
The Law module for the Camel Bibliography

Engine∗

Frank G. Bennett, Jr.†

July 12, 1995

Abstract

The Law module for the Camel bibliography package and BibTEX attempts
to implement fully automated typesetting of citations in the so-called Blue
Book style used in the publication of legal materials. This demanding style
requires context sensitive in-footnote cross-referencing between citations.

An adage in office management is that you should only touch incoming paper
once; to respond to it, to file it, to forward it, or to destroy it. A number of
commercial citation database managers provide a facility for “filing” citations in a
flexible form, the idea being to extend this principle to citations as well as paper.
A hanging point for this strategy as been in-text context-sensitive citation styles.
Database managers are at their best in exporting entire bibliographies and lists
of authorities. Some packages are capable of scanning a document for citation
“tags”, which eliminates the need to separately select bibliography items in the
database. Some, too, can replace “tags” in the document with the formatted text
of a citation. But once the text is replaced, the format of citations added in this
way is fixed; conversion is a one-way process.

A more serious problem is that, while the database manager can easily identify
the tag, it is far more difficult, without logical markup, to identify its context—
whether it occurs in a footnote, how many items were in the preceding footnote,
how many articles by the same author are cited in the document, and so forth.
As a result, citation formatting of cross-referenced styles is still generally done by
hand.

One of the most demanding cross-referenced styles is that laid down in A Uni-
form System of Citation, or “the Blue Book”, for the citation of legal materials.

∗This file has version number 0.1a dated 1995/07/08. The documentation was last revised
on 1994/12/07. The documentation and the code for Camel are c© 1992–95 Frank Bennett,
Jr. Distribution and use are freely welcomed, on the sole condition that acknowledgement of
the Camel package, its Law module and of their author be made in any published using these
utilities.

†Lecturer in the Commercial Laws of the Far East, School of Oriental and African Studies,
University of London. Acknowledgements of the numerous people who have provided comments
and suggestions in the development of this module and of the Camel package itself are listed in
the users’ guide to that software.

1

This style has survived the era of computerization largely because most U.S. law
journals using the style are edited by highly competitive law students. Staff mem-
bers contribute their editorial time to their journal free of charge, because of the
value of listing law journal membership on their resume. The Blue Book style
minimizes the bulk of citation text, while conveying sufficient information to the
reader for the location of cited material. It is also designed to provide all infor-
mation required for the location of primary legal authority from the face of any
citation to it, without tracing down cross-references.

A first attempt to address this problem was made in the complementary
LexITEX and LexiBib packages, for LATEX and BibTEX respectively. Lessons
learned from developing these packages suggested that a comprehensive format-
ting package for legal citations could serve as the foundation for a modular, highly
generalized citation and bibliography formatting system. The logical code from
these packages was excised and used in the drafting of the Camel bibliography
engine. The typesetting code was then used to assemble the Law module for
Camel.

The implications of such a system are particularly interesting if it comes to be
widely used in the publication of law journals or, even better, in the publication of
court judgements. The efficiency with which citations can be reported to citation
services would be increased, since BibTEX-format database entries are in a stan-
dard format that can be processed electronically. These same lists could be made
available as text-searchable databases of authority. Network discussions of legal
issues could be accompanied by growing lists of annotated authority, available for
all to use.

To use this package, all you should need to do is unpack the files by running
law.ins (thanks to Robin Fairbairns for pushing me toward a standard-ish method
of installation!), copy the style files to their respective homes, and follow the
markup conventions described in the Camel manual. The same should apply to
any other bibliography modules produced for Camel in the future, no matter
what sort of contortions they put your citation data through before they end up
on the page. If it has extensive documentation, it’s not a Camel module!

You are not under an obligation to enjoy this package. If you have complaints,
you can contact me on fb@soas.ac.uk.

1 The style code

1.0.1 Entry type specific functions

The functions below should not be used as general utilities; they are designed
specifically for use with a particular entry type. While they could be placed
directly into the entry functions to which they apply, defining them separately
helps improve the transparency of the code.
1 〈∗bstheader〉
2 " This is the ‘law’ style for BibTeX and Camel"

3 〈/bstheader〉
4 〈∗bstfunctions〉

2

I’m not actually sure whether this function belongs in camel.dtx or in law.dtx.build.bridges

What it does is to insert (or not insert) an appropriate \bridges declaration into
the .bbl file for the current citation. It is governed by a string existing on the
stack when it is invoked, and leaves nothing on the stack. Toggles are schedules,
sections and articles. Season to taste.
5 FUNCTION {build.bridges}

6 { duplicate$ empty$

7 { pop$ skip$ }

8 { duplicate$ "sections" =

9 { pop$ "\bridges{\ \S~}{}{\ \S\S~}{\ }{\ \S~}{\ \S\S~}"

10 "" "" must.must.must

11 }

12

13 { duplicate$ "articles" =

14 { pop$

15 "\bridges{\ art.~}{}{\ arts.~}{\ }{\ art.~}{\ arts.~}"

16 "" "" must.must.must

17 }

18 { "schedules" =

19 { "\bridges{\ sched.~}{}{\ scheds.~}{\ }{\ sched.~}{\ scheds.~}"

20 "" "" must.must.must

21 }

22 ’skip$

23 if$

24 }if$

25 }if$

26 }if$

27 }

It is early days for the sorting of bibliographies in Camel. This will give a roughget.a.kinda.sort.key

key.
28 FUNCTION { get.a.kinda.sort.key }

29 { author empty$

30 { title "*" "forward" gather.chars pop$

31 duplicate$ "l" change.letter.case "the" =

32 { pop$ "*" "forward" gather.chars pop$ swap$ pop$ }

33 { duplicate$ "l" change.letter.case "a" =

34 { pop$ "*" "forward" gather.chars pop$ swap$ pop$ }

35 { swap$ pop$

36 }if$

37 }if$

38 }

39 { author #1 "{ll}" format.name$

40 }if$

41 }

This function assembles the various fields relevant to the division of a Japanesej.format.division

court into a single string.
42 FUNCTION {j.format.division}

43 { division empty$

3

44 { "" }

45 { dc.. court "end" first.in.second

46 { pop$ " No.~" ’s := "endlabel" ’t := }

47 { pop$ sc.. court "start" first.in.second

48 { pop$ "No.\ " ’s := "frontlabel" ’t := }

49 { pop$ " " ’s := "endlabel" ’t :=

50 }if$

51 }if$

52 }if$

53 division s divno t field.tag.no.combine

54 }

1.0.2 Entry type functions

Now we define the type functions for all entry types that may appear in the *.bib
file—e.g., functions like ‘article’ and ‘book’. These are the routines that actually
generate the *.bbl file output for the entry. These must all precede the READ
command. In addition, the style designer should have a function ‘default.type’
for unknown types.1

This function performs the necessary operations for exporting a valid LexITEXarticle

citation to an article. For this and for all citation types defined in the LexiBib
style, the goal is to provide reasonably complete commentary, so that anyone
wanting to alter the behaviour of the style can set to work with a fair degree of
confidence about what needs to be done to achieve a particular result.
55 FUNCTION {article}

The article entry is used for all kinds of material, so it ends up as one of the
most complex entries. Before we do anything, we have to check whether the default
Camel bridges are acceptable. There are two situations to watch out for. First,
if the volume and the number are both non-empty, we need to add a special set
of substitute bridges.
56 { volume empty$ not number empty$ not and

57 volume empty$ number empty$ year "mo.dd.yy" format.date

58 pop$ itemcount #1 = not and and or

59 { "\bridges{,\ p.~}{,\ }{,\ }{,\ }{\ at~}{\ at~}"

60 "" "" must.must.must

61 newline$

62 }

Second, the @article entry type, like many entry types in the Blue Book style
normally places white space between the title and a pinpoint page number. If the
title ends in a numeral this will be confusing, so the Blue Book requires that we
separate the two with a comma in this case. The following adjustment to bridging
punctuation accomplishes this purpose.
63 { title type.last.char "numeral" =

64 { "\bridges{,\ }{,\ }{,\ }{\ }{\ at~}{\ at~}"

65 "" "" must.must.must

1This comment by Oren Patashnik.

4

66 newline$

67 }

68 ’skip$

69 if$

70 }if$

Then we write the citation leader, to prepare for outputting the actual content of
the citation text.
71 "\lexibib{article}{" cite$ "}{" must.must.must

72 get.a.kinda.sort.key

73 "}{" "" must.must.must

The author name is pushed to the stack, followed by a toggle to trigger last-name-
only formatting. Then the format.names reduces this to a single, appropriately-
formatted string, possibly the null string. All that is left to do is push a set a
braces, a null string to make up three arguments to the export routine, and write
the lot on the output file unconditionally, using must.must.must.
74 author "lastonly" format.names

75 "}{"

76 ""

77 must.must.must

Next comes the title of the article. This is not specially formatted; we simply push
the title field, then a warning string followed by a check for whether it is empty
or not, then braces and a null string, and write again.
78 title "title" check

79 "}{"

80 ""

81 must.must.must

The next bit is actually rather thorny. There are three possible cases. The first
is where both a volume number and an issue number exist. In this case, we use a
verbose form of reference. In the second, there is no volume number, but possibly
an issue number. This is the proper form for Commonwealth legal materials, and
requires the year in brackets, followed by the issue number to show the volume
within the year. Third, we may simply have a volume number by itself. This calls
for the citation form for most journals, and U.S. case reporters.
82 volume empty$ not number empty$ not and

83 { journal "journal" check ", v.~" volume must.must.must

84 ", n.~" number "}{" must.must.must }

85 { volume empty$ not

86 { volume "\ " journal "journal" check empty.to.null

87 might.ifone.must

88 "}{" "" "" must.must.must}

89 { year "mo.dd.yy" format.date itemcount #1 =

90 { "[" swap$ "] " iftwo.might.iftwo

91 number "\ " journal "journal" check might.ifone.must

92 "}{" "" "" must.must.must}

93 { pop$ number empty$

94 { "\\" journal "journal" check "\\" must.must.must

5

95 "}{" "" "" must.must.must }

96 { number "\ " journal "journal" check might.ifone.must

97 "}{" "" "" must.must.must

98 }if$

99 }if$

100 }if$

101 }if$

The Blue Book does not like page ranges so we need to clean out anything following
a dash in the pages field. The short option toggles this behaviour on. We also
check to see that the page is not empty. This is followed by braces, a null string,
and output.

102 pages "short" format.pages "pages" check

103 "}{"

104 ""

105 must.must.must

We add the year next, but only if the volume field is non-empty (if volume is
empty, we’ll have put the year is as a bracketed volume number, Commonwealth-
style. We could use just the year (this is normal for Blue Book style, but we’ll
add the month for good measure, if it’s been provided in the year field.

106 volume empty$ not

107 { "(" year "mo.dd.yy" format.date ")" must.must.must }

108 { year "mo.dd.yy" format.date itemcount #1 =

109 ’pop$

110 { "" "" must.must.must

111 }if$

112 }if$

Finally, we have to tangle with cross-references. Yuck. (Not a complaint about
BibTEX, just a general response to the design problems inherent in the task).
Formatting depends on whether there is a crossref entry. Hear that, guys? If
you don’t use the crossref field, we’ll short-change you on formatting service.

113 crossref empty$

If there is no crossref, we just push a brace and a couple of nulls, and write.
Done! Hurray!

114 { "}" "" "" must.must.must }

But if there was a crossref, we’ve got work to do. Darn. The first thing we do
is have a look at booktitle. This should be non-null in this situation; there’s
no sense setting up a cross-reference to an individual volume of a journal unless
there’s something special to be said about it.

115 { booktitle empty$

So if no booktitle is found, we whinge and format as for a no-cross-reference
entry.

116 { "no booktitle (name of special issue) for "

117 cite$ "/" crossref ". Why a crossref?" * * * * warning$

118 "}" "" "" must.must.must }

6

If there is a booktitle, though, and if the volume field is non-empty (which
means that we just printed, or at least should have printed, the year), we close the
parens following the year (which is opened by LexITEX), and open another (which
will be closed by LexITEX). That’s it for conditional punctuation; we follow with
booktitle, which should be the title or subject description of the special issue of
the journal.

119 { volume empty$ {""} {") ("} if$ booktitle "}" must.must.must}

120 if$

121 }if$

Add a fresh new line in the export file, and we’re done! Whew!
122 newline$

123 }

This is the entry for books, which includes individual volumes in a series, andbook

multi-volume works with a single title. Correct me if I’m wrong, but I think this
latter citation type is not supported by BibTEX. LexiBib manages it by allowing
the user to specify the volume number in the text using the optional :<number>:
argument to the \lexicite tag.

124 FUNCTION {book}

This entry type normally places white space between the title and a pinpoint
page number. If the title ends in a numeral this will be confusing, so the Blue
Book requires that we separate the two with a comma in this case. The following
adjustment to bridging punctuation accomplishes this purpose.

125 { title type.last.char "numeral" =

126 { "\bridges{,\ }{}{,\ }{\ }{\ at~}{\ at~}"

127 "" "" must.must.must

128 newline$

129 }

130 ’skip$

131 if$

Next, after the opener, we push the opening macro tag for a book entry, the
nickname of the citation, and a couple of braces. This is all mandatory and can
safely be given unconditional export.

132 "\lexibib{book}{" cite$ "}{" must.must.must

133 get.a.kinda.sort.key "" "}{" must.must.must

A non-empty volume field means we need a leading volume number in the Blue
Book style. If a volume number (or anything else) is found in the volume field
of a book entry, we replace it with a volno macro. This will expand in the
document to whatever the author has specified using the optional :<number>
argument to \lexicite. For example, volume 8 of holdsworth would be:
\lexicite:8:{holdsworth}.

134 volume empty$

135 { "" }

136 { "\volno " }

137 if$

7

The author comes first. We push the contents of the author field, then the toggle
string “firstinitial”, and run the format.names function to produce the name
formatted properly for a book entry. Then we push fa couple of braces and force
all three items (\volno or null, author, and braces) onto the output.

138 author

139 "firstinitial" format.names "}{" must.must.must

The title is very straightforward. We push the title, then check to be sure it’s
non-empty, then a couple of braces go up, filled out with a null string, and force
all three onto the output.

140 title "title" check "}{}{}{" "(" must.must.must

We’re now in the final “field” of the LexITEX entry. This is mainly for the year,
but we also give the name of the editor(s) or translator(s) if present. If there is
no editor or translator, we’ll put a series name here, to help identify the source.
We don’t put both, because this would confuse things (there can be book editors
and series editors too, and the Blue Book style is too streamlined to distinguish
the two elegantly). So our first task is to see if there is an editor. . .

141 editor empty$ translator empty$ and

. . . and if there is none, we put in a series name if it exists. The series BibTEX
field should be used for the name of the series of which a volume forms a part,
but some folks might accidentally use booktitle. We’ll be forgiving and accept
it anyway.

142 { series empty$ booktitle empty$ and

If both series and booktitle are empty, we’ve nothing to do.
143 ’skip$

If at least one is non-empty, we push both, and cull them to just one using the
either.or function. If only one is non-empty, this function leaves that one; if
both are non-empty, the either.or function whinges and chooses one arbitrarily.

Next, we push a bridge and a series item number, and a toggle for the
field.tag.no.combine function. The endlabel toggle causes this function to
put the bridge and the number after the series name, if a number exists, and push
the lot back as a single item on the stack. Otherwise it leaves just the series name.

And last, we put up a comma to close, and do a mandatory export of the lot.
144 { series booktitle either.or " No.~" number

145 "endlabel" field.tag.no.combine ", " "" must.must.must }

146 if$

147 }

If either the editor or the translator fields were not empty, we format the editor
or translator name instead, and put those details here.

148 { editor translator either.or "firstinitial" format.names

We need to append the correct designator, either “ed.” or “trans.”. The either.or
function will use the second item pushed if both are non-empty, so we take advan-
tage of this “feature” in making our choice of designators; the ed. or eds. strings

8

are only used if the translator field is empty. And finally, we push a null string
to round out, and do a compulsory export.

149 translator empty$

150 { editor num.names$ #1 >

151 { " eds.\ " }

152 { " ed.\ " }

153 if$

154 }

155 { " trans.\ " }

156 if$

157 "" must.must.must

158 }if$

We also need to indicate the edition, if any.
159 edition " ed.\ " "" might.ifone.must

The year itself is easy. We push the year, do a check to issue a warning if necessary,
then run format.date over it, which yields the year in theyear, which can be
pushed back onto the stack. Then we fill out to six LexITEX fields in all, and do
a compulsory export.

160 year "mo.dd.yy" format.date ")}" "" must.must.must

A new line for a new macro, and we’re done! Rejoice! On to the next function
definition!

161 newline$

162 }

This is for those nasty entries that are created when someone publishes anincollection

article in a collection of essays edited by someone else.
163 FUNCTION{incollection}

164 { "\lexibib{incollection}{" cite$ "}{" must.must.must

165 get.a.kinda.sort.key "" "}{" must.must.must

166 author "lastonly" format.names "author" check

167 "}{" "" must.must.must

168 title "title" check

169 "}{" "" must.must.must

170 chapter empty$

171 { "" }

172 { "\\" type empty$

173 { "chapter " chapter " of \\" * * * }

174 { type " " chapter " of \\" * * * *

175 }if$

176 }if$

177 booktitle "booktitle" check

178 "}{" must.must.must

179 pages "short" format.pages "pages" check

180 "}{" "(" must.must.must

181 % We’re now in the final ‘‘field’’ of the \LexiTeX{} entry.

182 % The coding here is the same as for a "book" entry; the

183 % reader is referred to that entry for the commentary

184 % on the following code.

9

185 % \begin{macrocode}

186 editor empty$ translator empty$ and

187 { series empty$

188 ’skip$

189 { series " No.~" number

190 "endlabel" field.tag.no.combine ", " "" must.must.must }

191 if$

192 }

193 { editor booktranslator either.or "firstinitial" format.names

194 booktranslator empty$

195 { editor num.names$ #1 >

196 { " eds.\ " }

197 { " ed.\ " }

198 if$

199 }

200 { " trans.\ " }

201 if$

202 "" must.must.must

203 }if$

204 edition " ed.\ " "" might.ifone.must

205 year "mo.dd.yy" format.date ")}" "" must.must.must

206 newline$

207 }

208 FUNCTION{inbook}

209 { "\lexibib{inbook}{" cite$ "}{" must.must.must

210 get.a.kinda.sort.key "" "}{" must.must.must

211 author "firstinitial" format.names "author" check

212 "}{" "" must.must.must

213 title "title" check

214 "}{" "" must.must.must

215 chapter empty$

216 { "\\in \\" }

217 { type empty$

218 { "\\chapter " Chapter " of \\" * * }

219 { "\\" type " " Chapter " of \\" * * * *

220 }if$

221 }if$

222 booktitle "booktitle" check

223 "}{" must.must.must

224 pages "short" format.pages "pages" check

225 "}{" "(" must.must.must

226 % We’re now in the final ‘‘field’’ of the \LexiTeX{} entry.

227 % The coding here is the same as for a "book" entry; the

228 % reader is referred to that entry for the commentary

229 % on the following code.

230 % \begin{macrocode}

231 translator empty$

232 { series empty$

233 ’skip$

234 { series " No.~" number

10

235 "endlabel" field.tag.no.combine ", " "" must.must.must }

236 if$

237 }

238 { translator "firstinitial" format.names

239 " trans.\ "

240 "" must.must.must

241 }if$

242 edition " ed.\ " "" might.ifone.must

243 year "mo.dd.yy" format.date ")" "}" must.must.must

244 newline$

245 }

246 FUNCTION{booklet}

247 { "\lexibib{booklet}{" cite$ "}{" must.must.must

248 get.a.kinda.sort.key "" "}{" must.must.must

249 author "full" format.names "}{" "" must.must.must

250 "\\" title "\\}{}{}{(" must.must.must

251 howpublished ", " "" might.ifone.must

252 year "mo.dd.yy" format.date

253 ")}" "" must.must.must

254 newline$

255 }

256 FUNCTION {techreport}

257 {"\lexibib{techreport}{" cite$ "}{" must.must.must

258 get.a.kinda.sort.key "" "}{" must.must.must

259 institution author either.or.nowarning

260 "full" format.names "author & institution" check

261 "}{" title "title" check must.must.must

262 "}{}{}{" "(" "" must.must.must

263 author empty$

264 ’skip$

265 {institution "\ " "" might.ifone.must

266 }if$

267 type empty$

268 { "Technical report" }

269 { type

270 }if$

271 type empty.to.null "Cmnd" =

272 { "\ " }

273 { " No.~"

274 }if$

275 number "endlabel" field.tag.no.combine

276 ", " "" must.must.must

277 year "mo.dd.yy" format.date

278 "" ")}" must.must.must

279 newline$

280 }

281 FUNCTION {mastersthesis}

282 {"\lexibib{mastersthesis}{" cite$ "}{" must.must.must

11

283 get.a.kinda.sort.key "}{" "" must.must.must

284 author

285 "full" format.names "author" check

286 "}{" title "title" check must.must.must

287 "}{}{}{("

288 type empty$

289 { "Master’s Thesis" }

290 { type

291 }if$

292 ", " must.must.must

293 institution "institution" check ", " "" might.ifone.must

294 year "mo.dd.yy" format.date

295 ")" "}" must.must.must

296 newline$

297 }

Cases Law cases are all entered using the @CASE entry type. The formatting
of citations varies from jurisdiction to jurisdiction, so the behaviour of citations
of this type is controlled via a jurisdiction field. Supported jurisdictions are
listed in the user guide. Below, the functions for each jurisdiction are defined first,
followed by the case function itself.

298 FUNCTION {case}

Like the article entry, the case entry must make some pretty fine decisions about
how to format material fed to it. As a consequence, it is complex, but similar to
the article entry in many particulars.

299 { cites empty.to.null "=" *

300 journal empty$

301 { parse.one.cite }

302 { volume empty.to.null ’volume.var :=

303 number empty.to.null ’number.var :=

304 journal ’journal.var :=

305 pages empty.to.null ’pages.var :=

306 year empty.to.null ’year.var :=

307 }if$

308 volume.var empty$ not number.var empty$ not and

309 { "\bridges{,\ p.~}{,\ }{,\ }{\ }{\ at~}{\ at~}"

310 "" "" must.must.must

311 newline$ }

312 ’skip$

313 if$

314 "\lexibib{case}{" cite$ "}{" must.must.must

315 get.a.kinda.sort.key "" "}{}{" must.must.must

316 title empty$

317 { "Decision of the " court "court" check "" must.must.must

318 " (" j.format.division ")" iftwo.might.iftwo

319 ", " "" "" must.must.must

320 casedate "month.dd.yy" must.must.must

321 "}{" "" "" must.must.must

12

322 }

323 { title "}{" "" must.must.must }

324 if$

325 volume.var empty$ not number.var empty$ not and

326 { journal.var "journal" check ", v.~" volume.var must.must.must

327 ", n.~" number.var "}{" must.must.must }

328 { volume.var empty$

329 { "[" year.var "mo.dd.yy" format.date "] " iftwo.might.iftwo

330 number.var "\ " journal.var "journal" check might.ifone.must

331 "}{" "" "" must.must.must }

332 { volume.var "\ " journal.var "journal" check empty.to.null

333 might.ifone.must

334 "}{" "" "" must.must.must

335 }if$

336 }if$

337 pages.var "short" format.pages "pages" check

338 "}{"

339 "("

340 must.must.must

341 volume.var empty$

342 ’skip$

343 { year.var "mo.dd.yy" format.date "" "" must.must.must

344 }if$

345 crossref empty$

346 { ")}" "" "" must.must.must }

347 { booktitle empty$

348 { "no booktitle (name of special issue) for "

349 cite$ "/" crossref * * * warning$

350 ")}" "" "" must.must.must }

351 { volume.var empty$ {""} {") ("} if$ booktitle "}" must.must.must}

352 if$

353 }if$

354 { duplicate$ "=" = not }

355 { parse.one.cite

356 "={" "" "" must.must.must

357 volume.var empty$ not number.var empty$ not and

358 { journal.var "journal" check ", v.~" volume.var must.must.must

359 ", n.~" number.var "}{" must.must.must }

360 { volume.var empty$

361 { "[" year.var "mo.dd.yy" format.date "] " iftwo.might.iftwo

362 number.var "\ " journal.var "journal" check might.ifone.must

363 "}{" "" "" must.must.must }

364 { volume.var "\ " journal.var "journal" check empty.to.null

365 might.ifone.must

366 "}{" "" "" must.must.must

367 }if$

368 }if$

369 pages.var "short" format.pages "pages" check

370 "}{"

371 ""

13

372 must.must.must

373 volume.var empty$

374 ’skip$

375 { "(" year.var "mo.dd.yy" format.date ")" must.must.must

376 }if$

377 crossref empty$

378 { "}" "" "" must.must.must }

379 { booktitle empty$

380 { "no booktitle (name of special issue) for "

381 cite$ "/" crossref * * * warning$

382 "}" "" "" must.must.must }

383 { volume.var empty$ {""} {") ("} if$ booktitle "}" must.must.must}

384 if$

385 }if$

386 }while$

387 pop$

388 newline$

389 annote empty.to.null write$ newline$

390 }

The following item adds annotations; this may be eliminated by stripping with
noannotes.

391 〈∗!noannotes〉
392 % annote empty.to.null write$ newline$

393 〈/!noannotes〉
394 % }

This function applies to Japanese statutory materials.j.statute

395 FUNCTION {j.statute}

396 { "\lexibib{jstatute}{" cite$ "}{" must.must.must

397 get.a.kinda.sort.key "" "}{}{" must.must.must

398 title "title" check "}{}{}{" "" must.must.must

399 "Law no.~" number "number" check " of "

400 iftwo.might.iftwo

401 year "yy" format.date "}" "" must.must.must

402 newline$

403 }

This function formats a statute entry for Singapore.s.statute

404 FUNCTION { s.statute }

405 { "\lexibib{statute}{" cite$ "}{" must.must.must

406 get.a.kinda.sort.key "" "}{}{" must.must.must

407 title "title" check ", No.~" number

408 "endlabel" field.tag.no.combine

409 number empty$

410 { "\ " * }

411 { "\ of " * }

412 if$

413 year "mo.dd.yy" format.date "}{}{}{}" must.must.must

414 newline$

415 }

14

416 FUNCTION { e.statute }

417 { "\lexibib{statute}{" cite$ "}{" must.must.must

418 get.a.kinda.sort.key "" "}{}{" must.must.must

419 title "title" check "\ "

420 year "mo.dd.yy" format.date must.must.must

421 "}{}{}{}" "" "" must.must.must

422 newline$

423 }

This function selects the correct statute entry function.statute

424 FUNCTION { statute }

425 { type build.bridges

426 jurisdiction empty.to.null duplicate$

427 "japan" =

428 { pop$ j.statute }

429 { duplicate$ "singapore" =

430 { pop$ s.statute }

431 { duplicate$ "england" =

432 { pop$ e.statute }

433 { pop$ "IMPORTANT: unknown jurisdiction for " cite$ * warning$

434 }if$

435 }if$

436 }if$

437 }

We use the book type as our default type. When manual is completed, wedefault.type

should probably use that type instead.
438 FUNCTION {default.type} { book }

439 〈/bstfunctions〉

1.1 Macro definitions

We don’t define any macros for abbreviating law journal names. Instead, we will
use Blue Book abbreviations “native”, with a special syntax (probably the full
form in syntax: “\gobble{Accountant}{}” immediately after the abbreviation)
for resolving ambiguous abbreviations. Meanwhile, trust me: use the Blue Book
abbreviations and take this upcoming facility on faith. And besides, do you ever
need to spell out journal and reporter names?

1.2 Execution

With all preliminaries out of the way, our first act is to read in the entries from
*.bib..

440 〈∗bstfunctions〉
441 READ

Then we say “Hi” to the user. It would be nice to make this the first message, but
the structure of BibTEX style files dictates that it will follow any warnings about
missing entries.

15

442 EXECUTE {hello}

443 〈/bstfunctions〉

2 Camel style code

444 〈∗lawcitestyle〉
445 \ProvidesFile{law.cst}[1995/01/08]

2.1 Word list

A list of inter-words and their corresponding expansions must be provided.
446 {\catcode‘_=13%

447 \catcode‘\^=13%

448 \gdef\@law@wordlist{%

449 \\{\item}{\item}%

450 \\{and}{_\ ^And }%

451 \\{but-see}{_\ ^But see }%

452 \\{,}{_; }%

453 \\{;}{_; }%

454 \\{:}{_; }%

455 \\{eg}{_; ^E.g.~}%

456 \\{accord}{_; ^Accord }%

457 \\{see}{_; ^See }%

458 \\{see-also}{_; ^See also }%

459 \\{cf}{_; ^Cf.~}%

460 \\{compare}{_; ^Compare }%

461 \\{with}{ with }%

462 \\{contra}{_; ^Contra }%

463 \\{but-cf}{_\ ^But cf.~}%

464 \\{see-generally}{_. See generally }%

465 \\{affirmed}{_, ^aff’d }%

466 \\{reprinted-in}{_; ^Reprinted in }%

467 \@law@nomatch}

468 }

2.2 Print routines

Every .cst file must define a \@law@print macro. This is the macro that prints
the citation, both in the text of the document and in the bibliography. The toggles
set by the Camel engine allow a high degree of refinement in the formatting of
citations. For the styles currently used in publishing with LATEX, relatively little
of this power is required. In-document citation styles are much more demanding;
if you digest the operation the following \@law@print macro, which is suitable for
formatting legal citations, you will find the drafting of author-date styles and the
like quite straightforward by comparison.

469 \gdef\@law@print{%

16

In this particular style, a long citation (for the bibliography, for example) and a
first in-text citation are identical. These forms have separate toggles, so we start
by equating them.

470 \if@law@firstuseofcite\@law@longcitetrue\fi%

This toggles the printing on and off. This toggle is set by the n option to the
\source command.

471 \if@law@printcite%

472 \begingroup%

473 \def\@law@firstslash{\begingroup\def\\{\@law@secondslash}%

474 \the\ltokspecialface}%

475 \def\@law@secondslash{\endgroup\def\\{\@law@firstslash}}%

476 \def\\{\@law@firstslash}%

There are two halves to the macro; one for long cite forms, the other for short.
Long cite forms are in the first half.

477 \if@law@longcite%

Long citations are pretty straightforward; we’ve gathered all the information we
needed; now we just need to plunk it all down in order, pretty much. The one
exception is the page bridges. If the location page exists, we leave the singular
bridge alone. If no location page exists, and the pinpoint reference is plural, then
we install a plural bridge.

478 \ifcat$\the\@ltok@citepage$%

479 \if@law@multipages%

480 \global\@ltok@conetop\@ltok@conetopplural%

481 \fi%

482 \fi%

First to print is the author field (the second argument to the citation declaration
command), followed by the author-to-title punctuation bridge. The enclosing
braces limit the scope of the special active character definitions of ^, _ and |.

483 \global\ltokspecialface=\@ltok@authoroptionface%

484 {\the\@ltok@authormainface%

485 \@law@barinfull\the\@ltok@author}\the\@ltok@atot%

Next comes similar treatment for the title.
486 \global\ltokspecialface=\@ltok@titleoptionface%

487 {\the\@ltok@titlemainface%

488 \@law@barinfull\the\@ltok@name}\the\@ltok@ttocone%

489 \@law@longrecurse%

This else marks the boundary between long-form citations (which we have seen are
relatively simple to print) and short-form citations (which are rather complex).
This \else matches the \if@law@longcite conditional.

490 \else%

The footnote number and the accompanying bridge should not appear in a short-
form citation if the citation being printed first occurred in the current footnote.
Rather than suppressing printing, we just set the relevant tokens to nil.

17

491 \ifnum\the\@ltok@pageorfootno=\the\c@law@footnote\relax%

492 \xdef\@law@temp{\the\@ltok@whereitsat}%

493 \xdef\@law@temptwo{\the\@ltok@infoot}%

494 \ifx\@law@temp\@law@temptwo%

495 \global\@ltok@whereitsat{}%

496 \global\@ltok@pageorfootno{}%

497 \fi%

498 \fi%

Special forms of tidying-up may be appropriate to each of the four classes of
citation. An appropriate cleaning macro is called here.

499 \csname @law@\the\@ltok@citetype preformat\endcsname%

If it has been found that the same citation has been used immediately previous
to this instance, we use Id. If the \@justabove test showed that Id. by itself
is appropriate, we prepare to eat any period immediately following the citation
macro. Otherwise, we tack on the pinpoint reference and its accompanying bridge.
A fail-safe conditional reverts to the original plan if the pinpoint reference is empty.

500 \if@justabove%

501 {\def\,{,}%

502 \Id%

503 \if@l@quiteexact%

504 \gdef\@law@gobble{\@ifnextchar.{\@gobble}{}}%

505 \else%

506 \ifcat$\the\@ltok@argtwo$%

507 \message{Did define!}%

508 \gdef\@law@gobble{\@ifnextchar.{\@gobble}{}}%

509 \else%

510 \the\@ltok@atbridge{\@law@barkill\the\@ltok@argtwo\relax}%

511 \@law@fetchparas%

512 \@law@shiftparas%

513 \@law@shortrecurse%

514 \fi%

515 \fi}%

If Id. was not called for, we have to create a proper short-form reference. This
\else corresponds with the \@justabove toggle, above.

516 \else%

The author will be used in any case. Note that the author and its following bridge
may have been set to nil, above.

517 \global\ltokspecialface=\@ltok@authoroptionface%

518 {\the\@ltok@authormainface%

519 % print whatever there if for the author

520 \@law@barinshort\the\@ltok@author}\the\@ltok@atot%

The title information is also used, if it is present.
521 \global\ltokspecialface=\@ltok@titleoptionface%

522 {\the\@ltok@titlemainface%

18

If we have specified a nickname for this cite for ‘hereinafter’ references, we use
it instead of the title of the work. ¡*parabeta¿ [DWEEZLE: a test and a token
register replacement goes here.] ¡/parabeta¿

523 \@law@barinshort\the\@ltok@name}%

At this point, we must make decisions concerning whether to use the supra cross-
referencing form. This depends on the type of citation we are working on. The
\@nosupra condition is set to true if we are working on a case or a statute, oth-
erwise it is set to false.

524 \xdef\@law@temp{\the\@ltok@citetype}%

525 \ifx\@law@temp\@law@case%

526 \@nosupratrue%

527 \else%

528 \ifx\@law@temp\@law@statute%

529 \@nosupratrue%

530 \else%

531 \@nosuprafalse%

532 \fi%

533 \fi%

Now we put the result of the above test to work. First, the citation form for cases
or statutes, which do not permit the supra form.

534 \if@nosupra%

535 \the\@ltok@ttocone%

536 \@law@shortprint%

537 \@law@shortrecurse%

538 \else%

539 \supra\the\@ltok@whereitsat\the\@ltok@pageorfootno%

540 \the\@ltok@atbridge%

541 {\def\,{,}%

542 {\@law@barkill\the\@ltok@argtwo\relax}}%

543 \fi%

In order, these close \if@justabove, \if@law@longciteand \if@law@printcite.
544 \xdef\@law@temp{\the\@ltok@citetype}%

545 \ifx\@law@temp\@law@statute%

546 \ifcat$\the\@ltok@citefirst$%

547 \the\@ltok@ptoctwo{\@law@barinshort\the\@ltok@citelast}%

548 \fi%

549 \fi%

550 \fi%

551 \fi%

552 \endgroup%

553 \fi% <- end of if@law@printcite

The \@law@gobble here will consume a period inserted automatically after a forced
footnote, if the printed form turned out to be an Id.. See the concluding code of
\@law@setup.

554 \global\@law@longcitefalse\global\def\volno{}}%

19

\@law@longrecurse This macro prints the tail end of long citations until parallels are exhausted.
555 \def\@law@longrecurse{%

556 \@law@longprint%

557 \ifnum\the\c@law@parapin>0\relax%

558 \loop%

559 \addtocounter{law@paracounter}{1}%

560 \ifnum\the\c@law@paracounter<\the\c@law@parapin\relax%

561 \@law@pincut\@ltok@argtwo\frompinlist%

562 ; \@law@longprint%

563 \repeat%

564 \else%

565 \loop%

566 \addtocounter{law@paracounter}{1}%

567 \ifnum\the\c@law@paracounter>\the\c@law@paranormal\relax%

568 \else%

569 ; \@law@longprint%

570 \repeat%

571 \fi}

572 \def\@law@shortrecurse{%

573 \ifnum\the\c@law@parapin>0\relax%

574 \loop%

575 \addtocounter{law@paracounter}{1}%

576 \ifnum\the\c@law@paracounter<\the\c@law@parapin\relax%

577 \@law@pincut\@ltok@argtwo\frompinlist%

578 ; \@law@shortprint%

579 \repeat%

580 \else%

581 \loop%

582 \addtocounter{law@paracounter}{1}%

583 \ifnum\the\c@law@paracounter>\the\c@law@paranormal\relax%

584 \else%

585 ; \@law@shortprint%

586 \repeat%

587 \fi}

\@law@longprint If Camel sees more than one pinpoint page or section, the bridges preceding the
page references must be set to their plural form. This change applies to both
long and short form citations. It has to be cloned in each, however, because the
decision has to be taken with respect to each cite in a string of parallels.

588 \def\@law@longprint{%

589 \begingroup%

590 \@law@fetchparas%

591 \@law@tidybridges%

592 \if@law@multipages%

593 \@ltok@conetop\@ltok@conetopplural%

594 \@ltok@atbridge\@ltok@atbridgeplural%

595 \fi%

If for some reason either the pinpoint argument is nil, or it and the location page
token register is nil, we set the accompanying bridges to nil.

20

596 \ifcat$\the\@ltok@argtwo$%

597 \global\@ltok@ptop{}%

598 \global\@ltok@atbridge{}%

599 \ifcat$\the\@ltok@citepage$%

600 \global\@ltok@conetop{}%

601 \fi%

602 \fi%

603 \global\ltokspecialface=\@ltok@citefirstoptionface%

604 {\the\@ltok@citefirstmainface%

605 \@law@barinfull\the\@ltok@citefirst}\the\@ltok@conetop%

Next comes the location page and its following bridge. Both of these may be
blank. No funny business with the shorthand active characters is required, since
we assume this will not contain any special text for which they will be required.

606 \the\@ltok@citepage\the\@ltok@ptop%

A special use of \, is defined before we expand the optional argument stuff.
607 {\def\,{,}\@law@barkill%

608 \expandafter\the\@ltok@argtwo%

609 \relax}%

And finally, we print the final portion of the citation.
610 \xdef\@law@temp{\the\@ltok@citelast}%

611 \xdef\@law@temptwo{\the\@ltok@usercitelast}%

612 \ifx\@law@temp\@law@temptwo%

613 \else%

614 \the\@ltok@ptoctwo%

615 {\@law@barinfull\the\@ltok@citelast}%

616 \fi%

617 \@law@shiftparas%

618 \endgroup}%

\@law@shortrecurse This macro executes until all of the citation details have been printed, including
all parallels.

619 % [RECURSING MACRO GOES HERE!]

\@law@shortprint

620 \def\@law@shortprint{%

621 % If {\sc Camel} sees more than one pinpoint page or section,

622 % the bridges preceding

623 % the page references must be set to their plural form.

624 % This change applies to both long and short form citations.

625 % It has to be cloned in each, however, because the decision has

626 % to be taken with respect to each cite in a string of parallels.

627 % \begin{macrocode}

628 \begingroup%

629 \@law@fetchparas%

630 \@law@tidybridges%

21

The actual recursive printing works.
631 \global\ltokspecialface=\@ltok@citefirstoptionface%

632 {\the\@ltok@citefirstmainface%

633 \@law@barinshort\the\@ltok@citefirst}%

If the pinpoint reference is empty, we tack on the location page after the appro-
priate bridge. Otherwise, we do nothing for the present; any pinpoint reference
will be produced later on. Note that the bridge used here will only be in plural
form if something was given for use as a pinpoint reference.

634 \the\@ltok@conetop%

635 \ifcat$\the\@ltok@argtwo$%

636 \the\@ltok@citepage%

637 \else%

638 {\@law@barkill\the\@ltok@argtwo}%

639 \fi%

640 \@law@shiftparas%

641 \endgroup}%

Print format subroutines

\@law@casepreformat This is empty; no special preparations are necessary for the printing of a case
citation.

642 \gdef\@law@casepreformat{}%

\@law@statutepreformat If short statutory references are in force, the title and the following bridge are set
to nil, if some reference is provided in the first citation part.

643 \gdef\@law@statutepreformat{%

644 \if@law@statuteverbose%

645 \else%

646 \ifcat$\the\@ltok@citefirst$%

647 \else%

648 \global\@ltok@name{}%

649 \global\@ltok@ttocone{}%

650 \fi%

651 \fi%

652 }%

\@law@articlepreformat If a work by the identical author has been cited more than once, we leave every-
thing intact (the print routine does the necessary culling); otherwise, we cut the
title here. The use of \@law@authortracing is explained above.

653 \gdef\@law@articlepreformat{%

654 \ifcat$\the\@ltok@author$%

655 \else%

656 {\@law@clean\@ltok@author\@law@authortracing%

657 \expandafter\expandafter\expandafter\if\expandafter%

658 \csname\@law@authortracing\endcsname2%

659 \else%

660 \global\@ltok@atot{}\global\@ltok@name{}%

661 \fi}\fi}%

22

\@law@bookpreformat This provides the same treatment given to articles.
662 \gdef\@law@bookpreformat{%

663 \ifcat$\the\@ltok@author$%

664 \else%

665 {\@law@clean\@ltok@author\@law@authortracing%

666 \expandafter\expandafter\expandafter\if\expandafter%

667 \csname\@law@authortracing\endcsname2%

668 \else%

669 \global\@ltok@atot{}\global\@ltok@name{}%

670 \fi}\fi}%

671 〈/lawcitestyle〉

2.3 Camel citation formats

The style definitions are stored in a separate file, to make it easier and less risky
for users to play with the styles to produce desired output. Table 3 provides a
guide to the macro arguments and their functions.

2.3.1 Books

The styles used for citing books and book-like things follow.
672 〈∗lawcite〉
673 \ProvidesFile{law.cit}[1994/12/07]

674 \newcitestyle{book}%

675 {srsrrrB}

676 {[a],\ [t][c]\ [p](pl)\ [rp]\ [e]:[id]\ at~(pl)\ at~[xrf]}

677 %

678 \newcitestyle{booklet}%

679 {riririB}

680 {[a],\ [t][c]\ [p](pl)\ [rp]\ [e]:[id]\ at~(pl)\ at~[xrf]}

681 %

682 \newcitestyle{techreport}%

683 {riririB}

684 {[a],\ [t][c]\ [p](pl)\ [rp]\ [e]:[id]\ at~(pl)\ at~[xrf]}

685 %

686 \newcitestyle{mastersthesis}%

687 {riririB}

688 {[a],\ [t][c]\ [p](pl)\ [rp]\ [e]:[id]\ at~(pl)\ at~[xrf]}

2.3.2 Articles

Styles used for articles and similar shortish things follow. They’re all the same,
but the clones help keep things clear when following the action between LATEX and
BibTEX.

689 \newcitestyle{article}%

690 {rsirsrA}

691 {[a],\ [t],\ [c]\ [p],\ (pl),\ [rp]\ [e]:[id]\ at~(pl)\

692 at~[xrf]}

23

693 \newcitestyle{incollection}%

694 {rsirsrA}

695 {[a],\ [t],\ [c]\ [p],\ (pl),\ [rp]\ [e]:[id]\ at~(pl)\

696 at~[xrf]}

697 \newcitestyle{inbook}%

698 {srirsrA}

699 {[a],\ [t],\ [c]\ [p],\ (pl),\ [rp]\ [e]:[id]\ at~(pl)\

700 at~[xrf]}

2.3.3 Cases

There are several styles for cases; we pretty much need a separate style for each
jurisdiction.

701 \newcitestyle{case}%

702 {rrirrsC}

703 {[a][t],\ [c]\ [p],\ (pl),\ [rp]\ [e]:[id]\ at~(pl)\ at~[xrf]}

2.3.4 Statutes

There are several of these. More may need to be added on an ad hoc basis.
704 \newcitestyle{statute}%

705 {rrrsrsS}

706 {[a][t],\ [c]\ \S~[p](pl)\ \S\S~[rp]\ [e]:[id]\ \S~(pl)\

707 \S\S~[xrf]}

708 %

709 \newcitestyle{jstatute}%

710 {rrrsrsS}

711 {[a][t][c]\ \S~[p](pl)\ \S\S~[rp]\ [e]:[id]\ \S~(pl)\

712 \S\S~[xrf]}

713 〈/lawcite〉

3 Extraction utilities

3.1 The Driver

Here is a simple driver for extracting the files in the package.
714 〈∗installer〉
715 \def\batchfile{law.ins}

716 \input docstrip.tex

717 \preamble

718

719 Copyright (C) 1992--95 Frank Bennett, Jr.

720 All rights reserved.

721

722 This file is part of the Law module for the Camel package.

723 \endpreamble

724

725 \def\batchfile{camel.dst} % ignored in distribution

24

726 \input docstrip.tex % ignored in distribution

727

728 \keepsilent

729

730 \preamble

731

732 This file is part of the Law module of the Camel package.

733 ---

734 This is a generated file.

735

736 IMPORTANT NOTICE:

737

738 You are allowed to change this file, subject to the following

739 conditions. Under any circumstances, new macro definitions

740 should not be added to this file. You are welcome to modify

741 the macro definitions contained in this file for your own

742 use. If you pass a copy of the modified version to someone

743 else, you should (a) let me know about the change on

744 fb@soas.ac.uk, and (b) put a note of the changes and of your

745 own contact details in the file. Furthermore, you must

746 acknowledge Camel and its author(s) in the new file (if it

747 is distributed to others), and you must attach these same

748 conditions to the new file.

749

750 You are not allowed to distribute this file alone. You are not

751 allowed to take money for the distribution or use of this file

752 (or a changed version) except for a nominal charge for copying

753 etc.

754

755 You are allowed to distribute this file under the condition that

756 it is distributed with all of its contents, intact.

757

758 For error reports, or offers to help make Camel a more powerful,

759 friendlier, and better package, please contact me on

760 ‘fb’ at soas.ac.uk

761

762 \endpreamble

763

764

765 \Msg{*** Generating Camel style file (.cst) ***}

766

767 \generateFile{law.cst} {t}{\from{law.dtx}{lawcitestyle}}

768

769

770 \Msg{*** Generating Camel citation format file (.cst) ***}

771

772 \generateFile{law.cit} {t}{\from{law.dtx}{lawcite}}

773

774

775 \Msg{*** Generating Camel BibTeX style file (.bst) ***}

25

776

777 \postamble

778 \endpostamble

779

780 \generateFile{law.bst} {t}{\from{camel.dtx}{bstheader}

781 \from{law.dtx}{bstheader}

782 \from{camel.dtx}{bstlibrary}

783 \from{law.dtx}{bstfunctions}

784 \from{camel.dtx}{bsttrailer}}

785

786 \keepsilent

787

788

789 \ifToplevel{

790 \Msg{***}

791 \Msg{*}

792 \Msg{* To finish the installation you have to move the following}

793 \Msg{* file into a directory searched by TeX:}

794 \Msg{*}

795 \Msg{* \space\space law.cst}

796 \Msg{* \space\space law.cit}

797 \Msg{*}

798 \Msg{* You should also move the following file into a directory}

799 \Msg{* searched for style files by BibTeX:}

800 \Msg{*}

801 \Msg{* \space\space law.bst}

802 \Msg{*}

803 \Msg{* Other style modules can be found on CTAN in the ‘styles’}

804 \Msg{* subdirectory below Camel itself.}

805 \Msg{*}

806 \Msg{***}

807 }

808 〈/installer〉

Index

The italic numbers denote the pages where the corresponding entry is described,
numbers underlined point to the definition, all others indicate the places where it
is used.

Symbols

\@ifnextchar . . 504, 508

\@law@articlepreformat

. 653, 653

\@law@authortracing

. 656, 658, 665, 667

\@law@barinfull . . .
. 485, 488, 605, 615

\@law@barinshort . .
. 520, 523, 547, 633

\@law@barkill
. 510, 542, 607, 638

\@law@bookpreformat

. 662, 662

\@law@case 525

\@law@casepreformat

. 642, 642

\@law@clean . . . 656, 665

\@law@fetchparas . .
. . . . 511, 590, 629

\@law@firstslash . .
. . . . 473, 475, 476

\@law@gobble . . 504, 508

26

\@law@longcitefalse 554

\@law@longcitetrue . 470

\@law@longprint 556,
562, 569, 588, 588

\@law@longrecurse .
. . . . 489, 555, 555

\@law@nomatch 467

\@law@pincut . . 561, 577

\@law@print 469

\@law@secondslash .
. 473, 475

\@law@shiftparas . .
. . . . 512, 617, 640

\@law@shortprint 536,
578, 585, 620, 620

\@law@shortrecurse .
. 513, 537, 572, 619

\@law@statute . 528, 545

\@law@statutepreformat

. 643, 643

\@law@temp 492, 494,
524, 525, 528,
544, 545, 610, 612

\@law@temptwo
. 493, 494, 611, 612

\@law@tidybridges .
. 591, 630

\@law@wordlist 448

\@ltok@argtwo
. . . . 506, 510,
542, 561, 577,
596, 608, 635, 638

\@ltok@atbridge . . .
. 510, 540, 594, 598

\@ltok@atbridgeplural

. 594

\@ltok@atot
. 485, 520, 660, 669

\@ltok@author
. . . . 485, 520,
654, 656, 663, 665

\@ltok@authormainface

. 484, 518

\@ltok@authoroptionface

. 483, 517

\@ltok@citefirst . .
. 546, 605, 633, 646

\@ltok@citefirstmainface

. 604, 632

\@ltok@citefirstoptionface

. 603, 631
\@ltok@citelast . . .

. . . . 547, 610, 615
\@ltok@citepage . . .

. 478, 599, 606, 636
\@ltok@citetype . . .

. . . . 499, 524, 544
\@ltok@conetop 480,

593, 600, 605, 634
\@ltok@conetopplural

. 480, 593
\@ltok@infoot 493
\@ltok@name . . . 488,

523, 648, 660, 669
\@ltok@pageorfootno

. . . . 491, 496, 539
\@ltok@ptoctwo 547, 614
\@ltok@ptop . . . 597, 606
\@ltok@titlemainface

. 487, 522
\@ltok@titleoptionface

. 486, 521
\@ltok@ttocone

. . . . 488, 535, 649
\@ltok@usercitelast 611
\@ltok@whereitsat .

. . . . 492, 495, 539
\@nosuprafalse 531
\@nosupratrue . 526, 529

A
\addtocounter

. 559, 566, 575, 582
article (environment) 4

B
\batchfile . . . 715, 725
book (environment) . . . 7
\bridges 9, 15,

19, 59, 64, 126, 309
build.bridges (envi-

ronment) 3

C
\c@law@footnote . . . 491
\c@law@paracounter .

. 560, 567, 576, 583
\c@law@paranormal .

. 567, 583

\c@law@parapin
. 557, 560, 573, 576

D
default.type (environ-

ment) 15

E
\endpostamble 778
\endpreamble . . 723, 762
environments:

article 4
book 7
build.bridges . . . 3
default.type . . . 15
get.a.kinda.sort.key

. 3
incollection 9
j.format.division

. 3
j.statute 14
s.statute 14
statute 15

F
\from . 767, 772, 780–784
\frompinlist . . 561, 577

G
\generateFile

. . . . 767, 772, 780
get.a.kinda.sort.key

(environment) . . 3

I
\Id 502
\if@justabove 500
\if@l@quiteexact . . 503
\if@law@firstuseofcite

. 470
\if@law@longcite . . 477
\if@law@multipages .

. 479, 592
\if@law@printcite . 471
\if@law@statuteverbose

. 644
\if@nosupra 534
\ifToplevel 789
incollection (environ-

ment) 9

27

J

j.format.division

(environment) . . 3

j.statute (environ-
ment) 14

K

\keepsilent . . . 728, 786

L

\lexibib 71,
132, 164, 209,
247, 257, 282,
314, 396, 405, 417

\LexiTeX 181, 226
\ltokspecialface . .

. 474, 483, 486,
517, 521, 603, 631

M
\message 507
\Msg 765,

770, 775, 790–806

N
\newcitestyle

. 674, 678, 682,
686, 689, 693,
697, 701, 704, 709

P

\postamble 777

\preamble 717, 730

\ProvidesFile . 445, 673

S

s.statute (environ-
ment) 14

statute (environment) 15

\supra 539

V

\volno 136, 554

Change History

LexiBib1.0c
"General": Added support for

Japanese statutes. 14
0.1a

"General": Function type.last.char

and \bridges declaration used
to handle titles ending in a nu-
meral correctly (by the inser-
tion of a comma). Added to the
@article and @book entries as
a trial; will propagate to other
entry types once this change is
trusted. 5

1.0g
"General": Added the ‘techreport’

function, to support draft ar-

ticle sent to Pedro Aphalo for
comments. 11

2.0c
"General": Moved \@law@forcingfalse

outside of a conditional expres-
sion at the end of the print rou-
tine, to correct the failure of
the forcing mechanism to work
more than once. 19

2.0l
"General": Fairly drastic simpli-

fication of the forcing mecha-
nism, in the course of providing
for unified handling of citation
strings. Code now much easier
to follow. 19

28

