage floats. The default is 8pt
plus 2.0fil

\@fpbot This is the vertical spacing below the bottom floatpage float. The default
is 0pt plus 1.0fil

The @ in the names of the Table 10 lengths mean they are internal commands11. As
a result, any \setlength command which modifies the lengths must be surrounded by
\makeatletter and \makeatother. For example,

\makeatletter

\addtolength{\@fpsep}{4pt}

\makeatother

increases the space between floatpage floats by 4 points.

18.2 Horizontal Lines Above/Below Figure

Table 11: Figure Rule Commands

\topfigrule This command is executed after the last float at the top of a
page, but before the \textfloatsep spacing (see Section 18.1).

\bottomfigrule This command is executed before the first float at the bottom of
a page, but after the \textfloatsep spacing.

Horizontal lines can be automatically drawn between the text and figures which appear
at the top/bottom of the page by redefining the \topfigurerule and \bottomfigurerule

11To implement its commands, LATEX uses many internal commands which users generally do not
need to access. To prevent these internal command names from accidentally conflicting with user-
defined names, LATEX includes a @ in these internal command names. Since LATEX command names can
contain only letters, defining a command whose name contains @ are normally not possible. However,
the \makeatletter command causes LATEX to treat @ as a letter, thus allowing @ in command names.
The \makeatother command causes LATEX to revert to the normal behavior of treating @ as a non-letter.
Any user code which accesses or redefines internal commands must be surrounded by \makeatletter

and \makeatother.

48

commands. Although \topfigrule and \bottomfigrule are already defined as LATEX
commands, the strange way in which they are defined requires them to be redefined
with \newcommand instead of \renewcommand.

To avoid disrupting the page formatting, these commands must have a zero height.
Thus drawing 0.4 point line must be accompanied by a 0.4 point vertical backspace.
For example,

\newcommand{\topfigrule}{\hrule\vspace{-0.4pt}}

Since \topfigrule is executed before the \textfloatsep spacing, the above command
provides no spacing between the figure and the line. The following commands provide
5 points of space between the figure and the line.

\newcommand{\topfigrule}{%

\vspace*{5pt}\hrule\vspace{-5.4pt}}

\newcommand{\botfigrule}{%

\vspace*{-5.4pt}\hrule\vspace{5pt}}

The \topfigrule definition first moves 5 points down (into the \textfloatsep spacing)
to provide space between the figure and the line. It then draws a 0.4 point horizontal
line and moves back up 5.4 points to compensate for the previous downward motion.
Likewise, the \botfigrule command draws a 0.4 point line with 5 points of spacing
between the figure and the rule.

Since these commands place 5 points of space between the line and figure, the spacing
between the line and the text is \textfloatsep - 5pt (see Section 18.1).

The line thickness can be changed from the 0.4 point default by using the \hrule
command’s height option

\newcommand{\topfigrule}{%

\vspace*{5pt}{\hrule height0.8pt}\vspace{-5.8pt}}

\newcommand{\botfigrule}{%

\vspace*{-5.8pt}{\hrule height0.8pt}\vspace{5pt}}

Notes on figure rules:
• The \topfigrule and \bottomfigrule affect neither floatpage figures nor “here”

figures (i.e., using the h option). If a “here” figure happens to be placed at the
top or the bottom of the page, no line is drawn.

• The horizontal rules are as wide as the text, even if wider figures (see Section 22)
are used.

• The TEX \hrule command was used instead of LATEX \rule command because
the \rule would generate additional space when \parskip is not zero.

18.3 Caption Vertical Spacing

LATEX assumes that captions are placed below the graphic, placing more vertical spacing
above the caption than below it. As a result, the commands

\begin{figure}

\centering

\caption{Caption Above Graphic}

\includegraphics[width=1in]{graphic.eps}

\end{figure}

produce Figure 11, whose caption is placed quite close to the graphic.

Figure 11: Caption Above Graphic

Graphic

The caption spacing is controlled by the lengths \abovecaptionskip (which is 10pt
by default) and \belowcaptionskip (which is zero by default). The standard LATEX
commands \setlength and \addtolength are used to modify these lengths. For ex-
ample, the commands

49

\begin{figure}

\setlength{\abovecaptionskip}{0pt}

\setlength{\belowcaptionskip}{10pt}

\centering

\caption{Caption Above Graphic}

\includegraphics[width=1in]{graphic.eps}

\end{figure}

produce Figure 12, which has has no extra space above the caption and 10 points of
space between the caption and the graphic.

Figure 12: Caption Above Graphic

Graphic

If a document has all its captions at the top of its floats, the commands
\setlength{\abovecaptionskip}{0pt}

\setlength{\belowcaptionskip}{10pt}

can be issued in the document’s preamble to affect the caption spacing for all the
document’s captions. If a document contains captions at the top of some floats and at
the bottom of other floats, it may be desirable to define the following command

\newcommand{\topcaption}{%

\setlength{\abovecaptionskip}{0pt}%

\setlength{\belowcaptionskip}{10pt}%

\caption}

Then \topcaption{caption text} produces a caption which is properly spaced for
the top of a float.

18.4 Caption Label

By default, LATEX inserts a caption label such as “Figure 13: ” at the beginning of
the the caption. The “Figure” portion can be changed by redefining the \figurename
command. For example, the commands

\begin{figure}

\centering

\includegraphics[width=1in]{graphic.eps}

\renewcommand{\figurename}{Fig.}

\caption{This is the Caption}

\end{figure}

produce Figure 13. The caption font, the “:” delimiter, and other caption characteristics
can be customized with the caption2 package (see Section 19).

Graphic

Fig. 13: This is the Caption

18.5 Moving Figures to End of Document

Some journals require that tables and figures be separated from the text. The endfloat
package moves all the figures and table to the end of the document. Simply including
the package

\usepackage{endfloat}

50

activates the package. The package supports many options which can be included in
the \usepackage command, including
• Notes such as “[Figure 4 about here.]” are placed in approximately where the

floats would have appeared in the text. Such notes can be turned off with the
nomarkers package option

\usepackage[nomarkers]{endfloat}

The text of these notes can be changed by redefining the \figureplace and
\tableplace commands. For example,

\renewcommand{\figureplace}{%

\begin{center}%

[\figurename~\thepostfig\ would appear here.]%

\end{center}

changes the \figureplace text.

• A list of figures is included before the figures and a list of tables is included before
the tables. The nofiglist and notablist package options suppress these lists.

• The fighead and tabhead package options create section headers for the figures
and tables, respectively.

• The figures appear before the tables. The tablesfirst package option reverses
this order.

• A \clearpage command is executed after each figure and table, causing each
float to appear on a page by itself. This can be changed by modifying the
\efloatseparator command. For example,

\renewcommand{\efloatseparator}{\mbox{}}

places an empty \mbox after each float.

19 Customizing Captions with caption2

Sections 18.4 and 18.3 describe how to customize the caption label and caption vertical
spacing. Other caption characteristics can be customized with the caption2 package12.

The caption2 package can be used with many types of floats as it officially supports
the float, longtable, and subfigure packages and it also works with the floatfig, rotating,
supertabular, and wrapfig packages.

Syntax: \usepackage[options]{caption2}

Where the options are described in Table 12.

19.1 Caption Styles

The caption2 package defines the following caption styles, which are illustrated in in
Figures 14-20.

normal Full lines are justified (aligned with both left and right margins) with the last
line being left-justified.

center All lines of the caption are centered.

flushleft All lines of the caption are left-justified, leaving the right side ragged.

flushright All lines of the caption are right-justified, leaving the left side ragged.

centerlast All the lines are justified with the last line being centered.

12Since the original caption package had some bad side-effects (such as the requirement that it had to
be loaded after other packages) it was totally re-written and renamed caption2. Although the caption2
is technically still a beta version, it is quite stable and performs well.

51

Table 12: caption2 Options

Caption Style normal,
center,
flushleft,
flushright,
centerlast,
hang, indent

Selects the caption style (see Section 19.1).

Caption Fontsize scriptsize,
footnotesize,
small,
normalsize,
large, Large

Selects the fontsize for the caption label (e.g., “Figure 12:”)
and the caption text.

Caption Label Font
Shape

up, it, sl,
sc

Makes the caption label (e.g., “Figure 12:”) have upright,
italic, slanted, or small caps shape, respectively. Does not
affect caption text.

Caption Label Font
Series

md, bf Makes the caption label (e.g., “Figure 12:”) have a medium or
boldface series font, respectively. Does not affect caption
text.

Caption Label Font
Family

rm, sf, tt Makes the caption label (e.g., “Figure 12:”) have roman, sans
serif, or typewriter font, respectively. Does not affect cap-
tion text.

One-Line Caption
Formatting

oneline,
nooneline

Controls the formatting for one-line captions (see Section 19.3)

indent Same as “normal” style except that the second and subsequent lines are in-
dented by the length \captionindent. Since \captionindent is zero by default,
a command such as \setlength{\captionindent}{1cm} must be used to set the
indentation.

hang Same as “normal” style except that the second and subsequent lines are indented
by the width of the caption label (e.g., “Figure 12:”).

Usually these styles are specified as \usepackage options such as
\usepackage[centerlast]{caption2}

which makes all the captions in the document have centerlast style.

19.2 Changing the Caption Style

The \captionstyle command changes the caption style. Placing the \captionstyle
command inside an environment changes only those captions in that environment. For
example, the commands

\begin{figure}

\captionstyle{centerlast}

\centering \includegraphics[width=3in]{graphic.eps}

\caption{Centerlast Caption Style. Centerlast Caption Style.}

\end{figure}

give only the current figure a centerlast style because \captionstyle is inside the
figure environment. The commands

\captionstyle{centerlast}

\begin{figure}

\centering \includegraphics[width=3in]{graphic.eps}

\caption{Centerlast Caption Style. Centerlast Caption Style.}

\end{figure}

give subsequent figures a centerlast style because \captionstyle is outside the figure
environment.

52

Graphic

Figure 14: Normal Caption
Style. Normal Caption Style.
Normal Caption Style. Nor-
mal Caption Style.

Graphic

Figure 15: Center Caption
Style. Center Caption Style.
Center Caption Style. Center

Caption Style.

Graphic

Figure 16: Centerlast Caption
Style. Centerlast Caption
Style. Centerlast Caption
Style. Centerlast Caption

Style.

Graphic

Figure 17: Flushleft Caption
Style. Flushleft Caption
Style. Flushleft Caption
Style. Flushleft Caption
Style.

Graphic

Figure 18: Flushright Caption
Style. Flushright Caption
Style. Flushright Caption
Style. Flushright Caption

Style.

Graphic

Figure 19: Indent Caption
Style. Indent Caption
Style. Indent Caption
Style. Indent Caption
Style.

Graphic

Figure 20: Hang Caption
Style. Hang Cap-
tion Style. Hang
Caption Style.
Hang Caption
Style.

19.3 One-Line Captions

If the caption is only one line, all of the above styles center the caption. To force the
styles to be enforced even for one-line captions, one must include nooneline option

\usepackage[nooneline,flushleft]{caption2}

This formats all captions (including one-line captions) with the flushleft style. To
change the nooneline option inside the document, \onelinecaptionstrue centers one-
line captions while \onelinecaptionsfalse formats one-line captions. For example,
the commands

\begin{figure}

\captionstyle{flushleft}

\onelinecaptionstrue

\centering

\includegraphics[width=2.5in]{graphic.eps}

\caption{First Caption}

\end{figure}

center one-line captions as shown in Figure 21.
The commands

\begin{figure}

\captionstyle{flushleft}

\onelinecaptionsfalse

53

Graphic

Figure 21: First Caption

\centering

\includegraphics[width=2.5in]{graphic.eps}

\caption{Second Caption}

\end{figure}

causes one-line captions to be left-justified as shown in Figure 22

Graphic

Figure 22: Second Caption

19.4 Caption Widths

The caption2 package provides functions which directly specify the captions’ width/margins.
• \setcaptionwidth{width} sets the width of the caption to width, where width

can be in any valid TEX units.

• \setcaptionmargin{mar} sets the margins to mar, making the caption width be
the standard width minus 2 times mar.

If mar is negative, the caption is made wider than the standard width, which is
useful in subfigures and minipage environments.

For example, the commands
\begin{figure}

\setcaptionwidth{2in}

\centering

\includegraphics[width=2in]{graphic.eps}

\caption{Figure Caption Limited to Two Inches}

\end{figure}

make the caption 2 inches wide, as shown in Figure 23.

Graphic

Figure 23: Figure Caption Lim-
ited to Two Inches

While the previous example directly set the width of the caption, alternatively the
width can be indirectly set by specifying the spacing between the caption and each
margin. For example, the commands

54

\begin{figure}

\setcaptionmargin{1in}

\centering

\includegraphics[width=2in]{graphic.eps}

\caption{Figure Caption Where There is One Inch of

Spacing between the Caption and Each Margin}

\end{figure}

indent both sides of the caption one inches from the page margins, as shown in Figure 24.

Graphic

Figure 24: Figure Caption Where There is One Inch
of Spacing between the Caption and Each Margin

19.4.1 Setting Caption Width to be Graphic Width

The previous section described how the \setcaptionwidth command gives the caption
a specified width.

This section describes how to set the width of the caption to be the same as the
width of the figure’s graphic. This is very easy when the graphic is known

\includegraphics[width=3in]{file.eps}

\setcaptionwidth{3in}

\caption{...}

When the graphics width is unknown, the width can be determined by putting the
graphic in a box and measuring the width of the box.

\newsavebox{\mybox}

\newlength{\mylength}

...

\begin{figure}

\centering

\sbox{\mybox}{\includegraphics[height=3in]{file.eps}}

\settowidth{\mylength}{\usebox{\mybox}}

\setcaptionwidth{\mylength}

\usebox{\mybox}

\caption{This is a figure with a very, very, very,

very, very, very, very long caption}

\end{figure}

This can similarly be used with tables. \mybox and \mylength can be used multiple
times within a document, but the \newsavebox and \newlength commands only need
to be issued once.

19.5 Caption Delimiter

The default colon delimiter can be changed by redefining the \captionlabeldelim
function. For example, the commands

\begin{figure}

\renewcommand{\captionlabeldelim}{.}

\centering

\includegraphics[width=2in]{graphic.eps}

\caption{Caption with New Delimiter}

\end{figure}

55

change the delimiter in Figure 25 from the default colon to a period. If additional space
is desired after the period,

\renewcommand{\captionlabeldelim}{.~}

can be used.

Graphic

Figure 25. Caption with New Delimiter

19.6 Caption Font

While the scriptsize,...,Large options for \usepackage{caption2} change the size
of both the caption label (e.g., “Figure 12:”) and the caption text, the up, it, sl,
sc, md, bf, rm, sf, tt options affect only the caption label.

The caption2 package also allows users to set the font of individual captions. The
\captionfont sets the font for the caption label and the caption text, while \captionlabelfont
sets the font for only the caption label. Thus, to set the font for only the caption text,
\captionfont must be used to set the caption text font while \captionlabelfont
must be used to set the label font, including “unsetting” any font properties set by
\captionfont. The caption is effectively created by the following commands

{\captionfont%

{\captionlabelfont \captionlabel \captionlabeldelim}%

\captiontext}

where the \captionlabel command produces “Figure 12”, the \captionlabeldelim
command produces “:”, and the \captiontext command produces the caption text.

LATEX fonts are described by size and three type style components: shape, series,
and family ([1, pages 37,115], [3, pages 170-71]). All four of these characteristics can be
specified in the \captionfont and \captionlabelfont commands. For example, the
commands

\begin{figure}

\renewcommand{\captionfont}{\Large \bfseries \sffamily}

\renewcommand{\captionlabelfont}{}

\centering

\includegraphics[width=2in]{graphic.eps}

\caption{Test Caption}

\end{figure}

produce Figure 26. In this example, the \captionlabelfont command does nothing.
This means that it does not overwrite any font characteristics and all the \captionfont
settings are carried over to the caption label. Since no shape declaration was specified,
the entire caption has the default upright shape.

Graphic

Figure 26: Test Caption

The commands

56

\begin{figure}

\renewcommand{\captionfont}{\Large \bfseries \sffamily}

\renewcommand{\captionlabelfont}{\small}

\centering

\includegraphics[width=2in]{graphic.eps}

\caption{Test Caption}

\end{figure}

produce Figure 27. In this example, the \small font size in \captionlabelfont over-
writes the \Large font size from \captionfont. However, since \captionlabelfont
does not contain any series or family declarations, the \bfseries and \sffamily dec-
larations carry over to the caption label.

Graphic

Figure 27: Test Caption

19.7 Custom Caption Styles

The caption2 package also allows users to create their own caption styles. For example,
the following commands
\newcaptionstyle{one}{%

\usecaptionmargin\captionfont%

\onelinecaption%

{{\bfseries\captionlabelfont\captionlabel\captionlabeldelim} \captiontext}%

{{\centering\bfseries\captionlabelfont\captionlabel\par}\captiontext}}

\newcaptionstyle{two}{%

\usecaptionmargin\captionfont%

{\centering\bfseries\captionlabelfont\captionlabel\par}

\onelinecaption{\captiontext}{\captiontext}}

define the captionstyles one and two. For captions of more than one line, both of these
styles cause a bold caption label (e.g., Figure 12) placed on a separate line from the
caption text. However, for short captions, style two puts the bold caption label on a
separate line from the caption text, while style one puts them both on a single line
separated by the delimiter. For example, after defining the above caption styles, the
following code

\begin{figure}

\captionstyle{one}

\centering

\includegraphics[width=2in]{graphic.eps}

\caption{First Custom Caption Style}

\end{figure}

\begin{figure}

\captionstyle{two}

\centering

\includegraphics[width=2in]{graphic.eps}

\caption{Second Custom Caption Style}

\end{figure}

produces Figures 28 and 29.

Notes about the custom caption styles

57

Graphic

Figure 28: First Custom Caption Style

Graphic

Figure 29
Second Custom Caption Style

• The \onelinecaption command takes two arguments: the first argument is per-
formed if the caption is one line long, while the second argument is performed if
the caption is more than one line long.

• When writing custom styles, use of commands such as \captionfontand \captionlabelfont
are not required. However, their use is encouraged as it makes the styles more
flexible.

For example, the default \bfseries in the above custom style examples can be
changed by setting \captionlabelfont. If such flexibility is not needed, the
above custom style definitions could be shortened significantly.

19.8 Linebreaks in Captions

If a caption is longer than one line, linebreaks can be specified with \protect\\. When
the caption fits in one line, it is processed in an hbox, which ignores any \\ or \par .

The caption2 package allows linebreaks to be specified for captions of any length.
For example, the commands

\begin{figure}

\centering

\includegraphics[width=3in]{graphic.eps}

\captionstyle{center}

\onelinecaptionsfalse

\caption{First Line of Caption \protect\\ Second Line of Caption}

\label{fig:caption:linebreak}

\end{figure}

produces the caption in Figure 30. Since \\ is fragile13, it must be preceded by
\protect.

The \onelinecaptionsfalse (or nooneline package option) prevents LATEX from
processing the caption in an hbox which would lose the linebreak.

19.9 Adjusting Caption Linespacing

To doublespace a document, include either
\linespread{1.6}

13Some commands (such as \textbf) do not place any data in auxiliary files. Commands which
save data for later use (e.g., \caption saves the caption text for the list of figures) are said to have
moving arguments. Commands which break when used inside a moving argument are called fragile
while commands which do not break when used inside a moving argument are called robust.

58

Graphic

Figure 30: First Line of Caption
Second Line of Caption

or equivalently
\renewcommand{\baselinestretch}{1.6}

in the preamble14. In addition to doublespaced text, this also produces doublespaced
captions and footnotes. To produce doublespaced text and singlespaced captions and
footnotes, use the setspace package15.

\usepackage{setspace}

\linestretch{1.5}

A 1.0 linestretch causes single-spaced text, a 1.25 linestretch causes space-and-a-half
spaced text, and a 1.6 linestretch causes doublespaced text.

Regardless of whether setspace is used, the caption2 package’s \captionfont com-
mand can be used to adjust the caption spacing. For example,

\renewcommand{\captionfont}{\linespread{1.6}\normalsize}

produces doublespaced captions, regardless of the document’s text spacing.

20 Non-Floating Figures

As described in Section 16, LATEX allows figures and tables to “float” to improve
the document’s formatting. Occasionally, it is desirable to have a figure appear ex-
actly where it appears in the LATEX source16. The \caption command can be used
in figure and table environments because these environments define the internal
command \@captype to “figure” and “table”, respectively. By defining \@captype,
the \caption command can be used outside of figure and table environments. A
\makeatletter–\makeatother pair must enclose \@captype to allow @ to be used in a
command name. While this can be done manually each time by

\includegraphics{file.eps}

\makeatletter\def\@captype{figure}\makeatother

\caption{This is the caption}

it is easier to define a command to do this. Including the following commands in the
document’s preamble

\makeatletter

\newcommand\figcaption{\def\@captype{figure}\caption}

\newcommand\tabcaption{\def\@captype{table}\caption}

\makeatother

14Although it is generally considered poor style, these commands can also be used within a document
to change the interline spacing. When these commands are used within a document, a fontsize command
such as \normalsize must issued after the line-spacing command to put the new spacing into effect.

15Although the doublespace package also sets line spacing, it has not been properly updated to
LATEX2ε, causing it to interact with many packages. As a result, setspace should be used instead.

16Since it may produce large sections of vertical whitespace, preventing figures from floating is gen-
erally considered poor typesetting style. Instead, better results are generally produced by using the
figure environment’s [!ht] optional argument.

59

defines the \figcaption and \tabcaption commands. Using \figcaption creates
figure captions, regardless of whether it appears in a figure environment. Likewise,
\tabcaption creates table caption, regardless of it location. The following commands

This is the text before the figure.

\\[\intextsep]

\begin{minipage}{\textwidth}

\centering

\includegraphics[width=2in]{graphic.eps}%

\figcaption{This is a non-floating figure}

\label{fig:non:float}

\end{minipage}

\\[\intextsep]

This is the text after the figure.

create a non-floating figure. Notes on non-floating figures:
• The minipage environment is needed to prevent a page break between within the

figure.

• The \\[\intextsep] commands start new lines and add vertical space before and
after the figure. Any amount of space can be used, \intextsep (see Section 18.1)
was used to make the non-floating figure spacing consistent with floating figure
spacing.

• Normally, figures are placed on the page in the same order they were submitted to
the figure queue. However, non-floating figures are placed immediately, leapfrog-
ging any unprocessed figures sitting in the figure queue. If this happens, the figures
do not appear in numerical order17. To avoid these out-of-order figures, force all
floating figures to be processed by issuing a \clearpage or \FloatBarrier com-
mand before the non-floating figure (see Section 16.3).

• The \figcaption and \tabcaption commands are also useful for creating marginal
figures (Section 21), and creating a table beside a figure (Section 29).

20.1 The float Package’s [H] Placement Option

The float package18 adds an [H] option to the figure environment which produces a
non-floating figure. To use the [H] option, include a \usepackage{float} command in
the preamble and issue the \restylefloat command before the \begin{figure}[H]
command is used (See [3, page 149]). However, the float package’s [H] placement option
has the following side-effects

1. When the [H] figure does not fit on a page, the figure is moved to the top of the
next page. However, if there were any footnotes on the first page, they appear
directly below the text instead of at the bottom of the page. The user must
manually insert some space before the figure in order to push the footnotes to the
bottom of the page.

2. The figure environment defined by the float package always places the figure cap-
tion below the figure environment. While this does not affect simple figures, it
prevents captions above graphics as in Figure 11 on page 49 or the construction
of side captions (such as Figure 35 on page 67) and other complex figure arrange-
ments (such as Figures 14–20 on page 53).

As a result, the \figcaption command defined in Section 20 is generally a better
method for constructing non-floating figures than is the float package’s [H] placement
option.

17In these situations, the Table of Figures lists the figures in order of appearance, not in numerical
order.

18The float package allows users to define new types of floats, such as “Program” or “Algorithm.” It
also define boxed and ruled ruled float styles.

60

21 Marginal Figures

The \marginpar command places notes in the margin of the document. The marginal
notes are placed in the right margin (or the outside margin for twoside documents) un-
less the \reversemarginpar command is used (as it was in this document). The width
of the marginal column is controlled by the \marginparwidth length, while the horizon-
tal spacing between the text and the marginal notes is controlled by the \marginparsep
length.

Marginal notes are placed such their first line is vertically aligned with the line of
the text which contains the \marginpar command (specifically, the reference point of
the top line of the marginal note is aligned with the current baseline).

Marginal notes are never broken across a page; if a marginal note starts near the
bottom of the page, it continues into the bottom margin. If the previous marginal note
will interfere with a marginal note, LATEX “bumps” the latter marginal note downward.
Marginal notes cannot be bumped to the next page; they are instead bumped into the
bottom margin. As a result, the position of the marginal notes may have to be adjusted
before the final printing to avoid marginal notes near page breaks.

Since the figure environment cannot be used in a marginal note, floating marginal
figures are not possible. However, the \figcaption command defined in Section 20
can be used to construct a non-floating marginal figure. For example, Figure 31 was

Graphic

Figure 31: This is
a Marginal Figure

produced by
...to construct a non-floating marginal figure.

\marginpar{\centering

\includegraphics[width=\marginparwidth]{graphic.eps}%

\figcaption{This is a Marginal Figure}

\label{fig:marginal:fig} }

For example, Figure~\ref{fig:marginal:fig} was...

The bottom of the graphic in Figure 31 is aligned with the text baseline where the
\marginpar command is located. Notes on marginal figures:
• Since captions for marginal figures generally are narrow, using the caption2 com-

mands \captionstyle{flushleft} or \captionstyle{flushright} may pro-
vide better caption formatting. Additionally, the caption2 command

\renewcommand{\captionfont}{\small}

can be used to decrease the size of the caption font. See Section 19 for caption2
information.

• Like the non-floating figures in Section 20, the marginal figures are placed ahead
of any unprocessed floats. Thus, a \clearpage or \FloatBarrier command must
be issued before the marginal note if one wants to keep the figures in order.

• Marginal notes are placed by the routine which also places figures and tables. If
many figures, tables, and marginal notes are being used, it is possible to exceed
the number of unprocessed floats permitted by LATEX. The morefloats package can
mitigate these problems (see Section 16.4).

22 Wide Figures

Typesetting readability rules limit the number of characters in a line of text. Unless
a large font or two columns are used, these readability rules result in wide margins
(especially when using 8.5 x 11 inch letter paper). Section 21 demonstrated how these
wide margins can be used for marginal figures. Another option is to construct a regular
floating figure which extends into one or both margins. This is done by placing a wide
list environment inside the figure. For example, a narrow environment can be defined
by including the following code in the preamble of your document

\newenvironment{narrow}[2]{%

\begin{list}{}{%

61

\setlength{\topsep}{0pt}%

\setlength{\leftmargin}{#1}%

\setlength{\rightmargin}{#2}%

\setlength{\listparindent}{\parindent}%

\setlength{\itemindent}{\parindent}%

\setlength{\parsep}{\parskip}}%

\item[]}{\end{list}}

For example, any text which occurs between \begin{narrow}{1in}{2in} is indented
by 1 inch on the left side and 2 inches on the right side. When negative lengths are
used, the contents extend beyond the margins.

22.1 Wide Figures in One-sided Documents

The following code uses this narrow environment to make the figure extend 1 inch into
the left margin, producing Figure 32.

\begin{figure}

\begin{narrow}{-1in}{0in}

\includegraphics[width=\linewidth]{wide.eps}

\caption{This is a wide figure}

\end{narrow}

\end{figure}

The specified width of \linewidth makes the graphic as wide as the narrow environ-
ment, while a width of \textwidth would make the graphic as wide as the original
margins.

A Very, Very Wide Graphic

Figure 32: This is a wide figure

When marginal notes are used, it may be desired to make the wide figure extend
exactly to the edge of the marginal notes (making the figure width be \textwidth
+ \marginparwidth + \marginparsep). This can be done by defining a new length
\marginwidth and setting it to be \marginparwidth + \marginparsep For example,

\newlength{\marginwidth}

\setlength{\marginwidth}{\marginparwidth}

\addtolength{\marginwidth}{\marginparsep}

then use {-\marginwidth} in the \begin{narrow} argument.

22.2 Wide Figures in Two-sided Documents

For two-sided documents, it may be desired to extend the wide figures into the binding-
side margin (i.e., the left margin for odd pages and the right margin for even pages). In
these cases, the ifthen package’s \ifthenelse command can be used to choose between
odd-page code and even-page code. For example,

\usepackage{ifthen}

...

\begin{figure}

\ifthenelse{\isodd{\pageref{fig:wide}}}%

{% BEGIN ODD-PAGE FIGURE

\begin{narrow}{0in}{-1in}

\includegraphics[width=\linewidth]{file.eps}

62

\caption{Figure Caption}

\label{fig:wide}

\end{narrow}

}% END ODD-PAGE FIGURE

{% BEGIN EVEN-PAGE FIGURE

\begin{narrow}{-1in}{0in}

\includegraphics[width=\linewidth]{file.eps}

\caption{Figure Caption}

\label{fig:wide}

\end{narrow}

}% END EVEN-PAGE FIGURE

\end{figure}

Since the \pageref command is used as input to \ifthenelse, the figure may not
be properly typeset until LATEX is run enough times to cause the cross-references to
converge.

23 Landscape Figures

In a document with portrait orientation, there are three methods for producing figures
with landscape orientation.

1. The lscape package provides a landscape environment, which treats the left edge
of the paper as the top of the page, causing any text, tables, or figures in the
landscape environment to have landscape orientation.

2. The rotating package provides a sidewaysfigure environment which is similar to
the figure environment except that the figures have landscape orientation.

3. The rotating package provides a \rotcaption command which is similar to the
\caption command except that caption has landscape orientation.

Differences between methods
• Both options 1 and 2 place the landscape figure on a separate page. Option 3

produces an individual float which need not be on its own page.

• While Option 2 produces only rotated figures, the landscape environment in Op-
tion 1 is a general-purpose environment, which can produce landscape pages con-
taining any combination of text, tables, and figures. The landscape environment
can page-breaking capability, so multiple landscape pages can be produced19.

• The full-page figure produced by Option 2 floats to provide better document for-
matting, while the figure produced by Option 1 cannot float20.

• Since Options 1 and 3 use the figure environment, they can be used in conjunction
with the endfloat package (see Section 18.5).

23.1 Landscape Environment

The lscape package (which is part of the standard “graphics bundle” distributed with
LATEX) defines the landscape environment, which provides a method of placing land-
scape pages in a portrait document. The landscape pages are rotated such that the left
edge of the portrait page is the top edge of the landscape page.

Entering \begin{landscape}prints all unprocessed portrait floats and then switches
to landscape orientation. Likewise, \end{landscape} prints all unprocessed landscape
floats and then switches back to portrait orientation.

19The landscape environment works very well with the longtable package to produce multiple-page
landscape tables.

20Figures issued in the landscape environment can float within the landscape pages

63

The entire contents of the landscape environment is typeset with landscape orien-
tation. This may include any mixture of text, figures, and tables. If the landscape
environment contains only a figure environment

\begin{landscape}

\begin{figure}

\centering

\includegraphics[width=4in]{graphic.eps}

\caption{Landscape Figure}

\end{figure}

\end{landscape}

the landscape environment produces a landscape figure. Note that since the landscape
environment starts a new page, it may result in a partially-blank page.

23.2 Sidewaysfigure Environment

The rotating package provides the sidewaysfigure environment which produces figures
with landscape orientation21. For example

\begin{sidewaysfigure}

\centering

\includegraphics[width=4in]{graphic.eps}

\caption{Sidewaysfigure Figure}

\end{sidewaysfigure}

produces Figure 33.
Unlike the landscape environment, the figure produced by sidewaysfigure can

float within the portrait pages to avoid the partially-blank page that the landscape
environment may produce. Note that the landscape environment is much more flexible,
allowing the landscape pages to consist of a mixture of text, tables, and figures.

The default orientation of the figures produced by sidewaysfigure depends on
whether the document is processed with the oneside or twoside documentclass option
• When the oneside option is chosen, the bottom of graphic is towards the right

edge of the portrait page.

• When the twoside option is chosen, the bottom of graphic is towards the outside
edge of the portrait page.

This default behavior can be overridden by options to the \usepackage{rotating}
command.

\usepackage[figuresleft]{rotating}

causes the bottom of the sidewaysfigure graphics to be towards the left edge of the
portrait page (regardless of oneside or twoside options). Similarly,

\usepackage[figuresright]{rotating}

causes the bottom of the sidewaysfigure graphics to be towards the right edge of the
portrait page.

23.3 Rotcaption Command

The methods in Sections 23.1 and 23.2 both produce full-page landscape figures, which
may not be necessary for smaller landscape figures. The rotating package’s \rotcaption
command can be used to construct smaller landscape figures. For example

\begin{figure}

\centering

\begin{minipage}[c]{1in}

\includegraphics[angle=90,width=\textwidth]{graphic.eps}

21The rotating package also provides a sidewaystable environment for producing tables with land-
scape orientation.

64

G
ra

ph
ic

F
ig

ur
e

33
:S

id
ew

ay
sfi

gu
re

F
ig

ur
e

65

\end{minipage}

\begin{minipage}[c]{0.5in}

\rotcaption{Rotcaption Caption}

\label{fig:rotcaption}

\end{minipage}

\end{figure}

produces Figure 34.

G
ra

ph
ic

F
ig

ur
e

34
:

R
ot

ca
pt

io
n

C
ap

ti
on

The caption produced by \rotcaption is always rotated such that its bottom is
towards the right edge of the paper. Unlike the methods in Sections 23.1 and 23.2, the
\rotcaption command does not rotate the graphics. Therefore, the \includegraphics
command in the above example requires the angle=90 option.

24 Captions Beside Figures

Although the caption of a figure is generally place above or below the graphic, this
section describes how to place the caption beside the graphic22. Section 24.1 shows how
to place the caption to the left of the graphic. Placing the caption to the right of the
graphic proceeds similarly. For twoside documents, Section 24.2 shows how to place
the caption to the inside of the graphic (to the left of the graphic for odd pages and to
the right of the graphic for even pages).

24.1 Caption to Left of Figure

The \caption command places the caption under the figure or table. Minipage envi-
ronments can be used to trick the caption command into placing the caption beside the
figure. For example, the commands

\begin{figure}

\centering

\begin{minipage}[c]{.45\textwidth}

\centering

\caption{Caption on the Side}

\label{fig:side:caption}

\end{minipage}%

22Since the figure environment defined by the float package places the caption below the body, captions
beside figures cannot be produced with the float package’s figure environment. Other aspects of the
float package can be used as long as the \restylefloat command is not issued.

66

\begin{minipage}[c]{.45\textwidth}

\centering

\includegraphics[width=\textwidth]{graphic.eps}

\end{minipage}

\end{figure}

produces Figure 35. It may be desirable to place a horizontal spacing command such
as \hfill or \hspace{.05\textwidth} between the minipages.

Figure 35: Caption on the Side Graphic

The caption and graphic in Figure 35 are centered vertically. If it is instead desired
to align the bottoms or tops of graphics and caption, see Section 11.4.

24.2 Caption on Binding Side of Graphic

The above code for Figure 35 places the caption to the left of the graphic. For two-sided
documents, it may be desired to place the caption on the binding side of the graphics. In
these cases, the ifthen package’s \ifthenelse command can be used to choose between
odd-page code and even-page code. For example,

\usepackage{ifthen}

...

\begin{figure}

\centering

\ifthenelse{\isodd{\pageref{fig:side:caption}}}

{% BEGIN ODD-PAGE FIGURE

\begin{minipage}[c]{.45\textwidth}

\centering

\caption{Caption on the Side}

\label{fig:side:caption}

\end{minipage}%

\hspace{0.05\textwidth}%

\begin{minipage}[c]{.45\textwidth}

\includegraphics[width=\textwidth]{graphic.eps}

\end{minipage}%

}% END ODD-PAGE FIGURE

{% BEGIN EVEN-PAGE FIGURE

\begin{minipage}[c]{.45\textwidth}

\includegraphics[width=\textwidth]{graphic.eps}

\end{minipage}%

\hspace{0.05\textwidth}%

\begin{minipage}[c]{.45\textwidth}

\centering

\caption{Caption on the Side}

\label{fig:side:caption}

\end{minipage}%

}% END EVEN-PAGE FIGURE

\end{figure}

produces a figure where the caption always appear on the binding side of the graphic.

24.3 The Sidecap Package

The methods in Sections 24.1 and 24.2 place caption to the side of figures. If one is
willing to sacrifice some flexibility, the sidecap package can make the process easier.

67

When a \caption command is used in the SCfigure and SCtable environments
defined by the sidecap package, the captions are automatically placed to the side of the
contents of the environment. For example,

\usepackage{sidecap}

...

\begin{SCfigure}

\includegraphics[width=3in]{graphic.eps}

\caption{This is a SCfigure}

\end{SCfigure}

produces Figure 36.

Figure 36: This is a SCfigure

Graphic

The following four options can be specified in the \usepackage command

outercaption This option places the caption to the left for left (even) pages and on
the right for right (odd) pages. (This is the default)

innercaption This option places the caption to the right for left (even) pages and on
the left for right (odd) pages.

leftcaption This option places the caption on the left.

rightcaption This option places the caption on the right.

The SCfigure environment includes two optional arguments
• The first optional argument specifies the relative width of caption compared to

the figure. A large value (e.g., 100) reserves the maximum possible width. The
default is 1.

• The second optional argument specifies the float position parameter (e.g. [htp]
or [!ht] (see Section 16.2).

25 Figures on Even or Odd Pages

The figure environment float-placement algorithm does not control whether a figure
appear on an even or odd page. To control odd/even placement, it is necessary to
use the \afterpage command (part of the afterpage package) and the \ifthenelse
command (part of the ifthen package) to move place a figure onto an odd or even page.

Putting the graphics in figure environments, might allow the even-page figure from
floating to an odd page. Instead, the \figcaption command defined in Section 20 can
be used to create a figure without using a figure environment.

\makeatletter

\newcommand\figcaption{\def\@captype{figure}\caption}

\makeatother

The \ifthenelse command is then used to place the first graphic on the next even
page. This requires repeating the graphics commands twice, once for the case of the
next page being odd and once for the case of the next page being even. To simplify the
resulting code, a \leftfig command is defined

68

\newcommand\leftfig{%

\vspace*{\fill}%

\centering

\includegraphics{graphic.eps}

\figcaption{This is on the left (even) page.}

\vspace*{\fill}\newpage}

The left-page figures are then created using this newly-defined \leftfig command along
with the \afterpage and \ifthenelse commands

\afterpage{\clearpage%

\ifthenelse{\isodd{\value{page}}}%

{\afterpage{\leftfig}}%

{\leftfig}}

Notes about odd/even page placement:
• To force the figure to a right-hand (odd) page, reverse the order of the \ifthenelse

arguments.
\afterpage{\clearpage%

\ifthenelse{\isodd{\value{page}}}%

{\leftfig}}%

{\afterpage{\leftfig}}

• Using \value{page} instead of \pageref is advantageous because \value{page}
is always correct (\pageref is only correct once the LATEX references have con-
verged).

• When using large figures, it is possible for a pagebreak to occur within the figure
(e.g., between the graphic and the caption). The figure can be forced to stay
together by enclosing it in a minipage environment

\newcommand\leftfig{%

\vspace*{\fill}%

\begin{minipage}{\textwidth}

\centering

\includegraphics{graphic.eps}

\figcaption{This is on the left (even) page.}

\end{minipage}

\vspace*{\fill}\newpage}

• The \afterpage command can sometimes be flaky, in rare cases causing a ”lost
float” error. Removing the \clearpage before the \ifthenelse may help this
situation.

\afterpage{\ifthenelse{\isodd{\value{page}}}%

{\afterpage{\leftfig}}%

{\leftfig}}

• In the above example, the figure uses the entire even page. To place the figure at
the top of the even page, modify or remove the \vspace*{\fill} and \newpage
commands

\newcommand\leftfig{%

\centering

\includegraphics{graphic.eps}

\figcaption{This is at the top of the left (even) page.}

\vspace{\floatsep}}

25.1 Figures on Facing Pages

To ease the comparison of two figures in a twoside document, it may be desirable to
position the figures on facing pages. To do this, a procedure similar to the previous
section’s even/odd page-placement must be used. To simplify the resulting code, a
\facingfigures command is defined as

69

\newcommand\facingfigures{%

\vspace*{\fill}%

\centering

\includegraphics{left.eps}

\figcaption{This is on the left (even) page.}

\vspace*{\fill}\newpage\vspace*{\fill}%

\centering

\includegraphics{right.eps}

\figcaption{This is on the right (odd) page.}

\vspace*{\fill}\newpage}

The facing figures are then created using this \facingfigures command along with
the \afterpage and \ifthenelse commands

\afterpage{\clearpage%

\ifthenelse{\isodd{\value{page}}}%

{\afterpage{\facingfigures}}%

{\facingfigures}}

26 Boxed Figures

The term Boxed Figure usually refers to one of two situations

• A box surrounds the figure’s graphic but not the figure’s caption.

• A box surrounds the figure’s graphic and its caption.
The basic method for boxing an item is to simply place the item inside an \fbox
command, which surrounds the object with a rectangular box. The fancybox package
provides boxes of different styles.

26.1 Box Around Graphic

Placing an \fbox command around the \includegraphics command produces a box
around the included graphic. For example, the commands

\begin{figure}

\centering

\fbox{\includegraphics[totalheight=2in]{file.eps}}

\caption{Box Around Graphic, But Not Around Caption}

\label{fig:boxed_graphic}

\end{figure}

place a box around the included figure, as shown in Figure 37.

P2

L1 N

P1q1

q2

L2

Figure 37: Box Around Graphic, But Not Around Caption

70

26.2 Box Around Figure and Caption

To include both the figure’s graphic and its caption, one may be tempted to move the
\caption command inside the \fbox command. However, this does not work because
\caption can only be used in paragraph mode, while the contents of an \fbox command
are processed in LR mode23.

Since the contents of minipage environments and \parbox commands are processed
in paragraph mode, the \caption command can be included in the \fbox by enclosing
the \fbox contents inside a minipage environment or a \parbox command. Since both
minipages and parboxes require a width specification, there is no direct way to make
the \fbox exactly as wide the graphic and caption.

For example, the commands
\begin{figure}

\centering

\fbox{ \begin{minipage}{4 in}

\centering

\includegraphics[totalheight=2in]{pend.eps}

\caption{Box Around Figure Graphic and Caption}

\label{fig:boxed_figure}

\end{minipage} }

\end{figure}

place a box around the figure’s graphic and caption, as shown in Figure 38

P2

L1 N

P1q1

q2

L2

Figure 38: Box Around Figure Graphic and Caption

It is usually a trial-and-error process to determine a minipage width which causes the
box to have a snug fit around the caption and graphic. This trial-and-error can be
avoided by the following approaches.

1. Choose an arbitrary minipage width and force the graphic to be as wide as the
minipage

\includegraphics[width=\textwidth]{pend.eps}

2. When it is desired to specify the graphic height, the proper minipage width can
be calculated by placing the graphic in a box and measuring the height of the box.

\newsavebox{\mybox}

\newlength{\mylength}

\sbox{\mybox}{\includegraphics[height=3in]{file.eps}}

\settowidth{\mylength}{\usebox{\mybox}}

\begin{figure}

23LATEX uses three modes: LR mode, paragraph mode, and math mode. See [1, pages 36,103-5].

71

\centering

\fbox{ \begin{minipage}{\mylength}

\centering

\usebox{\mybox}

\caption{Box Around Figure Graphic and Caption}

\label{fig:boxed_figure}

\end{minipage} }

\end{figure}

3. To ensure a one-line caption, the minipage can be made as wide as the caption by
estimating the caption width with a \settowidth command
\newlength{\mylength}

\settowidth{\mylength}{Figure XX: Box Around Figure Graphic and Caption}

\fbox{ \begin{minipage}{\mylength}

...

26.3 Customizing fbox Parameters

In Figures 37 and 38, the box is constructed of 0.4 pt thick lines with a 3 pt space
between the box and the graphic. These two dimensions can be customized by setting
the LATEX length variables \fboxrule and \fboxsep, respectively, with the \setlength
command. For example, the commands

\begin{figure}

\centering

\setlength{\fboxrule}{3pt}

\setlength{\fboxsep}{1cm}

\fbox{\includegraphics[totalheight=2in]{pend.eps}}

\caption{Graphic with Customized Box}

\label{fig:boxed_custom}

\end{figure}

place a box with 3 pt thick lines which is separated from the graphic by 1 centimeter,
as shown in Figure 39

P2

L1 N

P1q1

q2

L2

Figure 39: Graphic with Customized Box

26.4 The Fancybox Package

In Figures 37, 38, and 39, the \fbox command was used to place standard rectangular
boxes around the figures. The fancybox package provides four commands \shadowbox,

72

\doublebox, \ovalbox, and \Ovalbox which produce other types of boxes.

Table 13: FancyBox Commands

Command Parameters

\shadowbox{Example}

Example
• The frame thickness is \fboxrule.
• The shadow thickness is \shadowsize (which defaults to 4 pt).

\doublebox{Example}

Example

• The inner frame thickness is .75\fboxrule
• The outer frame thickness is 1.5\fboxrule
• The spacing between the frames is 1.5\fboxrule + 0.5pt.

\ovalbox{Example}
�

�

�

�
Example

• The frame thickness is \thinlines
• Entering \cornersize{x} the diameter of the corners x times the
minimum of the width and the height. The default is 0.5.
• The \cornersize* command directly sets the corner diameter. For
example, \cornersize*{1cm} makes the corner diameters 1 cm.

\Ovalbox{Example}
�

�

�

�
Example

\Ovalbox is the same as \ovalbox except that the line thickness is
controlled by \thicklines.

Like \fbox, the separation between these boxes and their contents is controlled
by the LATEX length \fboxsep. The length \shadowsize is set with the \setlength
command, as was done for \fboxrule and \fboxsep in Section 26.3. The lines for
\ovalbox and \Ovalbox have thicknesses corresponding to the picture environment’s
\thicklines and \thinlines, which are not lengths and thus cannot be changed with
the \setlength command. The values of \thicklines and \thinlines depend on the
size and style of the current font. Typical values are 0.8 pt for \thicklines and 0.4 pt
for \thinlines. For example, the commands

\begin{figure}

\centering

\shadowbox{ \begin{minipage}{3.5 in}

\centering

\includegraphics[totalheight=2in]{pend.eps}

\caption{Shadowbox Around Entire Figure}

\label{fig:boxed_fancy}

\end{minipage} }

\end{figure}

place a shadow box around the figure’s graphic and caption, as shown in Figure 40.

27 Side-by-Side Graphics

The commands necessary for side-by-side graphics depend on how the user wants the
graphics organized. This section covers three common groupings of side-by-side graphics

1. The side-by-side graphics are combined into a single figure.

2. The side-by-side graphics each form their own figure (e.g., Figure 43 and Fig-
ure 44).

73

P2

L1 N

P1q1

q2

L2

Figure 40: Shadowbox Around Entire Figure

3. The side-by-side graphics each form a subfigure (e.g., Subfigure 49(a) and Subfig-
ure 49(b)) which are part of a single figure (Figure 49).

This section describes the following two methods for constructing the three types of
groupings

a) Successive \includegraphics commands.

b) Side-by-side minipages, each of which contains an \includegraphics command.
It is very important to understand the material in Section 2 when constructing side-by-
side figures. Side-by-side figures are created by placing boxes (either \includegraphics
or minipages) beside each other on a line.

27.1 Side-by-Side Graphics in a Single Figure

The easiest method for creating side-by-side graphics in a single figure is successive
\includegraphics commands, although using side-by-side minipages makes it easier
to vertically align the graphics.

27.1.1 Using Side-by-Side includegraphics Commands

The following code
\begin{figure}

\centering

\includegraphics[width=1in]{graphic.eps}%

\hspace{1in}%

\includegraphics[width=2in]{graphic.eps}

\caption{Two Graphics in One Figure}

\end{figure}

produces Figure 41 which is 4 inches wide (1 inch for file1.eps, 1 inch for the \hspace,
and 2 inches for file2.eps) which is centered on the page. The \hspace command
can be omitted or replaced with \hfill, which pushes the graphics to the margins (see
Section 10.2).

Graphic
Graphic

Figure 41: Two Graphics in One Figure

74

27.1.2 Using Side-by-Side Minipages

Placing the \includegraphics commands inside minipage environments provides the
user more control over the graphics’ vertical placement. For example

\begin{figure}

\centering

\begin{minipage}[c]{0.5\textwidth}

\centering \includegraphics[width=1in]{graphic.eps}

\end{minipage}%

\begin{minipage}[c]{0.5\textwidth}

\centering \includegraphics[width=2in]{graphic.eps}

\end{minipage}

\caption{Centers Aligned Vertically}

\end{figure}

produces Figure 42, which has vertically-centered graphics.

Graphic Graphic

Figure 42: Centers Aligned Vertically

Notes on this example:
• Like any other LATEX object, minipages are positioned such that their reference

point is aligned with the current baseline. By default, minipages use the [c]
option which places the reference point at the vertical center of the minipage, the
[t] option places the reference point at the baseline of the minipage’s top line
and the [b] option places the reference point at the baseline of the minipage’s
bottom line (see Section 11.4).

• The % after the first \end{minipage} command prevents an interword space from
being inserted between the minipage boxes (see Section 10.2).

• When the widths of the minipages do not add to 1.0\textwidth, the \hspace or
\hfill commands can be used to specify horizontal spacing (see Section 10.2).

27.2 Side-by-Side Figures

In the previous section, multiple minipage environments were used inside a figure
environment to produce a single figure consisting of multiple graphics. Placing \caption
statements inside the minipages makes the minipages themselves become figures. For
example

\begin{figure}

\begin{minipage}[t]{0.5\linewidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\caption{Small Box} \label{fig:side:a}

\end{minipage}%

\begin{minipage}[t]{0.5\linewidth}

\centering

\includegraphics[width=1.5in]{graphic.eps}

\caption{Big Box} \label{fig:side:b}

\end{minipage}

\end{figure}

produces Figures 43 and 44.
Although the above commands include one figure environment, the commands pro-

duce two figures because two \caption commands are used.

75

Graphic

Figure 43: Small Box

Graphic

Figure 44: Big Box

27.2.1 Separate Minipages for Captions

The [t] options for the side-by-side minipages in Figures 43 and 44 cause the graphic
baselines to be aligned (see Section 11.4). This works well for non-rotated graphics as
it causes the tops of the captions to be aligned. However, this does not work well when
the graphics bottoms are not aligned. For example,
\begin{figure}

\centering

\begin{minipage}[t]{.33\textwidth}

\centering

\includegraphics[width=2cm]{graphic.eps}

\caption{Box with a Long Caption}

\end{minipage}%

\begin{minipage}[t]{.33\textwidth}

\centering

\includegraphics[width=2cm,angle=-30]{graphic.eps}

\caption{Rotated Box}

\end{minipage}%

\end{figure}

produces Figures 45 and 46 which do not have their captions aligned. The [b] minipage
options would not help, as it aligns the bottom lines of the caption.

Graphic

Figure 45: Box with a Long
Caption

Graphic

Figure 46: Rotated Box

The alignment of the graphics and the captions can be done separately by creating
two rows of minipages: the first row containing the figures and the second row containing
the captions. For example
\begin{figure}

\centering

\begin{minipage}[b]{.33\textwidth}

\centering

\includegraphics[width=2cm]{graphic.eps}

\end{minipage}%

\begin{minipage}[b]{.33\textwidth}

\centering

\includegraphics[width=2cm,angle=-30]{graphic.eps}

\end{minipage}\\[-10pt]

\begin{minipage}[t]{.33\textwidth}

\caption{Box with a Long Caption}

\end{minipage}%

\begin{minipage}[t]{.33\textwidth}

\caption{Rotated Box}

\end{minipage}%

\end{figure}

produces Figures 47 and 48, which have the graphic baselines aligned and the caption
top lines aligned.

76

Graphic
Graphic

Figure 47: Box with a Long
Caption

Figure 48: Rotated Box

Notes on this example
• The \\ breaks the line after the last figure. The \\ optional argument [-10pt]

moves the captions closer to the graphics by removing 10 points of vertical space
at the linebreak. This length should be changed as the user see fit.

• The graphic minipages have a [b] option to make their reference points be the
baseline of the minipage’s bottom line.

• The caption minipages have a [t] option to make their reference points be the
baseline of the minipage’s top line.

• Any \label commands must be issued in the same minipage as the corresponding
\caption command.

27.3 Side-by-Side Subfigures

It may be desirable to refer to side-by-side graphics both individually and as a group.
The \subfigure command (from the subfigure package) defines the group of side-by-
side graphics as a single figure and defines each graphics as a subfigure. For example

\begin{figure}

\centering

\subfigure[Small Box with a Long Caption]{

\label{fig:subfig:a} %% label for first subfigure

\includegraphics[width=1.0in]{graphic.eps}}

\hspace{1in}

\subfigure[Big Box]{

\label{fig:subfig:b} %% label for second subfigure

\includegraphics[width=1.5in]{graphic.eps}}

\caption{Two Subfigures}

\label{fig:subfig} %% label for entire figure

\end{figure}

produces Figure 49. Typing \ref{fig:subfig:a}produces 49(a), typing \ref{fig:subfig:b}
produces 49(b), and typing \ref{fig:subfig} produces 49.

Graphic

(a) Small Box
with a Long
Caption

Graphic

(b) Big Box

Figure 49: Two Subfigures

77

27.3.1 Minipage Environments Inside Subfigures

Like other side-by-side graphics, subfigures can be used with minipage environments.
Depending on the situation, this may make it easier to achieve the desired spacing. For
example
\begin{figure}

\subfigure[Small Box with a Long Caption]{

\label{fig:mini:subfig:a} %% label for first subfigure

\begin{minipage}[b]{0.5\textwidth}

\centering \includegraphics[width=1in]{graphic.eps}

\end{minipage}}%

\subfigure[Big Box]{

\label{fig:mini:subfig:b} %% label for second subfigure

\begin{minipage}[b]{0.5\textwidth}

\centering \includegraphics[width=1.5in]{graphic.eps}

\end{minipage}}

\caption{Minipages Inside Subfigures}

\label{fig:mini:subfig} %% label for entire figure

\end{figure}

produces Figure 50, which contains subfigures 50(a) and 50(b).

Graphic

(a) Small Box with a Long Caption

Graphic

(b) Big Box

Figure 50: Minipages Inside Subfigures

Since subfigure captions are as wide as the subfigure, the subfigure captions in Fig-
ure 50 are wider than those in Figure 49. This is because the Figure 49 subfigures
contain only the graphics while the Figure 50 subfigures contain minipages of width
0.5\textwidth.

27.3.2 Changing Subfigure Numbering

The subfigure labels have two forms
1. One which appears under the subfigure as part of the caption. This is produced

by the \@thesubfigure command.

2. One which appears when the \ref command is used. This is produced by con-
catenating the output of \p@subfigure to the output \thesubfigure.

These commands use the subfigure counter and the \thefigure command, making
the subfigure label formating be controlled by the following commands
• The command \thefigure prints the current figure number.

• The counter subfigure counts the subfigures. The command \alph{subfigure}
prints the value of the subfigure counter in lowercase letters, while \roman{subfigure}
prints the value of the subfigure counter in lowercase Roman numerals. (see [1,
page 98] or [3, page 446] for a list of counter output commands).

• The command \thesubfigure by default is (\alph{subfigure})which produces
(a), (b), etc.

• The command \@thesubfigure by default is \thesubfigure\space which adds
a space between the caption label and the caption.

78

• The command \p@subfigure by default is \thefigure
These commands make the default caption labels (a), (b), etc. and the default \ref
labels 12(a), 12(b), etc. See [10] for controlling the size and font of the subfigure labels.

1. To make the caption labels (i), (ii), etc. and make the \ref labels 12i, 12ii, etc.Subfigure
Examples enter the following commands (preferably in the LATEX file’s preamble)

\renewcommand{\thesubfigure}{\roman{subfigure}}

\makeatletter

\renewcommand{\@thesubfigure}{(\thesubfigure)\space}

\renewcommand{\p@subfigure}{\thefigure}

\makeatother

The \makeatletter command tells LATEX to treat the @ character as a letter,
thus allowing the re-definitions of the internal commands. The \makeatother
command tells LATEX return to the normal behavior of treating the @ character as
a non-letter.

2. To make the caption labels 12.1:, 12.2:, etc. and make the \ref labels 12.1, 12.2,
etc. enter the following commands

\renewcommand{\thesubfigure}{\thefigure.\arabic{subfigure}}

\makeatletter

\renewcommand{\@thesubfigure}{\thesubfigure:\space}

\renewcommand{\p@subfigure}{}

\makeatother

27.3.3 Adding Subfigures to List of Figures

By default, the List of Figures generated by the \listoffigures command includes
only figures, not subfigures. To add the subfigures the List of Figures, type

\setcounter{lofdepth}{2}

before the \listoffigures command.
Note that a change in LATEX has caused the current 3/95 subfigure package to add

“numberline1” at the beginning of any subfigure entry in the List of Figures. To fix
this, include the following code in the preamble of your document.

\makeatletter

\renewcommand{\@subcaption}[2]{%

\begingroup

\let\label\@gobble

\def\protect{\string\string\string}%

\xdef\@subfigcaptionlist{%

\@subfigcaptionlist,%

{\numberline {\@currentlabel}%

\noexpand{\ignorespaces #2}}}%

\endgroup

\@nameuse{@make#1caption}{\@nameuse{@the#1}}{#2}}

\makeatother

28 Stacked Graphics

In Section 27, side-by-side figures are arranged by placing blocks (either \includegraphics
or minipages) beside each other on a line. Stacked graphics are built in exactly the same
manner. For example,

\begin{figure}

\centering

\begin{minipage}[b]{0.3\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\caption{Caption 1}

79

\end{minipage}%

\hspace{0.04\textwidth}%

\begin{minipage}[b]{0.3\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\caption{Caption 2}

\end{minipage}\\[20pt]

\begin{minipage}[b]{0.3\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\caption{Caption 3}

\end{minipage}%

\hspace{0.04\linewidth}%

\begin{minipage}[b]{0.3\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\caption{Caption 4}

\end{minipage}%

\hspace{0.04\linewidth}%

\begin{minipage}[b]{0.3\textwidth}

\centering

\includegraphics[width=1in]{graphic.eps}

\caption{Caption 5}

\end{minipage}

\end{figure}

produces Figures 51-55. The \\[20pt] after the “Caption 2” minipage creates a line-
break with 20 points of additional vertical spacing.

Graphic

Figure 51: Caption 1

Graphic

Figure 52: Caption 2

Graphic

Figure 53: Caption 3

Graphic

Figure 54: Caption 4

Graphic

Figure 55: Caption 5

29 Placing a Table Beside a Figure

In Section 27, side-by-side figures are constructed by using multiple \caption commands
in a single figure environment. Likewise, side-by-side tables are created by using multiple
\caption commands in a single table environment.

The \figcaption and \tabcaption commands defined in Section 20 make it possible
to put a table beside a figure. For example, the following commands
\begin{figure}[htb]

\begin{minipage}[b]{0.5\textwidth}

\centering

\includegraphics[width=0.8\textwidth]{graphic.eps}

\caption{This is a Figure by a Table}

\label{fig:by:table}

\end{minipage}%

\begin{minipage}[b]{0.5\textwidth}

\centering

80

\begin{tabular}{|c|c|} \hline

Day & Data \\ \hline\hline

Monday & 14.6 \\

Tuesday & 14.3 \\

Wednesday & 14.2 \\

Thursday & 14.5 \\

Friday & 14.9 \\ \hline

\end{tabular}

\tabcaption{This is a Table by a Figure}

\label{table:by:fig}

\end{minipage}

\end{figure}

use a figure environment to create Figure 56 and Table 14.

Graphic

Figure 56: This is a Figure by a Table

Day Data
Monday 14.6
Tuesday 14.3

Wednesday 14.2
Thursday 14.5

Friday 14.9

Table 14: This is a Table by a Figure

Since LATEX allows figure floats to leapfrog table floats, using \tabcaption in a
figure environment may place the table ahead of unprocessed tables. Likewise, using
\figcaption in a table environment may place the figure ahead of unprocessed figures.
If this is objectionable, it can be prevented by putting a \FloatBarrier command
before the figure environment (see Section 16.3).

30 Continued Figures

When two successive figures contain closely-related material, it may be desirable to
label the figures with the same figure number. Since the figure counter contains the
number of the next figure, two figures can be given the same number by decrementing
the figure counter before the figure environment. For example,

\addtocounter{figure}{-1}

\begin{figure}

However, the inability to distinguish between these similarly-numbered figures causes
confusion.

The best way of constructing a continued figure is to use the subfigure package. This
allows the continued figures to be referenced individually as “Figure 12(a)” or collec-
tively “Figure 12”. Since the continued subfigures are in different figure environments,
the figure counter must be decremented with

\addtocounter{figure}{-1}

between the figures, while the subfigure counter must be incremented with
\addtocounter{subfigure}{1}

at the beginning of the second figure environment. For example, the following code
produces two continued subfigures.

\begin{figure}

\centering

\subfigure[First Part]{%

\label{fig:graphics:a}% label for subfigure

\includegraphics[width=\textwidth]{file1.eps}}%

\caption{Large Graphics}%

\label{fig:graphics}% label for figure

81

\end{figure}

\addtocounter{figure}{-1}

\begin{figure}

\addtocounter{subfigure}{1}

\centering

\subfigure[Second Part]{%

\label{fig:graphics:b}% label for subfigure

\includegraphics[width=\textwidth]{file2.eps}}%

\caption{Large Graphics (con’t)}%

\end{figure}

In this example, each of the figure environments contain one subfigure. When each of
the figure environments may contain multiple subfigures (such as in Section 27.3), the
subfigure counter must be properly incremented to account for the subfigures in the
first figure.

Since the continued figures are in separate floats, it is possible (but not likely) for
them to not appear on successive pages. If this happens, the figures can be forced
together by placing a \FloatBarrier command after the last continued figure.

82

References

[1] Leslie Lamport, LATEX: A Document Preparation System, Addison-Wesley,
Reading, Massachusetts, second edition, 1994, ISBN 0-201-52983-1

[2] Helmut Kopka and Patrick Daly, A Guide to LATEX 2ε, Addison-Wesley, Reading,
Massachusetts, 1995, ISBN 0-201-42777-X

[3] Michel Goossens, Frank Mittelbach and Alexander Samarin, The LATEX
Companion, Addison-Wesley, Reading, Massachusetts, 1994, ISBN 0-201-54199-8

[4] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach, The LATEX Graphics
Companion, Addison-Wesley, Reading, Massachusetts, 1997, ISBN 0-201-85469-4

[5] D. P. Carlisle, Packages in the ‘graphics’ bundle (Documents the graphics,
graphicx, lscape, color packages), Available as
CTAN/macros/latex/packages/graphics/grfguide.ps

[6] Tobias Oetiker, The Not So Short Introduction to LATEX 2ε Available as
CTAN/info/lshort/lshort2e.pdf and CTAN/info/lshort/lshort2e.600.ps.

[7] Michael C. Grant and David Carlisle, The psfrag system, version 3, Available as
CTAN/macros/latex/contrib/supported/psfrag/pfgguide.ps

[8] David Carlisle, The ifthen package, Available as
CTAN/macros/latex/base/ifthen.dtx

[9] David Carlisle, The afterpage package, Available as
CTAN/macros/latex/packages/tools/afterpage.dtx

[10] Steven Douglas Cochran, The subfigure package, Available as
CTAN/macros/latex/contrib/supported/subfigure/subfigure.dtx

[11] Harald Axel Sommerfeldt, The caption package, Available as
CTAN/macros/latex/contrib/supported/caption/caption2.dtx

[12] Piet van Oostrum, Page layout in LATEX, Available as
CTAN/macros/latex/contrib/supported/fancyhdr/fancyhdr.tex

[13] Leonor Barroca, The rotating package, Available as
CTAN/macros/latex/contrib/supported/rotating/rotating.dtx

[14] Timothy Van Zandt, Documentation for fancybox.sty, Available as
CTAN/graphics/pstricks/origdoc/fancybox.doc

[15] Donald Arseneau, The placeins package, Available as
CTAN/macros/latex/contrib/other/misc/placeins.sty

[16] The flafter package, Available as CTAN/macros/latex/unpacked/flafter.sty

[17] Don Hosek, The morefloats package, Available as
CTAN/macros/latex209/contrib/misc/morefloats.sty

[18] James Darrell McCauley and Jeff Goldberg, The endfloat Package, Available as
CTAN/macros/latex/contrib/supported/endfloat/endfloat.dtx

83

Index

\abovecaptionskip length, 49
\afterpage command, 44, 68

baseline, 7
\baselinestretch command, 58
bb, \includegraphics option, 14
\belowcaptionskip length, 49
\bottomfigrule command, 48
\bottomfraction command, 45
bottomnumber float placement counter,

45
BoundingBox, 8
boxed figures, 70
bufsize, 10

calc package, 16
caption

custom style, 57
delimiter, 55
font, 56
linebreaks in, 58
one line, 53
style, 52
width, 54

\caption command, 42, 59
caption2 package, 51, 61

options, 52
\captionfont command, 56, 59, 61
\captionindent command, 52
\captionlabeldelim command, 55
\captionlabelfont command, 56
\captionstyle command, 52
\@captype command, 59
\centering command, 20

difference from center environment,
20

\centerline TEX command, 20
\clearpage command, 43, 44
clip, \includegraphics option, 15
color package, 33
\colorbox command, 33
compressed graphics, 28
converting graphics to EPS, 12
converting ps files to eps, 9
CTAN (Comprehensive TEX Archive Net-

work), 2
current baseline, 7

\DeclareGraphicsExtensions command,
14, 17, 18

\DeclareGraphicsRule command, 17–
19, 28, 29

depth, 7
DISPLAY, 12
\doublebox command, 73
draft, \includegraphics option, 15

endfloat package, 50, 63
eps BoundingBox, 8
epsf package, 6
\epsfbox command, 6, 20
\epsfig command, 6

facing-page figures, 69
fancybox package, 70, 72
\fancyfoot command, 38
fancyhdr package, 37–39
\fancyhead command, 37
fancyheadings package, 37
\fancypagestyle command, 39
\fbox command, 70
\fboxrule length, 34, 72
\fboxsep length, 33, 34, 72, 73
\fcolorbox command, 34
\figcaption command, 60
\figurename command, 50
figures

figure environment, 41
landscape, 63
marginal, 61
non-floating, 59
placed on facing pages, 69
wide, 61

fil unit of length, 48
\fill length, 21
flafter package, 43, 47
float package, 60, 66
float page, 42
\FloatBarrier command, 44
\floatpagefraction command, 44, 45
\floatsep length, 48
\flushleft command, 61
\flushright command, 61
\@fpbot length, 48
\@fpsep length, 48
\@fptop length, 48
fragile commands, 58
FrameMaker non-standard eps files, 10

ghostscript, 11
ghostview, 11
gif graphics

converting to eps, 12
using in LATEX, 28, 30

84

graphics bundle, 6
graphics conversion programs, 12
graphics package, 6, 14
graphics.cfg file, 29
\graphicspath command, 26, 27
graphicx package, 6, 14
GSview, 11

header, graphics in, 37
height, 7

\includegraphics option, 14, 21
\hfill command, 20
\hspace command, 20

ifthen package, 62, 67, 68
\ifthenelse command, 62, 67, 68
ImageCommander, 12
ImageMagick, 12
\includegraphics command, 6, 14

boolean options, 15
cropping options, 15
options, 14

internal commands, 48, 59, 79
\intextsep length, 48, 60

jpeg graphics
converting to eps, 12
converting to level 2 eps, 12
using in LATEX, 28, 30

jpeg2ps, 12

keepaspectratio
\includegraphics option, 15

kpsewhich, TEX path-searching program,
29

KVEC, 12

\label command, 42
landscape environment, 63
landscape figures, 63
\leavevmode TEX command, 20
level 2 PostScript, 12
\linespread command, 58
\listoffigures command, 42
lscape package, 63

\makeatletter command, 48, 59, 79
\makeatother command, 48, 59, 79
marginal figures, 61
\marginpar command, 45
Mathematica non-standard eps files, 9
minipage

aligning bottoms, 25
aligning tops, 25
vertical alignment, 24

morefloats package, 45, 61

moving arguments, 58

named arguments, 6
NetPBM, 12
non-eps graphics

converting to eps, 12
converting to level 2 eps, 12
using in LATEX, 28, 30

non-floating figure, 59

\onelinecaptionsfalse command, 53,
58

\onelinecaptionstrue command, 53
origin, \includegraphics option, 14
\Ovalbox command, 73
\ovalbox command, 73
Oztex, 31

\pageref command, 42
Paint Shop Pro, 12
PBMPLUS, 12
pict graphics

converting to eps, 12
using in LATEX, 30

placeins package, 44
Please ask a wizard, 10
PostScript

Level 2 Wrappers, 12
\protect command, 58
\psfig command, 6, 20
psfrag, 31

seminar package incompatibility, 35
xfig incompatibility, 35

\ref command, 42
reference point, 7
\resizebox command, 16
robust commands, 58
\rotatebox command, 17
rotating package, 63, 64
\rotcaption command, 63, 64
rubber length, 20, 47

scale, \includegraphics option, 14
\scalebox command, 16
SCfigure environment, 67
seminar package

psfrag incompatibility, 35
\setcaptionmargin command, 54
\setcaptionwidth command, 54
\shadowbox command, 73
\shadowsize length, 73
\shortstack command, 33
sidecap package, 67
sidewaysfigure environment, 63, 64
sidewaystable environment, 64

85

\special command, 6
\subfigure command, 77
\suppressfloats command, 47

\tabcaption command, 60
TEX search path, 26
TEXINPUTS (TEX search path), 26
\textfloatsep length, 47, 48
\textfraction command, 45
\thicklines line width, 73
\thinlines line width, 73
tiff graphics

converting to eps, 12
converting to level 2 eps, 12
using in LATEX, 28, 30

tiff2ps, 13
Too Many Unprocessed Floats, 43, 44
\topfigrule command, 48
\topfraction command, 44, 45
topnumber float placement counter, 45
totalheight, 7

\includegraphics option, 14, 21
totalnumber float placement counter,

45
trim, \includegraphics option, 15

Unable to read an entire line, 10
Unprocessed Floats, Too Many, 43, 44

viewport, \includegraphicsoption, 15

wide figures, 61
width, 7

\includegraphics option, 14
wizard, Please ask a wizard, 10
WMF2EPS, 12

xfig
psfrag incompatibility, 35

xv, 12

86

