
CONTEXT
Language Options

group: CONTEXT Support Macros

version: 1997.03.20

date: 1997 July 25

author: Hans Hagen

copyright: PRAGMA / Hans Hagen & Ton Otten

Language Options

supp-lan CONTEXT CONTEXT Support Macros 1

One of TEX’s strong points in building paragraphs is the way hyphenations are handled. Although for
real good hyphenation of non--english languages some extensions to the program are needed, fairly
good results can be reached with the standard mechanisms and an additional macro, at least in Dutch.

1 \unprotect

CONTEXT originates in the wish to typeset educational materials, especially in a technical environment.
In production oriented environments, a lot of compound words are used. Because the Dutch language
poses no limits on combining words, we often favor putting dashes between those words, because it
facilitates reading, at least for those who are not that accustomed to it.

In TEX compound words, separated by a hyphen, are not hyphenated at all. In spite of the multiple
pass paragraph typesetting this can lead to parts of words sticking into the margin. The solution lays in
saying spoelwater||terugwinunit instead of spoelwater-terugwinunit. By using a one character
command like |, delimited by the same character |, we get ourselves both a decent visualization (in
TEXEDIT and colored verbatim we color these commands yellow) and an efficient way of combining
words.

The sequence || simply leads to two words connected by a hyphen. Because we want to distinguish
such a hyphen from the one inserted when TEX hyphenates a word, we use a bit longer one.

spoelwater||terugwinunit spoel-wa-ter--te-rug-win-unit spoelwater--terugwinunit

As we already said, the | is a command. This commands accepts an optional argument before it’s
delimiter, which is also a |.

polymeer|*|chemie po-ly-meer*che-mie polymeer*chemie

Arguments like * are not interpreted and inserted directly, in contrary to arguments like:

polymeer|˜|chemie po-ly-meer-che-mie polymeer chemie
|(|polymeer|)|chemie (po-ly-meer-)che-mie (polymeer)chemie
polymeer|(|chemie|)| po-ly-meer(-che-mie) polymeer(chemie)

Although such situations seldom occur —we typeset thousands of pages before we encountered one
that forced us to enhance this mechanism— we also have to take care of comma’s.

op||, in|| en uitstellen op--, in-- enuit-stel-len op--, in-- en uitstellen

The next special case (concerning quotes) was brought to my attention by Piet Tutelaers, one of the
driving forces behind rebuilding hyphenation patterns for the dutch language.1 We’ll also take care of
this case.

AOW|’|er AOW-er AOW’er
cd|’|tje cd-tje cd’tje
ex|-|PTT|’|er ex-PTT-er ex-PTT’er
rock|-|’n|-|roller rock-’n-roller rock-’n-roller

Tobias Burnus pointed out that I should also support something like

well|_|known well----known wellknown

to strees the compoundness of hyphenated words.

Of course we also have to take care of the special case:

text||color and ||font text--col-orand--font text--color and --font

1 In 1996 the spelling of the dutch language has been slightly reformed which made this topic actual again.

Language Options

2 supp-lan CONTEXT Support Macros CONTEXT

The mechanism described here is one of the older inner parts of CONTEXT. The most recent extensions
\installdisc.. concerns some special cases as well as the possibility to install other characters as delimiters. The

prefered way of specifying compound words is using ||, which is installed by:

\installdiscretionaries || -

Some alternative definitions are:

\installdiscretionaries ** -
\installdiscretionaries ++ -
\installdiscretionaries // -
\installdiscretionaries ˜˜ -

after which we can say:

test**test**test test-test-test test-test-test
test++test++test test-test-test test-test-test
test//test//test test-test-test test-test-test
test˜˜test˜˜test test-test-test test-test-test

Now let’s go to the macros. First we define some variables. In the main CONTEXT modules these can
\compoundhyp..
\beginofsubs..
\endofsubsen..

be tuned by a setup command. Watch the (maybe) better looking compound hyphen.

2 \def\compoundhyphen {{-}\kern-.25ex{-}}
\def\beginofsubsentence {---}
\def\endofsubsentence {---}

The last two variables are needed for subsentences —like this one— which we did not yet mention.

We want to enable breaking but at the same time don’t want compound characters like - or -- to be
separated from the words. TEX hackers will recognise the next two macro’s:

3 \def\prewordbreak {\penalty10000\hskip0pt\relax}
\def\postwordbreak {\penalty0\prewordbreak}

We first show the original implementation, which only supports | as command and delimiter. Before
activating | we save it’s value:

\edef\domathmodediscretionary{\string|}

after which we’re ready to define it’s meaning to:

\catcode‘\|=\@@active

\unexpanded\def|%
{\ifmmode

\expandafter\domathmodediscretionary
\else

\expandafter\dotextmodediscretionary
\fi}

We need a two stage \futurelet because we want to look ahead for both the compound character
definition and the (optional) comma that follows it, and because we want to prevent that TEX puts
this comma on the next line. We use \next for easy and fast checking of the argument, we save
this argument (which can consist of more tokens) and also save the character following the |#1| in
\nextnext.

Language Options

supp-lan CONTEXT CONTEXT Support Macros 3

\def\dotextmodediscretionary%
{\bgroup
\futurelet\next\dodotextmodediscretionary}

\def\dodotextmodediscretionary#1|%
{\def\betweendiscretionaries{#1}%
\futurelet\nextnext\dododotextmodediscretionary}

The main macro consists of quite some \ifx tests while \checkafterdiscretionary handles the
commas. We show the simplified version here:

\def\dododotextmodediscretionary%
{\let\nextnextnext=\egroup
\ifx |\next

\checkafterdiscretionary
\prewordbreak\hbox{\compoundhyphen\nextnext}\postwordbreak

\else\ifx=\next
\prewordbreak\compoundhyphen

\else\ifx˜\next
\discretionary{-}{}{\thinspace}\postwordbreak

\else\ifx(\next
\prewordbreak\discretionary{}{(-}{(}\prewordbreak

\else\ifx)\next
\prewordbreak\discretionary{-)}{}{)}\prewordbreak

\else\ifx’\next
\prewordbreak\discretionary{-}{}{’}\postwordbreak

\else
\checkafterdiscretionary
\prewordbreak\hbox{\betweendiscretionaries\nextnext}\postwordbreak

\fi\fi\fi\fi\fi\fi
\nextnextnext}

\def\checkafterdiscretionary%
{\ifx,\nextnext

\def\nextnextnext{\afterassignment\egroup\let\next=}%
\else

\let\nextnext=\relax
\fi}

Handling (and) is a a bit special, because TEX sees them as decent hyphenation points, according
to their \lccode being non--zero. For the same reason, later on in this module we cannot manipulate
the \lccode but take the \uccode.

The most recent implementation is more advanced. As demonstrated we can install delimiters, like:

\installdiscretionaries || \compoundhyphen

This time we have to use a bit more clever way of saving the math mode specification of the character
we’re going to make active. We also save the user supplied compound hyphen. We show the a bit
more traditional implementation first.

\def\installdiscretionaries#1%
{\catcode‘#1\@@other
\expandafter\doinstalldiscretionaries\string#1}

Language Options

4 supp-lan CONTEXT Support Macros CONTEXT

\def\doinstalldiscretionaries#1%
{\setvalue{mathmodediscretionary#1}{#1}%
\catcode‘#1\@@active
\dodoinstalldiscretionaries}

\def\dodoinstalldiscretionaries#1#2%
{\setvalue{textmodediscretionary\string#1}{#2}%
\unexpanded\def#1{\discretionarycommand#1}}

A bit more 〈catcode〉 and character trickery enables us to discard the two intermediate steps. This
trick originates on page 394 of the TEXbook, in the appendix full of dirty tricks. The second argument
has now become redundant, but I decided to reserve it for future use. At least it remembers us of the
symmetry.

4 \def\installdiscretionaries#1#2#3%
{\setvalue{mathmodediscretionary\string#1}{\char‘#1}%
\setvalue{textmodediscretionary\string#1}{#3}%
\catcode‘#1=\@@active
\scratchcounter=\the\uccode‘˜
\uccode‘˜=‘#1
\uppercase{\unexpanded\def˜{\discretionarycommand˜}}%
\uccode‘˜=\scratchcounter}

5 \def\dohandlemathmodebar#1%
{\getvalue{mathmodediscretionary\string#1}}

6 \def\discretionarycommand%
{\ifmmode

\expandafter\dohandlemathmodebar
\else

\expandafter\dotextmodediscretionary
\fi}

Although adapting character codes and making characters active can interfere with other features of
macropackages, normally there should be no problems with things like:

\installdiscretionary || +
\installdiscretionary ++ =

The real work is done by the next set of macros. We have to use a double \futurelet because we
have to take following characters into account.

7 \def\dotextmodediscretionary#1%
{\bgroup
\def\dodotextmodediscretionary##1#1%

{\def\betweendiscretionary{##1}%
\futurelet\nextnext\dododotextmodediscretionary}%

\let\discretionarycommand=#1%
\def\textmodediscretionary{\getvalue{textmodediscretionary\string#1}}%
\futurelet\next\dodotextmodediscretionary}

8 \def\dododotextmodediscretionary%
{\let\nextnextnext=\egroup
\ifx\discretionarycommand\next

\checkafterdiscretionary

Language Options

supp-lan CONTEXT CONTEXT Support Macros 5

\bgroup
\checkbeforediscretionary
\prewordbreak\hbox{\textmodediscretionary\nextnext}\postwordbreak

\egroup
\else\ifx=\next

\prewordbreak\textmodediscretionary
\else\ifx˜\next

\prewordbreak\discretionary{-}{}{\thinspace}\postwordbreak
\else\ifx_\next

\prewordbreak\discretionary
{\textmodediscretionary}{\textmodediscretionary}{}\prewordbreak

\else\ifx(\next
\ifdim\lastskip>\!!zeropoint\relax

(\prewordbreak
\else

\prewordbreak\discretionary{}{(-}{(}\prewordbreak
\fi

\else\ifx)\next
\ifx\nextnext\blankspace

\prewordbreak)\relax
\else

\prewordbreak\discretionary{-)}{}{)}\prewordbreak
\fi

\else\ifx’\next
\prewordbreak\discretionary{-}{}{’}\postwordbreak

\else\ifx<\next
\beginofsubsentence\prewordbreak\beginofsubsentencespacing

\else\ifnum\uccode‘>=\nextuccode
\endofsubsentencespacing\prewordbreak\endofsubsentence

\else
\checkafterdiscretionary
\bgroup

\checkbeforediscretionary
\prewordbreak\hbox{\betweendiscretionary\nextnext}\postwordbreak

\egroup
\fi\fi\fi\fi\fi\fi\fi\fi\fi
\nextnextnext}

9 \def\checkbeforediscretionary%
{\setbox0=\lastbox
\ifdim\wd0=\!!zeropoint

\let\postwordbreak=\prewordbreak
\fi
\box0\relax}

10 \def\checkafterdiscretionary%
{\ifx,\nextnext

\def\nextnextnext{\afterassignment\egroup\let\next=}%
\else

\let\nextnext=\relax
\fi}

The macro \checkbeforediscretionary takes care of loners like ||word, while it counterpart
\checkafterdiscretionary is responsible for handling the comma.

Language Options

6 supp-lan CONTEXT Support Macros CONTEXT

In the previous macros we provided two hooks which can be used to support nested sub--sentences. In
\beginofsubs..
\endofsubsen..

CONTEXT these hooks are used to insert a small space when needed.

11 \let\beginofsubsentencespacing=\relax
\let\endofsubsentencespacing =\relax

Before we show some more tricky alternative, we first install the mechanism:

12 \installdiscretionaries || \compoundhyphen

One of the drawbacks of this mechanism is that characters can be made active afterwards. The next
alternative can be used in such situations. This time we don’t compare the arguments directly but
use the \uccode’s instead. TEX initializes these codes of the alphabetics glyphs to their uppercase
counterparts. Normally the other characters remain zero. If so, we can use the \uccode as a signal.

The more advanced mechanism is activated by calling:
\enableactiv..

\enableactivediscretionaries

which is defined as:

13 \def\enableactivediscretionaries%
{\uccode‘’=‘’\relax \uccode‘˜=‘˜\relax \uccode‘_=‘_\relax
\uccode‘(=‘(\relax \uccode‘)=‘)\relax \uccode‘==‘=\relax
\uccode‘<=‘<\relax \uccode‘>=‘>\relax
\let\dotextmodediscretionary = \activedotextmodediscretionary
\let\dododotextmodediscretionary = \activedododotextmodediscretionary}

We only have to redefine two macros. While saving the \uccode in a macro we have to take care of
empty arguments, like in ||.

14 \def\activedotextmodediscretionary#1%
{\bgroup
\def\dodotextmodediscretionary##1#1%

{\def\betweendiscretionary{##1}%
\def\nextuccode####1####2\relax%

{\ifcat\noexpand####1\noexpand\relax
\edef\nextuccode{0}%

\else
\edef\nextuccode{\the\uccode‘####1}%

\fi}%
\nextuccode##1@\relax
\futurelet\nextnext\dododotextmodediscretionary}%

\let\discretionarycommand=#1%
\def\textmodediscretionary{\getvalue{textmodediscretionary\string#1}}%
\futurelet\next\dodotextmodediscretionary}

This time we use \ifnum:

15 \def\activedododotextmodediscretionary%
{\let\nextnextnext=\egroup
\ifx\discretionarycommand\next

\checkafterdiscretionary
\bgroup

\checkbeforediscretionary
\prewordbreak\hbox{\textmodediscretionary\nextnext}\postwordbreak

Language Options

supp-lan CONTEXT CONTEXT Support Macros 7

\egroup
\else\ifnum\uccode‘==\nextuccode

\prewordbreak\textmodediscretionary
\else\ifnum\uccode‘˜=\nextuccode

\prewordbreak\discretionary{-}{}{\thinspace}\postwordbreak
\else\ifnum\uccode‘_=\nextuccode

\prewordbreak\discretionary
{\textmodediscretionary}{\textmodediscretionary}{}\prewordbreak

\else\ifnum\uccode‘(=\nextuccode
\ifdim\lastskip>\!!zeropoint\relax

(\prewordbreak
\else

\prewordbreak\discretionary{}{(-}{(}\prewordbreak
\fi

\else\ifnum\uccode‘)=\nextuccode
\ifx\nextnext\blankspace

\prewordbreak)\relax
\else

\prewordbreak\discretionary{-)}{}{)}\prewordbreak
\fi

\else\ifnum\uccode‘’=\nextuccode
\prewordbreak\discretionary{-}{}{’}\postwordbreak

\else\ifnum\uccode‘<=\nextuccode
\beginofsubsentence\prewordbreak\beginofsubsentencespacing

\else\ifnum\uccode‘>=\nextuccode
\endofsubsentencespacing\prewordbreak\endofsubsentence

\else
\checkafterdiscretionary
\bgroup

\checkbeforediscretionary
\prewordbreak\hbox{\betweendiscretionary\nextnext}\postwordbreak

\egroup
\fi\fi\fi\fi\fi\fi\fi\fi\fi
\nextnextnext}

Now we can safely do things like:

\catcode‘<=\@@active \def<{hello there}
\catcode‘>=\@@active \def>{hello there}
\catcode‘(=\@@active \def({hello there}
\catcode‘)=\@@active \def){hello there}

In normal day--to--day production of texts this kind of activation is seldom used.2 If so, we have to
take care of the math mode explicitly, just like we did when making | active. It can be confusing too,
especially when we load macropackages afterwards that make use of < in \ifnum or \ifdim statements.

When Tobias Burnus started translating the dutch manual of PPCHTEX into german, he suggested to
\installcomp.. let CONTEXT support the german.sty method of handling compound characters, especially the umlaut.

This package is meant for use with PLAIN TEX as well as LATEX.

I decided to implement compound character support as versatile as possible. As a result one can define
his own compound character support, like:

\installcompoundcharacter "a {\"a}
2 In the CONTEXT manual the < and > are made active and used for some cross--reference trickery.

Language Options

8 supp-lan CONTEXT Support Macros CONTEXT

\installcompoundcharacter "e {\"e}
\installcompoundcharacter "i {\"i}
\installcompoundcharacter "u {\"u}
\installcompoundcharacter "o {\"o}
\installcompoundcharacter "s {\SS}

or even

\installcompoundcharacter "ck {\discretionary {k-}{k}{ck}}
\installcompoundcharacter "ff {\discretionary{ff-}{f}{ff}}

The support is not limited to alphabetic characters, so the next definition is also valid.

\installcompoundcharacter ". {.\doifnextcharelse{\spacetoken}{}{\kern.125em}}

The implementation looks familiar and uses the same tricks as mentioned earlier in this module. We
take care of two arguments, which complicates things a bit.

16 \def\@nc@{@nc@} % normal character
\def\@cc@{@cc@} % compound character
\def\@cs@{@cs@} % compound characters

17 \def\installcompoundcharacter #1#2#3 #4%
{\setvalue{\@nc@\string#1}{\char‘#1}%
\def\!!stringa{#3}%
\ifx\!!stringa\empty

\setvalue{\@cc@\string#1\string#2}{#4}%
\else

\setvalue{\@cs@\string#1\string#2\string#3}{#4}%
\fi
\catcode‘#1=\@@active
\scratchcounter=\the\uccode‘˜
\uccode‘˜=‘#1
\uppercase{\unexpanded\def˜{\handlecompoundcharacter˜}}%
\uccode‘˜=\scratchcounter}

In handling the compound characters we have to take care of \bgroup and \egroup tokens, so we end
up with several interpretation macros.

18 \def\dohandlecompoundcharacter%
{\ifx\next\bgroup

\let\next=\relax
\else\ifx\next\egroup

\let\next=\relax
\else

\let\next=\dodohandlecompoundcharacter%
\fi\fi
\next}

After having taken care of the grouping tokens, we have to deal with three situations. First we look if
the next character equals the first one, if so, then we just insert them both. Next we look is indeed a
compound character is defined. We either execute the compound character or just insert the first. So
we have

<key><known> <key><unknown> <key><key>

Language Options

supp-lan CONTEXT CONTEXT Support Macros 9

We define these macros as \long because we can expect \par tokens. We need to look into the future
with \futurelet to prevent spaces from disappearing.

19 \long\def\dododohandlecompoundcharacter#1#2#3%
{\ifx#1#2%

\def\next{\getvalue{\@nc@\string#1}\getvalue{\@nc@\string#1}}%
\else

\@EA\ifx\csname\@cs@\string#1\string#2\string#3\endcsname\relax
\expandafter\ifx\csname\@cc@\string#1\string#2\endcsname\relax

\def\next{\getvalue{\@nc@\string#1}#2#3}%
\else

\def\next{\getvalue{\@cc@\string#1\string#2}#3}%
\fi

\else
\def\next{\getvalue{\@cs@\string#1\string#2\string#3}}%

\fi
\fi
\next}

20 \long\def\dodohandlecompoundcharacter#1#2%
{\ifx\next\blankspace

\def\next{\dododohandlecompoundcharacter#1#2\blankspace\ignorespaces}%
\else

\def\next{\dododohandlecompoundcharacter#1#2}%
\fi
\next}

21 \long\def\handlecompoundcharacter#1#2%
{\long\def\dohandlecompoundcharacter%

{\dodohandlecompoundcharacter#1#2}%
\futurelet\next\dohandlecompoundcharacter}

In later modules we will see how these commands are used.

22 \protect

Language Options

10 supp-lan CONTEXT Support Macros CONTEXT

\beginofsubsentence 2
\beginofsubsentencespacing 6

\compoundhyphen 2

\enableactivediscretionaries 6

\endofsubsentence 2
\endofsubsentencespacing 6

\installcompoundcharacter 7
\installdiscretionaries 2

