

For them

I owe much inspiration to both my parents. My mother Jannie constantly demonstrates me
that computer graphics will never improve nature. She also converted one of my first
METAPOST graphics into a patchwork that will remind me forever that handcraft is more vivid
than computer artwork. My father Hein has spent a great deal of his life teaching math, and
I'm sure he would have loved mMeTAPOST. I inherited his love for books. I therefore dedicate
this document to them.

Colofon

This manual is typeset with CONTEXT and MeTAPOST. No special tricks are used and everything
you see in here, is available for CONTEXT users. The text is typeset in Palatino

and Courier. We used PDFTEX as TgX processing engine. Since this document is meant to

be printed in color, some examples will look sub—optimal when printed in black and white.

Copyright

Hans Hagen, PRAGMA Advanced Document Engineering, Hasselt NL
copyright: October 27, 2000

Info

internet: www.pragma-ade.com
support: ntg-context@ntg.nl
email: pragma@wxs.nl

Introduction

This document is about METAPOST and TeX. The former is a graphic programming language, the
latter a typographic programming language. However, in this document we will not focus on
real programming, but more on how we can interface between those two languages. We will do
so by using CONTEXT, a macro package written in TgX, where support for METAPOST is integrated
in the core. The TgX macros are integrated in CONTEXT, and the METAPOST macros are bundled in
Met aFun.

When Donald Knuth wrote his typographical programming language TgX he was in need for
fonts, especially mathematical fonts. So, as a side track, he started writing METAFONT, a graphical
language. When you read between the lines in the METAFONT book and the source code, the name
John Hobby is mentioned alongside complicated formulas. It will be no surprise then, that, since
he was tightly involved in the development of MeTAFONT, after a few years his METRPOST showed
up.

While its ancestor METAFONT was originally targeted at designing fonts, METAPOST is more ori-
ented to drawing graphics as used in scientific publications. Since METAFONT produced bitmap out-
put, some of its operators make use of this fact. METAPOST on the other hand produces POSTSCRIPT
code, which means that it has some features not present in METARFONT and vise versa.

With Met aFun I will demonstrate that METRPOST can also be used, or misused, for less technical
drawing purposes. We will see that METAPOST can fill in some gaps in TgX, especially its lack
of graphic capabilities. We will demonstrate that graphics can make a document more attractive,
even if it is processed in a batch processing system like TgX. Most of all, we will see that embedding
METAPOST definitions in the TgX source enables a smooth communication between both programs.

The best starting point for using METRPOST is the manual written by its author John Hobby.
You can find this manual at every main TgX repository. Also, a copy of the METAFONT book from
Donald Knuth is worth every penny, if only because it will give you the feeling that many years
of graphical fun lays ahead.

In this Met aFun manual we will demonstrate how you can embed graphics in a TgX docu-
ment, but we will also introduce most of the features of METAPOST. For this reason you will see
a lot of METAPOST code. For sure there are better methods to solve problems, but I have tried to
demonstrate different methods and techniques as much as possible.

I started using MeTAPOST long after I started using TgX, and I never regret it. Although I like
TeX very much, I must admit that sometimes using METAPOST is even more fun. Therefore, before
we start exploring both in depth, I want to thank their creators, Donald Knuth and John Hob-
by, for providing me these fabulous tools. Of course I also need to thank Han Thé Thanh, for
giving the TeX community PDFIEX, as well as providing me the hooks I considered neccessary for
implementing some of the features presented here.

I also want to thank David Arnold and Ton Otten for their fast proofreading, for providing
me useful input, and for testing the examples. Without Davids patience and help, this document
would be far from perfect English and less complete. Without Tons help, many small typo’s would
have gone unnoticed.

Hans Hagen, October 27, 2000

Preliminary Version October 27, 2000

Preliminary Version October 27, 2000

Content

Conventions 5
1 Welcome to METAPOST 7
11 Paths, 7
12 Transformations 10
1.3 Constructing paths 14
14 Drawing pictures 23
1.5 Variables 27
16 Conditions 28
17 Loopsl 29
1.8 Macros 30
19 Pens L 32
110 Colorsccoviiiiiiii... 35
111 Dashes 35
112 Text ..ot 36
113 Linear equations 37
114 Clipping 44
115 Cutting and pasting 45
2 Afewmoredetails 49
21 Making graphics 49
22 Boundingboxes 50
23 Unitsooiiiiiiii 53
24 Scaling and shifting 55
2.5 Curve construction 58
2.6 Inflection, tension and curl 63
2.7 Transformations 70
28 Onlythisfar 73
29 Directions 79
210 Analyzing pictures 80
211 Additional operators 88
3 Embedded graphics 89
31 Gettingstarted 89
3.2 External graphics 90
3.3 Integrated graphics 91
3.4 Graphicbuffers 94
3.5 Communicating color 96
3.6 Common definitions 97
3.7 Onepagegraphics 98
3.8 Managing resources 99

Preliminary Version October 27, 2000

4

41
4.2
43
44
4.5
4.6

51
52
53

6.1
6.2
6.3
6.4
6.5

71
72
73
74
75

8.1
8.2
8.3
8.4

9.1
9.2
9.3

Enhancing the layout

Overlays
Overlay variables
Stacking overlays
Foregrounds
Typesetting graphics
Graphics and macros

Positional graphics

The concept
Anchors and layers
Some examples

Page backgrounds
The basiclayout
Setting up backgrounds
Multiple overlays
Crossing borders
Advanced features

Shapes, symbols and buttons

Interfacing to TeX
Random graphics
Graphic variables
Shape libraries
Symbol collections

Special effects

Shading
Clipping
Patterns
Fonts

Typesetting in METAPOST

The process
Environments
Labels

101

101
103
103
104
105
107

115
115
116
119

121

137
141
141
143

145

94 TpXtext 156
95 TalkingtoTpX 166
10 Debugging 183
11 Defining styles 189
111 Adaptive buttons 189
12 PFunctions 197
13 A few applications 199
131 Simple drawings 199
132 Freelabels 202
13.3 Markingangles 207
13.4 Colorcircles 213
13.5 Foolyourself 218
13.6 Puzzles 222
137 Flowcharts 222
13.8 Chemistry 222
13.9 Growing graphics 223
1310 SimpleLogos 230
1311 Animations 235
14 WMetaFunmacros 237
15 Example graphics 239
A Programs 241
Al METAPOST, 241

A2 TEX 241
A3 ConTgXt 241
A4 TpXExec 242
A5 MPtoPDF 242
A6 Testcase 243
B METAPOST syntax 245
B1 Syntax diagrams 245
B.2 Listofthings 254
C Thisdocument 255
D Reference 257
D1 Paths 257
D.2 Transformations 265
D3 Points 273
D4 Attributes 275
D5 Text 280
E Literature 283

El
E.2
E3
E4
E5

METAFONT and METAPOST .. 283

TX o 283
CONTRXT ..o, 283
Tools, 283
Distributions 283

............................ 285

Preliminary Version October 27, 2000

Conventions

When reading this manual, you may be tempted to test the examples shown. This can be done in
several ways. You can make a file and process that file by MeTAPosT. Such a file looks like:

input mp-tool ; % some initializations and auxiliary macros
input mp-spec ; % macros that support special features

beginfig(1) ;
fill fullcircle scaled 5cm withcolor red ; % a graphic
endfig ;

end .

Don't forget the semi—colons that end the statements. If the file is saved as yourfile.mp , then
the file is processed by:

mpost yourfile

The results are available in yourfile.1 and can be viewed with GHOSTSCRIPT. You don’t need to
close the file so reprocessing is very convenient.
Alternatively you can use CONTEXT. In that case, a simple file looks like:

\starttext
\startuseMPgraphic{dummy}

fill fullcircle scaled 5cm withcolor red ;
\stopuseMPgraphic
\useMPgraphic{dummy}
\stoptext

If the file is saved as yourfile.tex , then you can produce a DVI file with:
texexec yourfile

A PDF file, viewable in ACROBAT or GHOSTVIEW, is produced with:
texexec --pdf yourfile

Depending on how your system is set up, CONTEXT will run MeTAPOST during the TeX run or after-
wards. If you want to process a METAPOST file separately using TeXEXEC, you should say:

texexec --mptex yourfile.mp

This is the preferred way when a graphic contains TgX directives (btex cum suis) or when the
METAPOST file is generated by CONTEXT.

We will use lots of color. Don’t worry if your red is not our red, or your yellow does not match
ours. We’ve made color definitions to match the overall design of this document, but you should
feel free to use any color of choice in the upcoming examples.

By default, CONTEXT has turned its color mechanism off. If you want your graphics to have
color, you should say:

\setupcolors[state=start]

Preliminary Version October 27, 2000 0 10NS

Preliminary Version October 27, 2000

Welcome to METAPOST

11

In this chapter, we will introduce the most important MeTAPOST concepts as well as demonstrate
some drawing primitives and operators. This chapter does not replace the MeTAFONT book or META-
pPosT manual, both of which provide a lot of explanations, examples, and (dirty) tricks.

As its title says, the MeTAFONT book by Donald. E. Knuth is about fonts. Nevertheless, buying a
copy is worth the money, because as a METAPOST user you can benefit from the excellent chapters
about curves, algebraic expressions, and (linear) equations. The following sections are incomplete
in many aspects. More details on how to define your own macros can be found in both the META-
FONT book and meTAPOST manual, but you will probably only appreciate the nasty details if you
have written a few simple ones yourself. This chapter will give you a start.

Many of the concepts introduced here will be discussed in more detail in later chapters. So,
you may consider this chapter to be an appetizer for the following chapters. If you want to get
started quickly, you can safely skip this chapter now.

Paths

-

Paths are the building blocks of METRPOST graphics. In its simplest form, a path is a single point.

o(1cm,1.5cm)

Such a point is identified by two numbers, which represent the horizontal and vertical position,
often referred to as x and y, or (x, y). Because there are two numbers involved, in METAPOST this
point is called a pair. Its related datatype is therefore pair . The following statements assigns the
point we showed previously to a pair variable.

pair somepoint ; somepoint := (1cm,1.5cm) ;

A pair can be used to identify a point in the two dimensional coordinate space, but it can also be
used to denote a vector (being a direction or displacement). For instance, (0,1) means ‘go up’.
Looking through math glasses, you may consider them vectors, and if you know how to deal with
them, METAPOST may be your friend, since it knows how to manipulate them.

You can connect points and the result is called a path. A path is a straight or bent line, and is
not necessarily a smooth curve. An example of a simple rectangular path is:'

In the next examples we use the debugging features discussed in chapter 10 to visualize the points, paths and bounding
boxes.

EIbE

i1

Preliminary Version October 27, 2000 elc 31?1

This path is constructed out o

A path can be open or closed
looks like this:

The open path is defined as:

el =

f four points:

. The previous path is an example of a closed path. An open path

Preliminary Version October 27, 2000

(2cm,1cm)..(1.5cm,1.5cm)..(2cm,0cm)

The “double period” connector .. tells MeTAPOST that we want to connect the lines by a smooth
curve. If you want to connect points with straight line segments, you should use -- .
Closing the path is done by connecting the first and last point, using the cycle command.

(2cm,1cm)..(1.5cm,1.5cm)..(2cm,0cm)..cycle

Feel free touse .. or-- atany point in your path.

(em,1cm)--(1.5cm,1.5¢cm)..(2cm,0cm)..cycle

This path, when drawn, looks like this:
+ °

As you can see in some of the previous examples, METRPOST is capable of drawing a smooth curve
through the three points that make up the path. We will now examine how this is done.

The six small points are the so called control points. These points pull their parent point in a
certain direction. The further away such a point is, the stronger the pull.

Each point has at most two control points. As you can see in the following graphic, the end-
points of a non closed curve have only one control point.

This time we used the path:
(2.5cm,1.5cm)..(2cm,0cm)..(1cm,1cm)

When you connect points by a smooth curve, MeTAPOST will calculate the control points itself,
unless you specify one or more of them.

Preliminary Version October 27, 2000 elc 31?1

E[TE

Y=

1.2

This path is specified as:
(1ecm,1cm)..(1.5cm,1.5cm)..controls (3cm,2cm)..(2cm,0cm)

In this path, the second and third point share a control point. Watch how the curve is pulled in
that direction. It is possible to pull a bit less by choosing a different control point:

(1cm,1cm)..(1.5cm,1.5cm)..controls (2.75cm,1.25cm)..(2cm,0cm)

Now we get:

This path is defined as:

(2cm,1cm)..controls (.5cm,2cm) and (2.5cm,2cm)..(2cm,.5¢cm)

Transformations

We can store a path in a path variable. Before we can use such a variable, we have to allocate its
memory slot with path .

path p ; p = (1cm,1cm)..(1.5cm,2cm)..(2cm,0cm) ;

Although we can manipulate any path in the same way, using a variable saves us the effort to key
in a path more than once.

TAPOST Preliminary Version October 27, 2000

In this graphic, the path stored in p is drawn twice, once in its displaced form. The displacement
is defined as:

p shifted (4cm,2cm)

In a similar fashion you can rotate a path. You can even combine shifts and rotations. First we
rotate the path 15 degrees counter—clockwise about the origin.

p rotated 15

This rotation becomes more visible when we also shift the path to the right by saying:
rotated 15 shifted (4cm,0cm)

Now we get:

T - /
NPl

1 | L 1 | 1
] T

Note that rotated 15 is equivalent to p rotatedaround (origin, 15)

Preliminary Version October 27, 2000

iW:

-
[

&

It may make more sense to rotate the shape around its center. This can easily be achieved with
the rotatedaround ~ command. Again, we move the path to the right afterwards.

p rotatedaround(center p, 15) shifted (4cm,0cm)

=:M’=‘¢=¢\-/:%¢=¢='

] |

Yet another transformation is slanting. Just like characters can be upright or slanted, a graphic
can be:

p slanted 1.5 shifted (4cm,0cm)

T L DL DL DL

The slant operation’s main application is in tilting fonts. The x—coodinates are increased by a
percentage of their y—-coordinate, so here every x becomes x + 1.5y. The y-coordinate is left
untouched. The following table summarizes the most important primitive transformations that
METAPOST supports.

METAPOST code mathematical equivalent

(x,y) shifted (a,b) (x+a,y+b)

(x,y) scaled s (sx, sy)

(x,y) xscaled s (sx,y)

(x,y) yscaled s (x,sy)

(x,y) zscaled (u,v) (xu — yv, xv + yu)

(x,y) slanted s (x+sy,y)

(x,y) rotated r (x cos(r) — ysin(r), x sin(r) + y cos(r))

The previously mentioned rotatedaround is not a primitive but a macro, defined in terms of
shifts and rotations. Another transformation macro is mirroring, or in METAPOST terminology,
reflectedabout

TAPOST Preliminary Version October 27, 2000

The reflection axis is specified by a pair of points. For example, in the graphic above, we used the
following command to reflect the square about a line through the given points.

p reflectedabout((2.4cm,-.5),(2.4cm,3cm))
The line about which the path is mirrored. Mirroring does not have to be parallel to an axis.
p reflectedabout((2.4cm,-.5),(2.6cm,3cm))

The rectangle now becomes:

- |

A zscaled specification takes a vector as argument:
p zscaled (2,.5)

The result looks like a combination of scaling and rotation, and conforms to the formula in the
previous table.

Transformations can be defined in terms of a transform matrix. Such a matrix is stored in a
transform variable. For example:

transform t ; t := identity scaled 2cm shifted (4cm,1cm) ;

We use the associated keyword transformed to apply this matrix to a path or picture.

Preliminary Version October 27, 2000 elc Wn

1.3

p transformed t

In this example we’ve taken the identity =~ matrix as starting point but you can use any prede-
fined transformation. The identity matrix is defined in such a way that it scales by a factor of one
in both directions and shifts over the zero-vector.

Transform variables can save quite some typing and may help you to force consistency when
many similar transformations are to be done. Instead of changing the scaling, shifting and other
transformations you can then stick to just changing the one transform variable.

Constructing paths

In most cases, a path will have more points than the few shown here. Take for instance a so called
super ellipse.

These graphics provide a lot of information. In this picture the crosshair in the center is the origin
and the dashed rectangle is the bounding box of the super ellipse. The bounding box specifies
the position of the graphic in relation to the origin as well as its width and height.

In the graphic on the right, you can see the points that make up the closed path as well as the
control points. Each point has a number with the first point numbered zero. Because the path is
closed, the first and last point coincide.

We've used the commands .. and -- as path connecting directives. In the next series of
examples, we will demonstrate a few more. However, before doing that, we define a few points,
using the predefined z variables.

z0
z2

(0.5cm,1.5cm) ; z1
(6.5cm,0.5cm) ; z3

(2.5cm,2.5cm) ;
(2.5cm,1.5cm) ;

Here z1 is a short way of saying (x1,x2) . When a z variable is called, the corresponding x and
y variables are available too. Later we will discuss METAPOST capability to deal with expressions,
which are expressed usin an = instead of := . In this case the expression related to z0 is expanded
into:

z0 = (x0,y0) = (0.5cm,1.5cm) ;

But let’s for this moment forget about their expressive nature and simply see them as points which
we will now connect by straight line segments.

TAPOST Preliminary Version October 27, 2000

z0--z1--z2--z3--cycle

z0..z1..z2..z3..cycle

If we replace the .. by ... , we geta tighter path.

z0...z1...z2...z3...cycle

Since there are.. ,-- ,and ... , it will be no surprise that there is also --- .

T 1
T """ B R e tatatatale , z0---z1---z2---z3---cycle
4 |
|
0 |
2 ? ° |
—— 3 :
! I
S Y
P I I R IR B .2| r
—r - 1 -1 11111

If you compare this graphic with the one using -- the result is the same, but there is a clear
difference in control points. As a result, combining .. with -- or --- makes a big difference.
Here we get a non-smooth connection between the curves and the straight line.

Preliminary Version October 27, 2000 ﬁ;%m %ﬁ

z0..z1..z2--z3..cycle

As you can see in the next graphic, when we use --- , we get a smooth connection between the

straight line and the rest of the curve.

z0..z1..z2---z3..cycle

So far, we have joined the four points as one path. Alternatively, we can constrict subpaths and
connect them using the ampersand symbol, &

z0..z1..z22 & z2..z3..z0 & cycle

So far we have created closed path. Closing is done by cycle . The following path may look
closed but is in fact open.

20..z1..22..23..20

Only a closed path can be filled. The closed alternative looks as follows. We will see many exam-
ples of filled closed path later on.

a_#@#ﬁ Preliminary Version October 27, 2000

z0..z1..z2..z3..z0..cycle

Here the final .. will try to make a smooth connection, but because we already are at the starting
point, this is not possible. However, the cycle command can automatically connects to the first
point. Watch the difference between the previous and the next path.

z0..z1..z2..z3..cycle

It is also possible to combine two paths into one that don’t have common head and tails. First we
define an open path:

T 1

T e e - ===~ 20..21..22
]
To ! l
]
|

z0..z3..z1..cycle

Preliminary Version October 27, 2000 W

With buildcycle we can combine two path into one.

buildcycle(z0..z1..z2 , z0..z3..z1..cycle)

We would refer readers to the METRFONT book and the METAPOST manual for an explanation of the
intricacies of the buildcycle ~ command. It is an extremely complicated command, and there is
just not enough room here to do it justice. We suffice with saying that the paths should cross at
least once before the buildcycle ~ command can craft a combined path from two given paths.
We encourage readers to experiment with this command.

In order to demonstrate another technique of joining paths, we first draw a few strange paths.
The last of these three graphics demonstrates the use of softjoin

T 1

20--z1..22--23

z0..21..22--z3

Watch how softjoin ~ removes a point in the process of smoothing a connection. The smoothness
is accomplished by adapting the control points of the neighbouring points in the appropriate way.

z0--z1 softjoin z2--z3

Preliminary Version October 27, 2000

El OS5T
L[

Once a path is known, you can cut off a slice of it. We will demonstrate a few alternative ways of
doing so, but first we show one more time the path that we take as starting point.

T 1
T i — - z0..z1..z2..z3..cycle

+

This path is made up out of five points, where the cycle duplicates the first point and connects the
loose ends. The first point has number zero.

We can use these points in the subpath command, which takes two arguments, specifying
the range of points to cut of the path specified after the keyword of .

+ subpath(2,4) of (z0..z1..z2..z3..cycle)

The new (sub)path is a new path with its own points that start numbering at zero. The next
graphic shows both the original and the subpath from point 1 upto 3.

z0..z1..z2..z3..cycle
subpath(1,3)

In spite of what you may think, a point is not fixed. This is why in METRPOST a point along a path is
officially called a time. The next example demonstrates that we can specify any time on the path.

Preliminary Version October 27, 2000 elcome o%

z0..z1..z2..z3..cycle
subpath(2.45,3.85)

Often we want to take a slice starting at a specific point. This is provided by cutafter and its
companion cutbefore . Watch out, this time we use a non-cyclic path.

z0..21..z2..23

When you use cutafter and cutbefore it really helps if you know in what direction the path
runs.

(z0..z1..z2..z3) cutafter z2

W Preliminary Version October 27, 2000

(z0..z1..z2..z3) cutbefore z1

2O

Here is a somewhat silly way of accomplishing the same thing, but it is a nice introduction to
METAPOST’s point operation. In order to use this command effectively, you need to know how
many points make up the path.

(20..2z1..22..z3) cutbefore point 2 of (z0..z1..z2..z3)

As with subpath , you can use fractions to specify the time on the path, although the resulting
point is not necessarily positioned linearly along the curve.

. (20..z1..z2..z3) cutbefore point 2.5 of (z0..z1..z2..z3)

If you really want to know the details of where fraction points are positioned, you should read
the METRFONT book and study the source of METAFONT and METAPOST, where you will find the com-
plicated formulas that are used to calculate smooth curves.

Preliminary Version October 27, 2000

z0..z1..cycle

Like any closed path, this path has points where the tangent is horizontal or vertical. Early in this
chapter we mentioned that a pair (or point) can specify a direction or vector. Although any angle
is possible, we often use one of four predefined directions:

right (1, 0)
up (0,1
left (-1, 0)
down (0,-1)

We can use these predefined directions in combination with directionpoint and cutafter
The following command locates the first point on the path that has a tangent that points vertically
upward, and then feeds this point to the cutafter ~ command.

+ (z0..z1..cycle) cutafter directionpoint up of (z0..z1..cycle)
— e -

You are not limited to predefined direction vectors. You can provide a pair denoting a direction.
In the next example we use the following cyclic path:

z0..z1..cycle

Using () is not mandatory but make the expression look less complicated.

TAPOST Preliminary Version October 27, 2000

14

+ (z0..z1..cycle) cutafter directionpoint (1,1) of (z0..z1..cycle)

We will apply these commands in the next chapters, but first we will finish our introduction in
METAPOST. We have seen how a path is constructed and what can be done with it. Now it is time
to demonstrate how such a path is turned into a graphic.

Drawing pictures

Once a path is defined, either directly or as a variable, you can turn it into a picture. You can draw
a path, like we did in the previous examples, or you can fill it, but only if it is closed.

1 1

Drawing is done by applying the draw command to a path, as in:
draw (0cm,1lcm)..(2cm,2cm)..(4cm,0cm)..cycle ;

The rightmost graphic was made with fill
fill (Ocm,1cm)..(2cm,2cm)..(4cm,0cm)..cycle ;

If you try to duplicate this drawing, you will notice that you will get black lines instead of red and
a black fill instead of a gray one. When drawing or filling a path, you can give it a color, use all
kinds of pens, and achieve special effects like dashes or arrows.

Preliminary Version October 27, 2000 W

These two graphics were defined and drawn using the following commands. Later we will explain
how you can set the line width (or penshape in terms of METAPOST).

path p ; p := (0cm,lcm)..(2cm,2cm)..(4cm,0cm)..(2cm,1cm)..cycle ;
drawarrow p withcolor .625red ;
draw p shifted (7cm,0) dashed withdots withcolor .625yellow ;

Once we have drawn one or more paths, we can store them in a picture variable. The straightfor-
ward way to store a picture is to copy it from the current picture:

picture pic ; pic := currentpicture ;

The following command effectively clears the picture memory and allows us to start anew.
currentpicture := nullpicture ;

We can shift, rotate and slant the picture stored in pic as we did with paths. We can say:
draw pic rotated 45 withcolor red ;

A picture can hold multiple paths. You may compare a picture to grouping as provided by draw-
ing applications.

draw (0cm,0cm)--(1cm,1cm) ; draw (1cm,0cm)--(Ocm,1cm) ;
picture pic ; pic := currentpicture ;

draw pic shifted (3cm,0cm) ; draw pic shifted (6cm,0cm) ;
pic := currentpicture ; draw pic shifted (Ocm,2cm) ;

We first draw two paths and store the resulting ‘cross’ in a picture variable. Then we draw this pic-
ture two times, so that we now have three copies of the cross. We store the accumulated drawing
again, so that after duplication, we finally get six crosses.

N N N
7N N N

\N N \N
7N 7N N

You can often follow several routes to reach the same solution. Consider for instance the following
graphic.

fill (0,0)--(ww,0)--(ww,hh)--(w,hh)--(w,h)--(0,h)--cycle :
fill (ww,0)--(w,0)--(w,hh)--cycle ;

ETAPOST Preliminary Version October 27, 2000

The points that are used to construct the paths are defined using the constants w, h, wwand hh.
These are defined as follows:

w = 4cm ; h := 2cm ; ww = 1cm ; hh = 1.5cm ;

In this case we draw two shapes that leave part of the rectangle uncovered. If you have a back-
ground, this technique allows the background to ‘show through’ the graphic.

A not uncommon practice when making complicated graphics is to use unfill operations. Since
METAPOST provides one, let us see what happens if we apply this command.

fill (0,0)--(w,0)--(w,h)--(0,h)--cycle ;
unfill (ww,0)--(w,hh)--(ww,hh)--cycle ;

This does not always give the desired effect, because MeTAPOST’s unfill is not really an unfill,
but a fill with color background . Since this color is white by default, we get what we just
showed. So, if we set background to black , using background := black , we get:

Of course, you can set the variable background to a different color, but this does not hide the
fact that MeTAPOST lacks a real unfill operation.

Since we don’t consider this unfill a suitable operator, you may wonder how we achieved the
above result.

Preliminary Version October 27, 2000 w

fill (0,0)--(0,h)--(w,h)--(w,0)--(ww,0)--(w,hh)--(ww,hh)--
(ww,0)--cycle ;

This feature depends on the POSTSCRIPT way of filling closed paths, which comes down to filling
either the left or the right hand side of a curve. The following alternative works too.

fill (0,0)--(0,h)--(w,h)--(w,hh)--(ww,hh)--(ww,0)--(w,hh)--
(w,0)--cycle ;

The next alternative will fail. This has to do with the change in direction at point (0,0) halfway
through the path. Sometimes changing direction can give curious but desirable effects, but here
it brings no good.

fill (0,0)--(0,h)--(w,h)--(w,0)--(0,0)--(ww,0)--(ww,hh)--
(w,hh)--(ww,0)--cycle ;

This path fails because of the way POSTSCRIPT implements its fill operator. More details on how
POSTSCRIPT interpreters handle fills can be found in the reference manuals.

Some of the operations we have seen are hard coded into METAPOST and are called primitives.
Others are defined as macros, that is, a sequence of METAPOST commands. Since they are used
often, you may expect draw and fill to be primitives, but they are not. They are macros defined
in terms of primitives.

Given a path pat , you can consider a draw to be defined in terms of:

addto currentpicture doublepath pat
The fill command on the other hand is defined as:

addto currentpicture contour pat

% Preliminary Version October 27, 2000

1.5

Both macros are actually a bit more complicated but this is mainly due to the fact that they also
have to deal with attributes like the pen and color they draw with.

You can use doublepath and contour directly, but we will use draw and fill ~ whenever
possible.

Given a picture pic , the following code is valid:

addto currentpicture also pic

You can add pictures to existing picture variables, where currentpicture is the picture that is
flushed to the output file. Watch the subtle difference between adding a doublepath , contour
or picture.

Variables

At this point you may have noted that METAPOST is a programming language. Contrary to some
of today’s languages, METAPOST is a simple and clean language. Actually, it is a macro language.
Although MeTAPOST and TeX are a couple, the languages differ in many aspects. If you are using
both, you will sometimes wish that features present in one would be available in the other. When
using both languages, in the end you will understand why the conceptual differences make sense.

Being written in PASCAL, it will be no surprise that METAPOST has some PASCAL-like features,
although some may also recognize features from ALGOL6S in it.

First there is the concept of variables and assignments. There are several data types, some of
which we already have seen.

numeric real number in the range —4096. .. + 4096
boolean a variable that takes one of two states: true or false

pair point or vector in 2-dimensional space

path a piecewise collection of curves and line segments
picture collection of stroked or filled paths

string sequence of characters, like "metapost”

There are too additional types, transform and pen, but we will not discuss these in depth.

transform transformation vector with six elements
pen pen specification

You can achieve interesting effects by using pens with certain shapes. For the moment you may
consider a pen to be a path itself that is applied to the path that is drawn.

The numeric data type is used so often that it is the default type of any non declared variable.
This means that

n := 10 ;
is the same as
numeric n ; n = 10 ;

When writing collections of macros, it makes sense to use the second method, because you can
never be sure if n isn't already declared as a picture variable, and assigning a numeric to a picture
variable is not permitted.

METAR

Preliminary Version October 27, 2000 elc 3[?1

1.6

Because we often deal with collections of objects, such as a series of points, all variables can be
organized in arrays. For instance:

numeric nf] ; n[3] := 10 ; n[5] = 13 ;

An array is a collection of variables of the same type that are assigned and accessed by indexing
the variable name, as in n[3] := 5 . Multi-dimensional arrays are also supported. Since you
need a bit of imagination to find an application for 5-dimensional arrays, we restrict ourselves to
a two—dimensional example.

numeric n[[] ; n[2][3] := 10 ;

A nice feature is that the bounds of such an array an array need not be set beforehand. This also
means that each cell that you access is reported as unknown unless you have assigned it a value.

Conditions

The existence of boolean variables indicates the presence of conditionals. Indeed, the general form
of METAPOST's if, then, else conditional follows.

if n=10 : draw p ; else : draw q ; fi ;

Watch the colons after the if and else clause. They may not be omitted. The semi-colons on the
other hand, are optional and depend on the context. You may say things like:

draw if n=10 : p ; else : q ; fi ;
Here we can omit a few semi-colons:
draw if n=10 : p else : q fi withcolor red ;

Adding semi-colons after p and g will definitely result in an error message, since the semi-colon
ends the draw operation and withcolor red becomes an isolated piece of nonsense.

There is no case statement available, but for most purposes, the following extension is ade-
quate:

draw p withcolor if n<10 : red elseif n=10 : green else : blue fi ;
There is a wide repertoire of boolean tests available.

if picture p :
if known n :
if odd i
if cycle q:
Of course, you can use and, or , not , and () to construct very advanced boolean expressions.

If you have a bit of programming experience, you will appreciate the extensive support of condi-
tionals in METAPOST.

TAPOST Preliminary Version October 27, 2000

1.7

Loops

Yet another programming concept present in METRPOST is the loop statement, the familiar “for
loop’ of all programming languages.

for i=0 step 2 until 20 :
draw (0,i) ;
endfor ;

As explained convincingly in Niklaus Wirth’s book on algorithms and datastructures, the for loop
is the natural companion to an array. Given an array of length n, you can construct a path out of
the points that make up the array.

draw for i=0 step 1 until n-1 : p[i] .. endfor p[n] ;

If the step increment is not explicitly stated, it has an assumed value of 1. We can shorten the
previous loop construct as follows:

draw for i=0 upto n-1 : p[i] .. endfor p[n] ;
After seeing if in action, the following for loop will be no surprise:
draw origin for i=0 step 10 until 100 : ..{down}(i,0) endfor ;

This gives the zig-zag curve:
L

You can use a loop to iterate over a list of objects. A simple 3—step iteration is:

for i=p,q,r :
fill i withcolor .8white ;
draw i withcolor red ;
endfor ;

Using for in this manner can sometimes save a bit of typing. The list can contain any expression,
and they may be of different types.

In the previous example the i is an independent variable, local to the for loop. If you want to
change the loop variable itself, you need to use forsuffixes . In the next loop the paths p, ¢
and r are all shifted.

forsuffixes i = p, q, r :
i = i shifted (3cm,2cm) ;
endfor ;

Sometimes you may want to loop forever until a specific condition occurs. For this, METAPOST
provides a special looping mechanism:

numeric done[][], i, j, n ; n = 0 ;

forever :
i := round(uniformdeviate(10)) ; j := round(uniformdeviate(2)) ;
if unknown doneli][j] :

METAPOST

Preliminary Version October 27, 2000 elc 31?1

1.8

drawdot (i*cm,j*cm) ; n := n + 1 ; done[i][j] := n ;
fi ;
exitif n = 10 ;
endfor ;

Here we remain in the loop until we have 10 points placed. We use an array to keep track of placed
points. The MeTAPOST macro uniformdeviate(n) returns a random number between 0 and n
and the round command is used to move the result toward the nearest integer. The unknown
primitive allows us to test if the array element already exists, otherwise we exit the conditional.
This saves a bit of computational time as each point is drawn and indexed only once.

The loop terminator exitif ~ and its companion exitunless ~ can be used in for , forsuffixes
and forever

Macros

In the previous section we introduced upto . Actually this is not part of the built in syntax, but a
sort of shortcut, defined by:

def upto = step 1 until enddef ;

You just saw a macro definition where upto is the name of the macro. The counterpart of upto
is downto . Whenever you use upto , it is replaced by step 1 until . This replacement is called
expansion.

There are several types of macros. A primary macro is used to define your own operators. For
example:

primarydef p doublescaled s =
p xscaled (s/2) yscaled (s*2)
enddef ;

Once defined, the doublescaled = macro is implemented as in the following example:
draw somepath doublescaled 2cm withcolor red ;

When this command is executed, the macro is expanded. Thus, the actual content of this com-
mand becomes:

draw somepath xscaled lcm yscaled 4cm withcolor red ;

If we had added a semi—colon after (s*2) , we could not have set the color, because the semicolon
ends the statement. The draw expects a path, so the macro can best return one.
A macro can take one or more arguments, as in:

TAPOST Preliminary Version October 27, 2000

def drawrandomscaledpath (expr p, s) =
draw p xscaled (s/2) yscaled (s*2) ;
enddef ;

When using this macro, it is expected that you will pass it two parameters, the first being a path,
the second a numeric scale factor.

drawrandomscaledpath(fullsquare, 3cm) ;

Sometimes we want to return a value from a macro. In that case we must make sure that any
calculations don't interfere with the expectations. Consider:

vardef randomscaledpath(expr p, s) =
numeric r ; r := round(1 + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)

enddef ;

Because we want to use the same value of r twice, we have to use an intermediate variable. By
using a vardef we hide everything but the last statement. It is important to distinguish def
macros from those defined with vardef . In the latter case, vardef macros are not a simple
expansion and replacement. Rather, vardef macros return the value of their last statement. In
the case of the randomscaledpath ~ macro, a path is returned. This macro is used in the following
manner:

path mypath ; mypath := randomscaledpath(unitsquare,4cm) ;

Note that we send randomscaledpath a path (unitsquare) and a scaling factor (4cm). The
macro returns a scaled path which is then stored in the path variable mypath .
The following argument types are accepted:

expr something that can be assigned to a variable
text arbitrary METAPOST code ending with a ;
suffix a variable bound to another variable

An expression is passed by value. This means that in the body of the macro, a copy is used and
the original is left untouched. On the other hand, any change to a variable passed as suffix is also
applied to the original.

Local variables must be handled in a special manner, since they may conflict with variables
used elsewhere. Thisis because all variables are global by default. The way out of this problem
is using grouping in combination with saving variables. The use of grouping is not restricted to
macros and may be used anywhere in your code. Variables saved and declared in a group are
local to that group. Once the group is exited the variables cease to exist. Grouping is not bound
to macros and may be used anywhere in your code.

vardef randomscaledpath(expr p, s) =
begingroup ; save r ; numeric r ;
r := round(1 + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)
endgroup
enddef ;

Preliminary Version October 27, 2000 elc Wn

ETAP

1.9

In this particular case, we could have omitted the grouping, since vardef macros are always
grouped automatically. Therefore, we could have defined the macro as:

vardef randomscaledpath(expr p, s) =
save r ; numeric r ; r := round(1 + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)

enddef ;

The command save r declares that the variable r is local to the macro. Thus, any changes to
the (new) numeric variable r are local and will not interfere with a variable r defined outside the
macro. This is important to understand, as variables outside the macro are global and accessible
to the code within the body of the macro

Macro definitions may be nested, but since most METAPOST code is relatively simple, it is seldom
needed. Nesting is discouraged as it makes your code less readable.

Besides def and vardef ,meTtAPosT also provides the classifiers primarydef , secondarydef
and tertiarydef .. You can use these classifiers to define macros like those provided by META-
POST itself:

primarydef ~ x mod y = ... enddef ;
secondarydef p intersectionpoint g = ... enddef ;
tertiarydef p softjoin g = ... enddef ;
A primary macro acts like the binary operators * or scaled and shifted . Secondary macros

are like +, - and logical or , and take less precedence. The tertiary operators like < or the path and
string concatenation operator & have tertiary macros as companions. More details can be found
in the METAFONT book. When it comes to taking precedence, METAPOST tries to be as natural as
possible, in the sense that you need to provide as few () ’s as possible. When in doubt, or when
surprised by unexpected results, use parentheses.

Pens

When drawing, three attributes can be applied to it: a dashpattern, a pen and/or, a color. You
may consider an arrowhead an attribute, but actually it is just an additional drawing, appended
to the path.

The (predefined) pencircle attribute looks like:

withpen pencircle

where pencircle is a special kind of path, stored in a pen variable. Like any path, you can
transform it. You can scale it equally in all directions:

withpen pencircle scaled 1mm
You can also provide unequal scales, creating an elliptically shaped and rotated pen.
withpen pencircle xscaled 2mm yscaled 4mm rotated 30

In the following graphic, the circle in the center is drawn without any option, which means that
the default pen is used, being a pencircle with a radius of half a base point. The other three circles
are drawn with different pen specifications.

TAPOST Preliminary Version October 27, 2000

If you forget about the colors, the METAPOST code to achieve this is as follows.

path p ; p := fullcircle scaled 1cm ;

draw p ;

draw p scaled 2 withpen pencircle ;

draw p scaled 3 withpen pencircle scaled 1mm ;

draw p scaled 4 withpen pencircle xscaled 2mm yscaled 4mm rotated 30 ;

If this were the only way of specifying a pen, we would be faced with a considerable amount of
typing, particularly in situations where we use pens similar to the fourth specification above. For
that reason, METAPOST supports the concept of a current pen. The best way to set this pen is to use
the pickup macro.

pickup pencircle xscaled 2mm yscaled 4mm rotated 30 ;

This macro also stores some characteristics of the pen in variables, so that they can be used in (the
more complicated) calculations that are involved in situations like drawing font-like graphics.

If we substitute pencircle by pensquare , we get a different kind of shapes. In the non
rotated pens, the top, bottom, left and right parts of the curve are thinner.

You should look at pens in the way an artist does. He follows a shape and in doing so he or she
twists the pen (and thereby the nib) and puts more or less pressure on it.

The chance that you have an appropriate pen laying at your desk is not so large, but you can
simulate the following METAPOST’s pen by taking two pencils and holding them together in one
hand. If you position them in a 45 degrees angle, and draw a circle, you will get something like:

Preliminary Version October 27, 2000 elc Wn

ETE

A=

If you take a calligraphic pen with a thin edge of .5cm, you will get:

You can define such a pen yourself:

path p ; p := fullcircle xscaled 2cm yscaled 3cm ;
pen doublepen ; doublepen := makepen ((0,0)--(.3cm,.3cm)) ;
pickup doublepen ; draw p ;

Here we define a new pen using the pen command. Then we define a path, and make a pen out
of it using the makepen macro. The path should be a relatively simple one, otherwise METRPOST
will complain.

You can use makepen with the previously introduced withpen :

draw p withpen makepen ((0,0)--(.3cm,.3cm)) ;
and pickup :
pickup makepen ((0,0)--(.3cm,.3cm)) ; draw p ;

You can use makepen and makepath to convert paths into pens and vice versa.

Pens are very important when defining fonts, which is why METAFONT was created. Since META-
PosT has a slightly different audience, it lacks some features in this area, but offers a few others
instead. Nevertheless, one can try to design a font using MetAPosT. Of course, pens are among the
designers best kept secrets. But even then, not every O is a nice looking one.

TAPOST Preliminary Version October 27, 2000

1.10

Colors

111

So far, we have seen some colors in graphics. It must be said that MeTAPOST color model is not that
advanced, although playing with colors in the METRPOST way can be fun. In later chapters we will
discuss some extensions that provide shading.

Colors are defined as vectors with three components: a red, green and blue one. Like pens,
colors have their with—-command:

withcolor (.4,.5.,6)
You can define color variables, like:
color darkred ; darkred := (.625,0.0) ;
You can now use this color as:
withcolor darkred
Given that red is already defined, we also could have said:
withcolor .625red

Because for METRPOST colors are just vectors, you can do things similar to points. A color halfway
red and green is therefore accomplished with:

withcolor .5[red,green]

Since only the RGB color space is supported, this is about all we can tell about colors for this
moment. Later we will discuss some nasty details.

Dashes

A dash pattern is a simple picture that is build out of straight lines. Any slightly more complicated
picture will be reduced to straight lines and a real complicated one is rejected, and in this respect
METAPOST considers a circle to be a complicated path.

The next example demonstrates how to get a dashed line. First we built picture p, that we
apply to a path. Here we use a straight path, but dashing can be aplied to any path.

picture p ; p := nullpicture ;
addto p doublepath ((0,0)--(3mm,3mm)) shifted (6mm,6mm) ;
draw (0,0)--(10cm,0) dashed p withpen pencircle scaled 1mm ;

This way of defining a pattern is not that handy, especially if you start wondering why you need
to supply a slanted path. Therefore, METAPOST provides a more convenient mechanism to define a
pattern.

picture p ; p := dashpattern(on 3mm off 3mm) ;
draw (0,0)--(10cm,0) dashed p withpen pencircle scaled 1mm ;

EITH

=

Preliminary Version October 27, 2000 Elc 31?1

112

Most dashpatterns can be defined in terms of on and off. This simple on—off dashpattern is pre-
defined as picture evenly . Because this is a picture, you can (and often need to) scale it.

draw (0,0)--(10cm,0) dashed (evenly scaled 1mm)
withpen pencircle scaled 1mm ;

Opposite to a defaultpen, there are no default color and default dash pattern. The macro
drawoptions provides you a way to set the default attributes.

drawoptions(withcolor red) ;

Text

Since METAFONT is meant for designing fonts, it will be no surprise that the only means for includ-
ing text are those that permit you to add labels to positions for the sole purpose of documentation.
Because METAPOST is derived from METAFONT it provides labels too, but in order to let users add
more sophisticated text, like a math formula, to a graphic, it also provides an interface to TgX.
Because we will spent a whole chapter on text in METARPOST we will limit ourselves to just some
basics.

pair a ; a := (3cm,3cm) ;
label.top("top",a) ; label.bot("bot",a) ;
label.Ift("Ift",a) ; label.rt ("rt" ,a) ;

These four labels show up at the position specified after the dot. If we don't specify a position, we
will get a centered label.

to
pI’t

it bot

The command dotlabel also typesets a point as dot, and has the same arguments but swapped,
which makes using these commands kind of trial and error.

pair a ; a := (3cm,3cm) ;
dotlabel.top("top",a) ; dotlabel.bot("bot",a) ;
dotlabel Ift("Ift",a) ; dotlabel.rt ("rt" ,a) ;

top
Ift rt
bot

The command thelabel returns a picture with the label, so that you can say:

pair a ; a := (3cm,3cm) ; pickup pencircle scaled 1mm ;
drawdot a withcolor .625yellow ;
draw thelabel.rt("the right way",a) withcolor .625red ;

You can of course rotate, slant and manipulate such a label picture like any other picture.

«the right way

TAPOST Preliminary Version October 27, 2000

&

The font can be specified in the string defaultfont and the scale in defaultscale . Labels are
defined using the low level operator infont . The next statement returns a picture:

draw "this string will become a sequence of glyphs (MP)"
infont defaultfont scaled defaultscale ;

The infont operator is not that clever and does not apply kerning. Also, typesetting math or
accented characters is not supported. The way out of this problem is using btex —etex .

draw btex this string will become a sequence of glyphs (\TeX) etex ;
The difference between those two methods is shown below:

this string will become a sequence of glyphs (MP)
this string will become a sequence of glyphs (TgX)

The second line is typeset by TgX and is properly kerned. As we may expect from TgX, the \TeX
command becomes the Tgx logo.

Instead of passing strings to infont , you can also pass characters, using char , for example
char(73) . When you use infont you normally expect the font to be ASCII conforming. If this
is not the case, you must make sure that the encoding of the font that you use matches your
expectations. In this respect the TzX based method is more safe, because when set up properly, TeX
normally knows what it is dealing with.

113 Linear equations

In the previous sections, we used the assignment operator := to assign a value to a variable.
Although for most of the graphics that we will present in later chapters, an assignment is appro-
priate, specifying a graphic in terms of expressions is not only more flexible, but also more in the
spirit of the designers of METAFONT and METAPOST.

The MeTAFONT book and METARPOST manual provide lots of examples, some of which involve
math that we don’t consider to belong to everyones repertoire. But, even for non mathematicians
using expressions can be a rewarding challenge.

The next introduction to linear equations is based on my first experiences with METAPOST and
involves a mathematical problem someone chalenged me with. It did not take me much time to
see that a sort of graphical proof was far more easy than some proof with a lot of sin(¢this) and
cos(that) and long forgotten formulas.

I was expected to prove that the angle between the lines connecting the mid points of four
squares drawn upon the four sides of a box is ninety degrees (see figure 1.1).

Because we have seen most of the METARPOST commands and features, we will package the
solution in a macro. Also, because this macro has an educational purpose, we will add some
labels to the points that we use. However, generating these labels is optional and controlled by a
boolean:

boolean show_labels ; show_labels := false ;

The macro accepts four pair of coordinates that determine the central four sided shape. All of
them are expressions.

Preliminary Version October 27, 2000 elc 31?13 0 METAPOST

Z23

Z3a
|
Z13

1
Z12

Zn ! Z22

1
Z42 \
Z1a

| ZS
Z11 \

Zn

Z43

Zag
Figure 1.1 The problem.
def draw_problem (expr n, p, g, r, S)

beginfig(n) ;

We did not yet discuss the beginfig
graphic is surrounded by beginfig

macro. In a METAPOST file, you can put many graphics. Each
and endfig
the prefix of the output file.

. The number, here the variable n, will become
Because we want to call this macro more than once, we have to save the locally used values.
Instead of declaring local variables, one can hide their use for the outside world. In most cases

variables behave global. If we don’t save them, the next call will lead to errors due to conflicting

equations. We can omit the grouping commands, because we wrap the graphic in a figure, and
figures are grouped already.

We will use the predefined z variable, or actually a macro that returns a variable. This variable
has two components, an X and y coordinate. So, we don’t save z, but the related variables X and
y.

save X, ¥, a, b, ¢, d, e f, g h

We draw four squares and instead of hard coding their corner points, we use METAPOST’s equation

solver. Watch the use of = which means that we just state dependencies. So, where in languages

like PERL the equal sign is used in assignments, in METAPOST it is used to express an relationship.

TAPO

Preliminary Version October 27, 2000

In a first version, we will just name a lot of simple relations, as we can read them from a sketch
drawn on paper.

z11 = z42 = p ; z21 = 212 = q ;
z31 = 722 =r ; z41 = 232 = s ;

a =x12 - x11 ; b = y12 - y11 ;

C = x22 - x21 ; d = y22 - y21 ;

e = x32 - x31 ; f =y32 - y31 ;

g =x42 - x41 ; h = y42 - y41 ;

z11 = (x11, yl1) ;212 = (x12, y12) X
z13 = (x12-b, yl2+a) ; z14 = (x11-b, yll+a) ;
z21 = (x21, y21) ; 222 = (x22, y22) ;
z23 = (x22-d, y22+c) ; z24 = (x21-d, y21+c) ;
z31 = (x31, y31) ; 232 = (x32, y32) ;
z33 = (x32-f, y32+e) ; z34 = (x31-f, y3l+e) ;
z41 = (x41, y41) ; 242 = (x42, y42) ;
z43 = (x42-h, y42+q) ; z44 = (x41-h, y4l+q) ;

The line that involve the pairs a upto h, can be written in a more compact way.

(a,b) = z12 - 711 ; (c,d) = z22 - z21 ;
(e,fy = z32 - 231 ; (g9,h) = z42 - z41 ;

Now we can draw the lines, but first we choose ourselves an acceptable line thickness.
pickup pencircle scaled .5pt ;
The lines are draw with the following code:

draw z11--z12--z13--z14--cycle ; draw z11--z13 ; draw z12--z14 ;
draw z21--z22--z23--z24--cycle ; draw z21--z23 ; draw z22--z24 ;
draw z31--z32--z33--z34--cycle ; draw z31--z33 ; draw z32--z34 ;
draw z41--z42--z43--z44--cycle ; draw z41--z43 ; draw z42--z44 ;

The mid points can be calculated by MeTRPOST too. The next lines define that those points are
positioned halfway the extremes.

z1
z3

0.5[z11,z13] ; z2
0.5[z31,233] ; z4

0.5[z21,z23] ;
0.5[z41,z43] ;

To make them stand out, we choose an alternative linestyle:

draw z1--z3 dashed evenly ;
draw z2--z4 dashed evenly ;

Just to be complete, we add a symbol that marks the right angle. First we determine the common
point of the two lines, that lays at whatever point METAPOST finds suitable.

METE

AP

Preliminary Version October 27, 2000 elc 31?1

40

z0 = whatever[z1,z3] = whatever[z2,z4] ;
mark_rt_angle (z1, z0, z2) ; % z2 is not used at all

So far most equations were rather simple, and in order to solve them, METAPOST did not have to
work real hard. The only boundary condition is that in order to find a solution, METRPOST must be
able to solve all dependencies.

The previous lines, showing the whatever variable, is a typical example of a situation where
METAPOST has to be more clever. The whatever variable is defined as a sort of anonymous vari-
able, and it is left to METAPOST to make sure that it’s solved somehow. We will never really use
it.

The macro mark_rt_angle draws the angle symbol and later we will see how it is defined.
First we draw the labels. Unfortunately we cannot package btex —etex into a macro, because it
is processed in a rather special way. Therefore, we have to put a lot of code here.

if show_labels:
We use a bigger pen for drawing the dots.
pickup pencircle scaled 5pt ;
The macro dotlabel draws a dot and places the typeset label.

dotlabel.lift(btex $Z {11}$ etex, z11) ;
dotlabel.ulft(btex Z_{12} etex, z12) ;
dotlabel.ulft(btex Z_{13} etex, z13) ;
dotlabel.lift(btex Z_{14} etex, z14) ;

dotlabel.Irt (btex Z_{21} etex, z21) ;
dotlabel.lift(btex $Z {22}$ etex, z22) ;

dotlabel.urt (btex Z_{23} etex, z23) ;
dotlabel.ulft(btex Z_{24} etex, z24) ;

dotlabel.urt (btex Z_{31} etex, z31) ;
dotlabel.ulft(btex Z_{32} etex, z32) ;
dotlabel.urt (btex Z_{33} etex, z33) ;
dotlabel.urt (btex Z_{34} etex, z34) ;

dotlabel.lrt (btex $Z {41}$ etex, z41) ;
dotlabel.urt (btex Z_{42} etex, z42) ;
dotlabel.llft(btex $Z {43}$ etex, z43) ;

dotlabel.Irt (btex Z_{44} etex, z44) ;

dotlabel.urt (btex Z_{0} etex, z0) ;
dotlabel.lft (btex Z_{1} etex, z1) ;
dotlabel.top (btex Z_{2} etex, z2) ;
dotlabel.rt (btex Z_{3} etex, z3) ;
dotlabel.bot (btex Z_{4} etex, z4) ;

Now we can end the condition that enables us to hide the labels and the macro. Watch how we
also end the figure.

fi ;

Welcome 6 METAPOST Preliminary Version October 27, 2000

41

endfig ;
enddef ;

The definition of mark_rt_angle is copied from the METAPOST manual and shows how compact
a definition can be.

angle_radius = 10pt ;

def mark_rt_angle (expr a, b, ¢) =
draw ((1,0)--(1,1)--(0,1))
zscaled (angle_radius*unitvector(a-b))
shifted b
enddef ;

We are going to draw a lot of pictures, so we define an extra macro. This time we hard—code some
values. The fractionsi and j are responsible for the visual iteration process.

def do_draw_problem (expr n, i, j) =
draw_problem (4000+n,
(400pt,400pt),(300pt,600pt)
i[(300pt,600pt),(550pt,800pt)] ,
j[(400pt,400pt),(550pt,500pt)]) ;
enddef ;

The beginfig and endfig macros package the code into a graphic capsule which is output to
the resulting file. We will spend some more words on that later.

Of course we could have used some loop here, but defining an auxiliary macros probably takes
more time than simply calling the drawing macro directly. The results are shown on a separate
page.

It does not need that much imagination to see the four sided problem converges to a three
sided one, which itself converges to a two sided one. In the two sided alternative it’s not that hard
to prove that the angle is indeed 90 degrees.

do_draw_problem(40, 1.0, 1.0) ; do_draw_problem(41, 0.8, 1.0) ;
do_draw_problem(42, 0.6, 1.0) ; do_draw_problem(43, 0.4, 1.0) ;
do_draw_problem(44, 0.2, 1.0) ; do_draw_problem(45, 0.0, 1.0) ;

do_draw_problem(30, 0.0, 1.0) ; do_draw_problem(31, 0.0, 0.8) ;
do_draw_problem(32, 0.0, 0.6) ; do_draw_problem(33, 0.0, 0.4) ;
do_draw_problem(34, 0.0, 0.2) ; do_draw_problem(35, 0.0, 0.0) ;

We already showed a picture with coordinates. This picture was generated using some alternative
coordinates.

def do_draw_problem (expr n, i, j) =
draw_problem (4000+n,
(400pt,400pt),(400pt,600pt)
i[(400pt,600pt),(550pt,600pt)] ,
j[(400pt,400pt),(550pt,400pt)]) ;
enddef ;

Preliminary Version October 27, 2000 Welcome to METRPOST

A EANN
P B B

NN O'
I <
P

show_labels = true ;

do_draw_problem (50, 0.6, 1.0) ;

As soon as you can see a clear pattern in some code, it’s time to consider using loops. In the
previous code, we used semi indexes, like 12 in z12. In this case 12 does reflect something
related to square 1 and 2, but in reality the 12 is just twelve. This does not harm our expressions.
A different approach is to use a two dimensional array. In doing so, we can access the variables
more easily using loops. If we omit the labels, and angle macro, the previously defined macro can

be reduced a lot.

def draw_problem (expr n, p, g, r, S)
beginfig(n) ;
save X, Y ;

z[1][1] = p ; z[2][1] = q ; Z[3][1]
for i=1 upto 4 :
z[i|[1]
z[i][2]
z[i][3]
z[i][4]
z[i] = 0.5[z[i|[1].z[i][3]] ;
endfor ;

z[0] =

(x[ili2]yfiiz))

whatever[z[1],z[3]] =
pickup pencircle scaled .5pt ;

for i=1 upto 4 :

% number and 4 positions

r; z[4][1] = s ;

OONALYINAD = z[if i=1: 4 else: i-1 fi][2] ;

(X[2]-y[i[2]+y L[], yI[2]+x(i][2]-x[][1]) ;
(XONL]-y[[2]+yl0[], YO +xTR]-x(00LD)

whatever[z[2],z[4]] ;

draw z[i][1]--z[i][2]--z[i][3]--z[i][4]--cycle ;
draw z[i][1]--z[i][3] ; draw z[i][2]--z[i][4] ;

if i<3 :
endfor ;

draw ((1,0)--(1,1)--(0,1))

zscaled (unitvector(z[1]-z[0])*10pt)

shifted z[0] ;
endfig ;
enddef ;

draw z[i]--z[i+2] dashed evenly fi ;

I think that we could argue quite some time about the readability of this code. If you start from
a sketch, and the series of equations does a good job, there is hardly any need for such improve-
ments to the code. On the other hand, there are situations where the simplified (reduced) case
can be extended more easilly, for instance to handle 10 points instead of 4. It all depends on how

you want to spend your free hours.

Preliminary Version October 27, 2000

ETAPOST

1.14

Clipping

For applications that do something with a drawing, for instance TgX embedding a graphic in a
text flow, it is important to know the dimensions of the graphic. The maximum dimensions of a
graphic are specified by its bounding box.

A bounding box is defined by its lower left and upper right corners. If you open the POSTSCRIPT
file produced by METAPOST, you may find lines like:

%%BoundingBox: -46 -46 46 46
or, when supported,
%%HiResBoundingBox: -45.35432 -45.35432 45.35432 45.35432

The first two numbers define the lower left corner and the last two numbers the upper right corner.
From these values, you can calculate the width and height of the graphic.

A graphic may extend beyond its bounding box. It depends on the application that uses the
graphic, if that part of the graphic is shown.

In METAPOST you can ask for the all four points of the bounding box of a path or picture as well
as the center.

llcorner p lower left corner
Ircorner p lower right corner
urcorner p upper right corner
ulcorner p upper left corner
center p the center point

You can construct the bounding box of path p out of the four points mentioned:
llcorner p -- Ircorner p -- urcorner p -- ulcorner p -- cycle

You can set the bounding box of a picture, which can be handy if you want to build a picture in
steps and show the intermediate results using the same dimensions as the final picture, or when
you want to show only a small piece.

fill fullcircle scaled 2cm withcolor .625yellow ;
setbounds currentpicture to unitsquare scaled 1lcm ;
draw unitsquare scaled 1cm withcolor .625red ;

Here, we set the bounding box with the command setbounds , which takes a path.

TAPOST Preliminary Version October 27, 2000

1.15

raphic extends beyond the bounding box, but the bounding box determines the placement
nd therefore the spacing around the graphic. We can get rid of the artwork outside the bounding
box by clipping it.

fill fullcircle scaled 2cm withcolor .625yellow ;
clip currentpicture to unitsquare scaled 1lcm ;

The resulting picture is just as large but shows less of the picture.

Cutting and pasting

When enhancing or building a graphic, often parts of already constructed paths are needed. The
subpath , cutbefore and cutafter operators can be used to split paths in smaller pieces. In
order to do so, we must know where we are on the path that is involved. For this we use points
on the path. Unfortunately we can only use these points when we know where they are located.
In this section we will combine some techniques discussed in previous sections. We will define a
few macros, manipulate some paths and draw curves and points.

° 2 °
3 1
° 4 8§ 0
5 7
° 6 °
[]
This circle is drawn by scaling the predefined path fullcircle . This path is constructed using

8 points. As you can see, these points are not distributed equally along the path. In the following
graphic, the second and third point of the curve are colored red, and point 2.5 is colored yellow.
Point 0 is marked in black. This point is positioned halfway point 2 and 3.

It is clear that, unless you know exactly how the path is constructed, other methods should be
available. A specific point on a path is accessed by point ... of , but the next example demon-
strates two more alternatives.

Preliminary Version October 27, 2000 W

46

path p ; p := fullcircle scaled 3cm xscaled 2 ;
pickup pencircle scaled 5mm ;

draw p withcolor .625white ;
draw point 3 of p withcolor .625red ;
draw point .6 along p withcolor .625yellow ;
draw point 3cm on p;

So, in addition to on to specify a point by number (in MeTAPOST terminology called time), we have
along to specify a point as fraction of the path, and on to specify the position in a dimension.

The on and along operators are macros and can be defined as:

primarydef len on pat =
(arctime len of pat) of pat
enddef ;

primarydef pct along pat =
(arctime (pct * (arclength pat)) of pat) of pat
enddef ;

These macros introduce two new primitives, arctime and arclength . While arctime returns
a number denoting the time of the point on the path, arclength returns a dimension.

“When mathematicians draw parametric curves, they frequently need to indicate the direction
of motion. I often have need of a little macro that will put an arrow of requested length, anchored
at a point on the curve, and bending with the curve in the direction of motion.”

When David Arnold asked me how this could be achieved, the fact that a length was requested
meant that the solution should be sought in using the primitives and macros we introduced a few
paragraphs before. Say that we want to call for such an arrow as follows.

path p ; p := fullcircle scaled 3cm ;
pair g ; q = point .4 along p ;
pickup pencircle scaled 2mm ;

draw p withcolor .625white ;
drawarrow somearrow(p,q,2cm) withcolor .625red ;
draw q withcolor .625yellow ;

Because we want to follow the path, we need to construct the arrow from this path. Therefore, we
first reduce the path by cutting off the part before the given point. Next we cut off the end of the
resulting path so that we keep a slice that has the length that was asked for. Since we can only cut
at points, we determine this point using the arctime primitive.

Wel€ome to METAPOST Preliminary Version October 27, 2000

vardef somearrow (expr pat, loc, len) =
save p ; path p ; p := pat cutbefore loc ;
(p cutafter point (arctime len of p) of p)
enddef ;

By using a vardef we hide the intermediate assignments. Such vardef is automatically sur-
rounded by begingroup and endgroup , so the save is local to this macro. When processed,
this code produces the following graphic:

This graphic shows that we need a bit more control over the exact position of the arrow. It would
be nice if we could start the arrow at the point, or end there, or center the arrow around the point.
Therefore, the real implementation is a bit more advanced.

vardef pointarrow (expr pat, loc, len, off) =
save |, r, s, t ; path I, r ; numeric s ; pair t ;
t := if pair loc : loc else : point loc along pat fi ;
s = len/2 - off ; if s<=0 : s := 0 elseif s>len : s = len fi ;
r := pat cutbefore t ;
r ;= (r cutafter point (arctime s of r) of r) ;
s = len/2 + off ; if s<=0 : s := 0 elseif s>len : s ;= len fi ;
| := reverse (pat cutafter t) ;
| := (reverse (I cutafter point (arctime s of I) of I)) ;

(I..r)
enddef ;

This code fragment also demonstrates how we can treat the loc argument as pair (coordinates) or
fraction of the path. We calculate the piece of path before and after the given point separately and
paste them afterwards as (I..r) . By adding braces we can manipulate the path in expressions
without the danger of handling r alone.

We can now implement left, center and right arrows by providing this macro the right param-
eters. The offset (the fourth parameter), is responsible for a backward displacement. This may
seem strange, but negative values would be even more confusing.

def rightarrow (expr p,tl) = pointarrow(p,t,l,-) enddef ;
def leftarrow (expr p,tl) pointarrow(p,t,l,+l) enddef ;
def centerarrow(expr p,tl) = pointarrow(p,t,l, 0) enddef ;

We can now apply this macro as follows:

Watch how we can pass a point (point 5 of p) aswell as a fraction (.4). The following graphic
demonstrates a few more alternatives.

ETAROST

Preliminary Version October 27, 2000 elc 31?1

-y,

v —C)

The arrows are drawn using the previously defined macros. Watch the positive and negative
offsets in call to pointarrow

drawarrow leftarrow (p,point 1 of p,2cm) withcolor red
drawarrow centerarrow (p,point 2 of p,2cm) withcolor blue
drawarrow rightarrow (p,point 3 of p,2cm) withcolor green

drawarrow pointarrow (p,.60,4cm,+.5cm) withcolor yellow
drawarrow pointarrow (p,.75,3cm,-.5cm) withcolor cyan ;
drawarrow centerarrow (p,.90,3cm) withcolor magenta ;

% Preliminary Version October 27, 2000

A few more details

21

In this chapter we will see how to define a MeTAPOST graphic, and how to include it in a document.
Since the exact dimensions of graphics play an important role in the placement of a graphic, we
will explore the way a bounding box is constructed.

We will also pay attention to the usage of units and the side effects of scaling and shifting,
since they can contradict our expectations in unexpected ways. Furthermore we will explore a
few obscure areas.

Making graphics

We will use METRPOST in a rather straightforward way, and as much as possible we will try to avoid
complicated math. We will do a bit of drawing, clipping, and moving around. Occasionally we
will see some more complicated manipulations.

When defined as stand—-alone graphic, a MeTAPOST file looks like this:

% Let's draw a circle.

beginfig (7) ;
draw fullcircle scaled 3cm withpen pencircle scaled 1cm ;
endfig ;

end .

The main structuring components in such a file are the beginfiy and endfig macros. Like
in one big story, the file has many sub-sentences, where each sub—sentence ends with a semi-
colon. Although the end command at the end of the file concludes the story, putting a period
there is a finishing touch. Actually, after the end command you can put whatever text you wish,
your comments, your grocery list, whatever. Comments in MeTRPOST, prefixed by a percent sign,
as in % Let's draw a circle , are ignored by the interpreter, but useful reminders for the
programmer.

If the file is saved as yourfile.mp , then the file is processed by MeTAPOST by issuing the
following command.

mpost yourfile

after which you will have a graphic called yourfile.7 , which contains a series of POSTSCRIPT
commands. Because MeTAPOST does all the work, this file is efficient and compact. The number
of distinct POSTSCRIPT operators used is limited, which has the advantage that we can postprocess
this file rather easily.

We can view this file in a POSTSCRIPT viewer like GHOSTVIEW or convert the graphic to PDF and
view the result in a suitable PDF viewer like ACROBAT. Of course, you can embed such a file in a
CONTEXT document, using a command like:

\externalfigure[yourfile.7]

We will go in more detail about embedding graphics in chapter 3.
If you have installed CONTEXT, somewhere on your system there resides a file mp-tool.mp . If
you make a stand—alone graphic, it’s best to put the following line at the top of your file:

10

Preliminary Version October 27, 2000 qe

2.2

input mp-tool ;

By loading this file, the resulting graphic will provide a high resolution bounding box, which
enables more accurate placement. The file also sets the prologues := 1 so that viewers like
GHOSTVIEW can refresh the file when it is changed.

In the next chapter we will explain in detail how to embed the METAPOST code in your TeX
file, but first we will introduce some more MeTAPOST commands. From now on, we will omit the
encapsulating beginfig and endfig macros. If you want to process these examples yourself,
you should add those commands.

pickup pencircle scaled .5cm ;

draw unitsquare xscaled 8cm yscaled 1cm withcolor .625white ;
draw origin withcolor .625yellow ;

pickup pencircle scaled 1pt ;

draw bbox currentpicture withcolor .625red ;

In this example we see a mixture of so called primitives as well as macros. A primitive is some-
thing hard coded, a built-in command, while a macro is a collection of such primitives, pack-
aged in a way that they can be recalled easily. Where scaled is a primitive and draw a macro,
unitsquare is a path variable, an abbreviation for:

unitsquare = (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle ;

The double dash (-) is also a macro, used to connect two points with a straight line segment.
However, cycle is a primitive, which connects the last point of the unitsquare to the first on
unitsquare’s path. Path variables must first be declared, as in:

path unitsquare ;

A large collection of such macros is available when you launch metaposT. Consult the METAPOST
manual for details.

In the first line of our example, we set the drawing pen to .5cm. You can also specify such a
dimension in other units, like points (pt). When no unit is provided, MeTAPosT will use a big
point (bp) , the POSTSCRIPT approximation of a point.

The second line does just as it says: it draws a rectangle of certain dimensions in a certain
color. In the third line we draw a colored dot at the origin of the coordinate system in which we
are drawing. Finally, we set up a smaller pen and draw the bounding box of the current picture,
using the variable currentpicture . Normally, all drawn shapes end up in this picture variable.

Bounding boxes

If you take a close look at the last picture in the previous section, you will notice that the bounding
box is larger than the picture. This is one of the nasty side effects of METAPOST’s bbox macro. This
macro draws a box, but with a certain offset. The next example shows how we can manipulate

stails Preliminary Version October 27, 2000

this offset. Remember that in order to process the next examples, you should embed the code
in beginfig and endfig macros. Also, in stand-alone graphics, don’t forget to say \input
mp-tool first.

pickup pencircle scaled .5cm ;

draw unitsquare xscaled 8cm yscaled 1cm withcolor .625white ;
path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .625red ;

In the third line we define a path variable. We assign the current bounding box to this variable,
but first we set the offset to zero. The last line demonstrates how to draw such a path. Instead of
setting the pen as we did in the first line, we pass the dimensions directly.

Where draw draws a path, the fill macro fills one. In order to be filled, a path should be closed,
which is accomplished by the cycle primitive, as we saw in constructing the unitsquare path.

pickup pencircle scaled .5cm ;

fill unitsquare xscaled 8cm yscaled 1cm withcolor .625white ;
path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .625red ;

This example demonstrates that when we fill the path, the resulting graphic is smaller. Where
draw follows the center of a path, fill stays inside the path.

A third alternative is the filldraw macro. From the previous examples, we would expect a
bounding box that matches the one of the drawn path.

pickup pencircle scaled .5cm ;

filldraw unitsquare xscaled 8cm yscaled lcm withcolor .625white ;
path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;

draw bb withpen pencircle scaled 1pt withcolor .625red ;

The resulting graphic has the bounding box of the fill. Note how the path, because it is stroked
with a .5cm pen, extends beyond the border of the bounding box. The way this image shows up
depends on the viewer (settings) you use to render the graphic. For example, in GHOSTVIEW, if you
disable clipping to the bounding box, only the positive quadrant of the graphic is shown. Further,
if you enable clipping to the bounding box, this image will look exactly like the previous image
created with the fill command. In many cases, it may be best to avoid the filldraw ~ command.

Preliminary Version October 27, 2000 w

&

From the previous examples, you can deduce that the following alternative results in a proper
bounding box:

pickup pencircle scaled .5cm ;

path p ; p := unitsquare xscaled 8cm yscaled 1cm ;

fill p withcolor .625white ;

draw p withcolor .625white ;

path bb ; bboxmargin := Opt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .625red ;

The CONTXT distribution comes with a set of MeTAPosT modules, one of which contains the
drawfill macro, which provides the outer bounding box. We will demonstrate its use in an-
other, more complicated example.

picture finalpicture ; finalpicture := nullpicture ;
numeric n ; n := 0 ; bboxmargin := Opt ;
pickup pencircle scaled .5cm ;

def shape =
unitsquare scaled 2cm withcolor .625white ;
draw bbox currentpicture
withpen pencircle scaled .5mm withcolor .625red ;
addto finalpicture also currentpicture shifted(n*3cm,0) ;
currentpicture := nullpicture ; n = n+l ;
enddef ;

fill shape ; draw shape ; filldraw shape ; drawfill shape ;

currentpicture := finalpicture ;

Here we introduce a macro definition, shape . In mMeTAPosT, the start of a macro definition is
indicated with the keyword def . Thereafter, you can insert other variables and commands, even
other macro definitions. The keyword enddef signals the end of the macro definition. The result
is shown in figure 2.1; watch the bounding boxes. Close reading of the macro will reveal that the
fill ,draw, filldraw and drawfill =~ macros are applied to the first unitsquare path in the
macro.

Figure2.1 Afill ,draw,filldraw and drawfill applied to the same square.

HE BN | RN .. .
=..ﬁ’.HﬁmmgiE ils| | Preliminary Version October 27, 2000

2.3

In this macro, bbox calls a macro that returns the enlarged bounding box of a path. By setting
bboxmargin we can influence how much the bounding box is enlarged. Since this is an exist-
ing variable, we don't have to allocate it, like we do with numeric n . Unless you take special
precautions, variables are global by nature and persistent outside macros.

picture finalpicture ; finalpicture := nullpicture ;

Just as numeric allocates an integer variable, the picture primitive allocates a picture da-
ta structure. We explicitly have to set this picture to nothing using the built-in primitive
nullpicture

Later on, we will add the drawn paths as accumulated in currentpicture to this
finalpicture in the following manner.

addto finalpicture also currentpicture shifted(n*3cm,0) ;

Since we want to add a few more and don’t want them to overlap, we shift them. Therefore we
have to erase the current picture as well as increment the shift counter.

currentpicture := nullpicture ; n = n+l1 ;

The drawfill macro is one of the Met aFun macros. Another handy macro is boundingbox
When used instead of bbox , you don't have to set the margin to zero.

Figure 2.2 The influence of pens on fill

There is a subtle point in filling a shape. In figure 2.2 you see the influence of the pen on a fill
operation. An indirect specification has no influence, and results in a filled rectangle with sharp
corners. The third rectangle is drawn with a direct pen specification which results in a larger
shape with rounds corners. However, the bounding box is the same in all three cases. The graphic
is defined as follows. This time we don't use a (complicated) macro.

drawoptions (withcolor .625white) ;

path p ; p := unitsquare scaled 2cm ;

fill p shifted (3cm,0) ;

pickup pencircle scaled .5cm ; fill p shifted (6cm,0) ;
fill p shifted (9cm,0) withpen pencircle scaled .5cm ;

Units

Like TgX, METAPOST supports multiple units of length. In TgX, these units are hard coded and han-
dled by the parser, where the internal unit of length is the scaled point (sp), something on the
nanometer range. Because METAPOST is focused on POSTSCRIPT output, its internal unit is the big
point (bp). All other units are derived from this unit and available as numeric instead of hard
coded.

53

Preliminary Version October 27, 2000 A few ore details

mm = 2.83464 ; pt = 0.99626 ; dd = 1.06601 ; bp = 1 ;
cm = 28.34645 ; pc = 11.95517 ; cc = 12.79213 ; in = 72 ;

Careful reading reveals that only the bp and in are fixed, while the rest of the dimensions are
scalar multiples of bp.

Since we are dealing with graphics, the most commonly used dimensions are pt , bp, mmcm
and in .

Fo P Y NP X7 Y

27pt bp 25.4mm 2.54cm lin

A 4dh AN AN 4N 4

The text in the center of the leftmost graphic is typeset by METAPOST as a label.

fill fullsquare scaled 72.27pt withcolor .625yellow ;
fill fullcircle scaled 72.27pt withcolor white ;
label("72.27pt", center currentpicture) ;

In MeTAPosT the following lines are identical:

draw fullcircle scaled 100 ;
draw fullcircle scaled 100bp ;

You might be tempted to omit the unit, but this can be confusing, particularly if you also program
in a language like METAFONT, where the pt is the base unit. This means that a circle scaled to 100
in METAPOST is not the same as a circle scaled to 100 in MeTAFONT. Consider the next definition:

pickup pencircle scaled 0 ;
fill unitsquare

xscaled 400pt yscaled -.5cm withcolor .625red ;
fill unitsquare

xscaled 400bp yscaled +.5cm withcolor .625yellow ;
drawoptions(withcolor white) ;
label.rt("400 pt", origin shifted (0, -.25cm)) ;
label.rt("400 bp", origin shifted (0, +.25cm)) ;

When processed, the difference between a pt and bp shows rather well. Watch how we use .rt
to move the label to the right; you can compare this with TX’s macro \rlap . You might want to
experiment with .Ift ,.top ,.bot ,.ulft ,.urt , .lift and .Irt

The difference between both bars is exactly 1.5pt (as calculated by TiX).

400 bp
400 pt
Where TgX is anchored in tradition, and therefore more or less uses the pt as the default unit, META-

PosT, much like POSTSCRIPT, has its roots in the computer sciences. There, to simplify calculations,
an inch is divided in 72 big points, and .72pt is sacrificed.

7@ Preliminary Version October 27, 2000

24

When you consider that POSTSCRIPT is a high end graphic programming language, you may
wonder why this sacrifice was made. Although the difference between 1bp and 1pt is miniscule,
this difference is the source of much (unknown) confusion. When TgX users talk about a 10pt font,
a desktop publisher hears 10bp . In a similar vein, when we define a papersize having a width of
600pt and a height of 450pt , which is papersize S6 in CONTEXT, a POSTSCRIPT or PDF viewer will
report slightly smaller values as page dimensions. This is because those programs claim the pt
to be a bp. [This confusion can lead to interesting discussions with desktop publishers when they
have to use TgX. They often think that their demand of a baseline distance of 13.4 is met when we
setitto 13.4pt , while actually they were thinking of 13.4bp , which of course in other programs
is specified using a pt suffix.]

Therefore, when embedding graphics in CONTEXT, we strongly recommend that you use pt as
the base unit instead. The main reason why we spend so many words on this issue is that, when
neglected, large graphics may look inaccurate. Actually, when taken care of, it is one of the (many)
reasons why TgX documents always look so accurate. Given that the eye is sensitive to distortions
of far less than 1pt , you can be puzzled by the fact that many drawing programs only provide a
bounding box in rounded units. Thereby, they round to the next position, to prevent unwanted
cropping. For some reason this low resolution has made it into the high end POSTSCRIPT standard.

In CONTEXT we try to deal with these issues as well as possible.

Scaling and shifting

When we draw a shape, METAPOST will adapt the bounding box accordingly. This means that a
graphic has its natural dimensions, unless of course we adapt the bounding box manually. When
you limit your graphic to a simple shape, say a rectangle, shifting it to some place can get obscured
by this fact. Therefore, the following series of shapes appear to be the same.

draw
unitsquare xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .625red ;

draw
unitsquare shifted (.5,.5) xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .625red ;

draw
unitsquare shifted (-.5,-.5) xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .625red ;

Preliminary Version October 27, 2000 e

10

draw
unitsquare xscaled 6cm yscaled 1.5cm shifted (1cm,lcm)
withpen pencircle scaled 2mm withcolor .625red ;

draw
unitsquare xscaled 6cm yscaled 1.5cm shifted (1.5cm,1cm)
withpen pencircle scaled 2mm withcolor .625red ;

However, when we combine such graphics into one, we will see in what respect the scaling and
shifting actually takes place.

draw
unitsquare xscaled 6cm yscaled 2cm
withpen pencircle scaled 3.0mm withcolor .625yellow ;
draw
unitsquare shifted (.5,.5) xscaled 6cm yscaled 2cm
withpen pencircle scaled 3.0mm withcolor .625red ;
draw
unitsquare xscaled 6cm yscaled 2cm shifted (1cm,1cm)
withpen pencircle scaled 3.0mm withcolor .625white ;
draw
unitsquare xscaled 6cm yscaled 2cm shifted (1.5cm,1cm)
withpen pencircle scaled 1.5mm withcolor white ;
draw
unitsquare shifted (-.5,-.5) xscaled 6cm yscaled 2cm
withpen pencircle scaled 1mm withcolor black ;
draw origin withpen pencircle scaled 1mm ;

>tails Preliminary Version October 27, 2000

u

As you can see, the transformations are applied in series. Sometimes this is not what we want,
in which case we can use parentheses to force the desired behaviour. The lesson learned is that
scaling and shifting is not always the same as shifting and scaling.

draw
origin -- origin shifted ((4cm,0cm) shifted (4cm,0cm))
withpen pencircle scaled 1cm withcolor .625white ;
draw
origin -- origin shifted (4cm,0cm) shifted (4cm,0cm)
withpen pencircle scaled 8mm withcolor .625yellow ;
draw
(origin -- origin shifted (4cm,0cm)) shifted (4cm,0cm)
withpen pencircle scaled 6mm withcolor .625red ;
draw
origin -- (origin shifted (4cm,0cm) shifted (4cm,0cm))
withpen pencircle scaled 4mm withcolor white ;

c—

Especially when a path results from a call to a macro, using parentheses around a path may help,
as in the following example.

def unitslant = origin -- origin shifted (1,1) enddef ;
draw

unitslant xscaled 5cm yscaled 1cm

withpen pencircle scaled 1cm withcolor .625red ;
draw

(unitslant) xscaled 5cm yscaled 1cm

withpen pencircle scaled 5mm withcolor .625yellow ;

The next definition of unitslant is therefore better.

no

Preliminary Version October 27, 2000 @E

. s

2.5

def unitslant = (origin -- origin shifted (1,1)) enddef ;
draw

unitslant xscaled 5cm yscaled 1cm

withpen pencircle scaled 5mm withcolor .625red ;

An even better alternative is:

path unitslant ; unitslant = origin -- origin shifted (1,1) ;
draw

unitslant xscaled 5cm yscaled 1lcm

withpen pencircle scaled 5mm withcolor .625yellow ;

Curve construction

Chapter 3 of the METAFONT book explains the mathematics behind the construction of curves. Both
METAFONT and METARPOST implement Bézier curves. The fact that these curves are called after Pierre
Bézier obscures the fact that the math behind them originates with Sergel Bernshtein.

The points on the curve are determined by the following formula:

2(t) = (L—1)321 + 3(L —)%t20 + 3(1 — H)t%z3 + 1324

Here, the parameter ¢ runs from [0, 1]. As you can see, we are dealing with four points. In practice
this means that when we construct a curve from multiple points, we act on two points and the
two control points in between. So, the segment that goes from z; to z4 is calculated using these
two points and the points that MeTAFONT/METAPOST calls post control point and pre control point.

21 22
27
B
24
26
7
5

stails Preliminary Version October 27, 2000

The previous curve is constructed from the three points z1, z4 and z7. The curve is drawn in META-
PoOST by z1..z4..27 and is made up out of two segments. The first segment is determined by
the following points:

point z1 of the curve

the postcontrol point z of z1
the precontrol point z3 of z4
point z4 of the curve

W

On the next pages we will see how the whole curve is constructed from these quadruples of points.
The process comes down to connecting the mid points of the straight lines connecting the points
mentioned. We do this three times, which is why these curves have are classified as third order
approximations.

The first series of graphics demonstrates the process of determining the mid points. The third
order midpoint is positioned on the final curve. The second series focuses on the results: new
sets of four points that will be used in a next stage. The last series only shows the third order
midpoints. As you can see, after some six iterations we have already reached a rather good fit
of the final curve. The exact number of interactions depends on the resolution needed. You will
notice that the construction speed (density) differs per segment.

Just in case you are interested how such graphical simulations can be organized, we show the
simplified code. We loop over all segments of the curve, where for each segment the left and right
side sub curves are handled recursive, upto the requested depth (here n).

vardef dodrawmidpoints (expr a, b, ¢, d, n) =
save e, f, g, h, i, j; par e, f, g, h i j;
e := 5[ab] ; f := 5[b,c] ; g := .5[cd] ;
h = 5[ef] ;i := .5[fg] ;j:= .5h,i] ;
draw j ;
if n>1 :
dodrawmidpoints(a, e, h, j, n-1) ;
dodrawmidpoints(j, i, g, d, n-1) ;
fi ;
enddef ;
vardef drawmidpoints (expr p, n) =
save a, b, ¢, d ; par a, b, c, d ;
for x=0 upto length(p)-1 :
a := point x of p; b := postcontrol x of p ;
d = point x+1 of p ; ¢ := precontrol x+1 of p ;
dodrawmidpoints(a, b, ¢, d, n) ;
endfor ;
enddef ;

We demonstrate these macros on two paths, first we show how the depth of the recursion im-
proves the resolution.

for i=1 upto 7 :
drawmidpoints
(fullcircle xscaled (100pt+i*5pt) yscaled (40pt+i*5pt), i) ;
endfor ;

Preliminary Version October 27, 2000 e

10

. 4
points first order curve
4 4

second order curve

third order curve

—d
left side curves

9
right side curves

Preliminary Version October 27, 2000

points

)

first order points

°
second order points

left side points

Preliminary Version October 27, 2000

right side points

:

first iteration

second iteration

third iteration

fourth iteration

fifth iteration

sixths iteration

Preliminary Version October 27, 2000

2.6

The next example demonstrates how the resolution depends on the length and nature of the seg-
ment.

drawmidpoints
(fullsquare xscaled 200pt yscaled 40pt randomized 10pt, 5) ;

Inflection, tension and curl

The MeTAPOST manual describes the meaning of ... as “choose an inflection—free path between
these points unless the endpoint directions make this impossible”. When you start searching
for nice examples to demonstrate the difference between .. and ... , you will be surprised that
honouring the request for less inflection is more often “impossible” than you would expect. We
will demonstrate this to a few graphics.

In the four figures on the next pages, you will see that ... is not really suited for taming wild
curves. If you really want to make sure that a curve stays within certain bounds, you have to
specify it as such using control or intermediate points. In the figures, the gray curves draw the
random path using .. , on top of yellow curves using As you can see, only in a few occasions
the yellow ‘inflection free” curves show up.

The tension specifier can be used to influence the curvature. To quote the METAPOST manual
once more: “The tension parameter can be less than one, but it must be at least 3/4”. The following
paths are the same:

z1 .. z2
z1 .. tension 1 .. z2
z1l .. tension 1 and 1 .. z2

The tripple dot command ... is actually a macro so that the following two paths are identical:

z1l ... 22
z1 .. tension atleast 1 .. z2

The atleast directive tells METAPOST to do some magic behind the screens. Both the 3/4 and the
atleast lead to the question what exactly is the influence of tension directive. We will try to
demystify tension by drawing the next graphic.

10

Preliminary Version October 27, 2000 qe

u:=1lcm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;

def sample (expr p, ¢) =
draw p withpen pencircle scaled 2.5mm withcolor white ;
draw p withpen pencircle scaled 2.0mm withcolor c ;

enddef ;
for i=.75 step .05 until 1 :

sample (z1 .. tension i .. z2 .. z3, .625red) ;
endfor ;
for i=1 step .05 until 2 :

sample (z1 .. tension i .. z2 .. z3, .625yellow) ;
endfor ;

sample (z1 .. z2 .. z3, .625white) ;
sample (z1 ... z2 ... z3, .625white) ;

Indeed values less than .75 give an error message, but large values are okay. As you can see, the
two gray curves are the same. So, here atleast 1 means 1, even if larger values are useful.

Curves are made up out of points, and each point has two control points. Since the tension
specifier finaly becomes a control point, it will be no surprise that you may specify two tension
values. If we replace the tension in the previous example by

. tension i and 2i ..

we get the following graphic:

ﬁ; re det ﬁ Preliminary Version October 27, 2000

If we swap both values (.. tension 2i and i ..) we get:

We mentioned control points. We will now draw a few extreme tensions and show the control
points as METAPOST calculates them.

sample (z1 .. tension 0.75 .. z2 .. z3, .625red) ;
sample (z1 .. tension 2.00 .. z2 .. z3, .625yellow) ;
sample (z1 .. z2 .. z3, .625white) ;

First we will show the symmetrical tensions.

Preliminary Version October 27, 2000

The asymetrical tensions are less prominent. We use the following values.

sample (z1 .. tension .75 and 10 . 22 .. z3, .625red) ;

sample (z1 .. tension 10 and 75 .. z2 .. z3, .625yellow) ;

sample (z1 .. z2 .. z3, .625white) ;
You may try yourself what happens when we use METARPOST maximum value of infinity instead
of 10.

A third magic directive is curl . The curl is attached to a point between { } , like {curl 2}
Anything between curly braces is a direction specifier, so instead of a curl you may specify a
vector, like {(2,3)} , a pair of numbers, as in {2,3} , or a direction, like {dir 30} . Because
vectors and angles are straightforward, we will focus a bit on curl

z0 .. z1 .. 22
z0 {curl 1} .. z1 .. {curl 1} z2

So, acurl of 1is the default. When set to 1, the begin and/or end points are approached. Given
the following definitions,

Preliminary Version October 27, 2000

u:=lcm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;
def sample (expr p, ¢) =
draw p withpen pencircle scaled 2.5mm withcolor white ;
draw p withpen pencircle scaled 2.0mm withcolor ¢ ;
enddef ;

We can draw three curved paths.

sample (z1 {curl 0} .. z2 .. {curl 0} z3, .625red) ;
sample (z1 {curl 2} .. z2 .. {curl 2} z3, .625yellow) ;
sample (z1 {curl 1} .. z2 .. {curl 1} z3, .625white) ;

These third (gray) curve is the default situation. so here we could have left the curl specifier out
of the expression.

The curly specs have a lower bound of zero and no upper bound. When we use METAPOST maxi-
mum value of infinity instead of 2, we get:

These curves were defined as:

sample (z1 {curl 0} .. z2 .. {curl 0} z3, .625red) ;
sample (z1 {curl infinity} .. z2 .. {curl infinity} z3, .625yellow) ;
sample (z1 {curl 1} .. z2 .. {curl 1} z3, .625white) ;

It may sound strange, but internally METAPOST can handle larger values than infinity

sample (z1 {curl infinity} .. z2 .. {curl infinity} z3, .625red) ;
sample (z1 {curl 4infinity} .. z2 .. {curl 4infinity} z3, .625yellow) ;
sample (z1 {curl 8infinity} .. z2 .. {curl 8infinity} 23, .625white) ;

Preliminary Version October 27, 2000 ore)t‘ ils

2.7

Although this is quite certainly undefined behaviour, interesting effects can be achieved. When
you turn off METRPOST’s first stage overflow catcher, you can go upto 8 times infinity ~ , which,
being some 32K, is still far from what everyday’s infinity is supposed to be.

()

With .. as built in METAPOST command that accepts curl and tension directive as described in
this section, you will now probably understand why plain MeTAPOST defines the following macros
that way:

def -- = {curl 1} .. {curl 1} enddef ;
def --- = .. tension infinity .. enddef ;
def ... = .. tension atleast 1 .. enddef ;

These definitions also point out why you cannot add directives to the left or right side of -- , ---
and ... : they are directives themselves!

Transformations

A transform is a vector that is used in what is called an affine transformation. To quote the
METAPOST manual:

“If p = (px, py) is a pair and T is a transform, then p transform T is a pair of the form:

(tx + Lixpx + txyDy,ty +tyxpx + tyypy)
where the six numeric quantities (ty, ty, txx, txy, tyx, tyy) determine T.”

In literature concerning POSTSCRIPT and PDF you will find many references to such transformation
matrices. A matrix of (sy, 0,0, sy, 0, 0) is scaling by s, in the horizontal direction and s, in the
vertical direction, while (1,0, 1, 1,0,¢,) is a shift over tx ¢,. Of course combinations are also
possible.

Although these descriptions seem in conflict with each other in the nature and order of the
transform components in the vectors, the concepts are the same. You normally populate transfor-
mation matrices using scaled , shifted , rotated

>tails Preliminary Version October 27, 2000

71

transform t ; t := identity shifted (a,b) rotated c scaled d ;
path p ; p := fullcircle transformed t ;

The previous lines of code are equivalent to:
path p ; p := fullcircle shifted (a,b) rotated c scaled d ;

You always need a starting point, in this case the identity matrix identity : (0,0,1,0,0,1). By
the way, in POSTSCRIPT the zero vector is (1, 0, 0, 1, 0, 0). So, unless you want to extract the compo-
nents using xpart , xypart , xxpart ,ypart ,yxpart and/or yypart , you may as well forget
about the internal representation.

You can invert a transformation using the inverse = macro, which is defined as follows, using
an equation:

vardef inverse primary T =
transform T_ ; T_ transformed T = identity ; T_
enddef ;

Using transform matrices makes sense when similar transformations need to be applied on many
paths, pictures, pens, or other transforms. However, in most cases you will use the predefined
commands scaled , shifted ,rotated and alike. We will now demonstrate the most common
transformations in a text example.

draw btex \bfd MetaFun etex ;
draw boundingbox currentpicture withcolor .625yellow ;

Before a METAPOST run, the btex ... etex ’s are filtered from the file and passed on to TgX.
After that, the DVI file is converted to a list of pictures, which is consulted by meTAPOST. We can
manipulate these pictures like any graphic as well as draw it with draw .

MetakFun
We show the transformations in relation to the origin and make the origin stand out a bit more by

painting it a bit larger in white first.

draw origin withpen pencircle scaled 1.5mm withcolor white ;
draw origin withpen pencircle scaled 1mm withcolor .625red

The origin is in the lower left corner of the picture.

MetaFun

Because the transformation keywords are proper english, we let the pictures speak for themselves.

currentpicture := currentpicture shifted (0,-1cm) ;

MetaFun

Preliminary Version October 27, 2000 A few more details

72

currentpicture := currentpicture rotated 180 ;

UunJjejojN

currentpicture := currentpicture rotatedaround(origin,30) ;

0
o
o

currentpicture := currentpicture scaled 1.75 ;

MetakFun

currentpicture := currentpicture scaled -1 ;

UnJejojN

currentpicture := currentpicture xscaled 3.50 ;

IanSed =S F—- U =h G hE = ¥

currentpicture := currentpicture xscaled -1 ;

nudsisM,

currentpicture := currentpicture yscaled .5 ;
MetaFun

currentpicture := currentpicture yscaled -1 ;

TNGEIEITY

currentpicture := currentpicture slanted .5 ;

MetaFun

currentpicture := currentpicture slanted -.5 ;

MWiekabuwn

currentpicture := currentpicture zscaled (.75,.25) ;

AL

et

Al few more details Preliminary Version October 27, 2000

2.8

currentpicture := currentpicture
reflectedabout(licorner currentpicture,urcorner currentpicture) ;

Only this far

When you take a close look at the definitions of the Computer Modern Roman fonts, defined in
the METAFONT book, you will notice a high level of abstraction. Instead of hard coded points you
will find points defined in terms of ‘being the same as this point” or ‘touching that point’. In this

section we will spend some time on this touchy aspect.

This rectangle is a scaled instance of the predefined Met aFun path fullsquare
tered around the origin.

pickup pencircle scaled 2mm ;
path p ; p := fullsquare scaled 2cm ;
draw p withcolor .625white ;

On this path, halfway between two of its corners, we define a point q:
pair g ; q := .5[llcorner p, Ircorner pJ ;

We draw this point in red, using:
draw q withcolor .625red ;

As you can see, this point is drawn on top of the path.

There are four of those midpoints, and when we connect them, we get:

Preliminary Version October 27, 2000

which is cen-

N0

Because path p is centered around the origin, we can simply rotate point q a few times.

draw q -- q rotated 90 -- q rotated 180 --
g rotated 270 -- cycle withcolor .625red ;

There are situations, where you don’t want the red path to be drawn inside another path, or more
general: where you want points to touch instead of being overlayed.

We can achieve this by defining point q to be located on top of the midpoint.
pair g ; q = top .5[llcorner p, Ircorner p] ;

The predefined macro top moves the point over the distance similar to the current pen width.

Because we are dealing with two drawing operations, and since the path inside is drawn through
the center of points, we need to repeat this move in order to draw the red path really inside the
other one.

pair q ; q := top top .5[llcorner p, Ircorner p] ;

Operations like top and its relatives bot , Ift and rt can be applied sequentally.

We already showed that q was defined as a series of rotations.

draw q -- g rotated 90 -- g rotated 180 --
g rotated 270 -- cycle withcolor .625red ;

As an intermezzo we will show an alternative definition of q. Because each point is rotated 90
degrees more, we can define a macro that expands into the point and rotates of afterwards. Be-
cause each consecutive point on the path is rotated an additional 90 degrees, we use the METAPOST
macro hide to isolate the assignment. The hide command executes the hidden command and
afterwards continues as if it were never there. You must confuse this with grouping, since the
hidden commands are visible to its surroundings.

>tails Preliminary Version October 27, 2000

def qq = q hide(q := q rotated 90) enddef ;
draw qgq -- qq -- qq -- qq -- cycle withcolor .625red ;

The macro top uses the characteristics of the current pen to determine the displacement. Howev-
er, for the more complicated pen shapes we need a different trick to get an inside path. Let’s start
by defining a elliptical path.

pickup pencircle xscaled 3mm yscaled 5mm rotated 30 ;
path p ; p := fullcircle xscaled 6cm yscaled 3cm ;
draw p withcolor .625white ;

We draw this path using a non standard pen. In the METAFONT manual you will find methods to
draw shapes with similar pens, where the pen is also turning, as it does in real calligraphy. Here
we stick to a more simple one.

We construct the inner path from the points that make up the curve. Watch how we use a for loop
to compose the new path. When used this way, no semi colon may be used to end the loop, since
it would isolate the color directive.

draw point 0 of p
for i=1 upto length(p) : -- point (i) of p endfor
withcolor .625red ;

The points are still located on the original path.

We can move the points to the inside by shifting them over the penwidth in the direction perpen-
dicular to the point which is a good approximation. Because we use this transformation more
than once, we wrap it into a macro. This also keeps the code readable.

vardef inside expr pnt of p =
(point pnt of p shifted
-(penoffset direction pnt of p of currentpen))
enddef ;

10

Preliminary Version October 27, 2000 qe

draw inside 0 of p
for i=1 upto length(p) : -- inside i of p endfor
withcolor .625red ;

Whenever you define a pen, METRPOST stores its characteristics in some private variables which
are used in the top and alike directives. The penoffset is a built in primitive and is defined as
the “point on the pen furthest to the right of the given direction”. Deep down in METAPOST pens
are actually simple paths and therefore METAPOST has a notion of a point on the penpath. In the
METAFONT book and METAPOST manual you can find in depth discussions on pens.

We're still not there. Like in a previous example, we need to shift over twice the pen width. To
get good results, we should determine the width of the pen at that particular point, which is
not trivial. The more general solution, which permits us to specify the amount of shifting, is as
follows.

vardef penpoint expr pnt of p =
save n, d ; numeric n, d ;
(n,d) = if pair pnt : pnt else : (pnt,1) fi ;
(point n of p shifted
((penoffset direction n of p of currentpen) scaled d))
enddef ;

When the point specification is extended with a distance, in which case we have a pair expression,
the point and distance are derived from this specification. First we demonstrate the simple case:

draw penpoint 0 of p
for i=1 upto length(p)-1 : .. penpoint i of p endfor .. cycle
withcolor .625red ;

In the next graphic, we draw both an inner and and outer path.

stails Preliminary Version October 27, 2000

draw penpoint (0,-2) of p
for i=1 upto length(p)-1 : .. penpoint (i,-2) of p endfor .. cycle
withcolor .625red ;

draw penpoint (0,+2) of p
for i=1 upto length(p)-1 : .. penpoint (i,+2) of p endfor .. cycle
withcolor .625yellow ;

Another case when top and friends cannot be applied in a general way is the following. Consider
the three paths:

path p, q, r ;

p fullcircle scaled 3cm ;
g := p shifted (7cm,0cm) ;
r := center p -- center ¢ ;

We draw these paths with:

draw p withpen pencircle scaled 10pt withcolor .625red ;
draw q withpen pencircle scaled 10pt withcolor .625yellow ;
draw r withpen pencircle scaled 20pt withcolor .625white ;

The line is drawn from center to center and since the line has a non zero width and a round line
cap, it extends beyond this point.

If we want to line to stop at the circular paths, we can cut off the pieces that extend beyond those
paths.
pair pr, gr ;

pr p intersectionpoint r ;
gr := q intersectionpoint r ;

Preliminary Version October 27, 2000 A Emr' E..
A Tew 1v ¢
Yy ’ NEEETE

[]
ot
| B |

r .= r cutbefore pr cutafter gr ;

This time we get:

Due to the thicker line width used when drawing the straight line, part of that line is still visible
inside the circles. So, we need to clip off a bit more.?

r cutbefore (point 5pt on r) ;
r cutafter (point -5pt on r) ;

r:
r:

The point ... on operation is a Met aFun macro that takes a dimension.

In order to save you some typing, Met aFun provides a macro cutends that does the same job:
r := r cutends 5pt ;
This time we draw the path in a different order:

draw r withpen pencircle scaled 20pt withcolor .625white ;
draw p withpen pencircle scaled 10pt withcolor .625red ;
draw q withpen pencircle scaled 10pt withcolor .625yellow ;

That way we hide the still remaining overlapping part of the line.

2 This problem was posted at the CONTXT mailing list by Marc van Dongen.

nuie sini

=

Preliminary Version October 27, 2000

2.9

Directions

Quite often you have to tell METAPOST in what direction a line should be drawn. A direction is
specified as a vector. There are four predefined vectors: up, down, left , right . These are
defined as follows:

pair up, down, left, right ;
up = -down = (0,1) ; right = -left = (1,0) ;

We can use these predefined pairs as specification and in calculations.

dotlabel.top("up" , up * 1lcm) ;
dotlabel.bot("down" , down * 1lcm) ;
dotlabel Ift("left" , left * 1cm) ;
dotlabel.rt ("right", right * 1cm) ;

drawoptions (withpen pencircle scaled .25mm withcolor .625 red) ;

drawarrow origin -- up * lcm ;
drawarrow origin -- down * 1cm ;
drawarrow origin -- left * 1cm ;
drawarrow origin -- right * 1cm ;

up

left right

down

This graphic can also be defined in a more efficient (but probably more cryptic) way. The next
definition demonstrates a few nice tricks. Instead of looping over the four directions, we loop
over their names. Inside the loop we convert these names, or strings, into a pair by scanning
the string using scantokens . The freedotlabel macro is part of Met aFun and takes three
arguments: a label string (or alternatively a picture), a point (location), and the ‘center of gravity’.
The label is positioned in the direction opposite to this center of gravity.

pair destination ;
for whereto = "up", "down", "left", "right" :
destination := scantokens(whereto) * 1cm ;
freedotlabel(whereto, destination, origin) ;
drawarrow origin -- destination
withpen pencircle scaled .25mm withcolor .625 red ;
endfor ;

So, in this code fragment, we use the string as string and (by means of scantokens) as a point
or vector.

Preliminary Version October 27, 2000 qe

10

up

left right

down

The previous definition is a stepping stone to the next one. This time we don’t use points, but the
dir command. This command converts an angle into a unitvector.

pair destination ;
for whereto = 0 step 30 until 330 :
destination := dir(whereto) * 1.5cm ;
freedotlabel(decimal whereto, destination, origin) ;
drawarrow origin -- destination
withpen pencircle scaled .25mm withcolor .625 red ;
endfor ;

In MeTAPOST the angles go counter clockwise, which is not that illogical if you look at it from the
point of view of vector algebra.

120 P 60

210 Analyzing pictures

Unless you really want to know all details, you can safely skip this section. The METAPOST features
discussed here are mainly of importance when you write (advanced) macros.

In section 1.12 we demonstrated that you can use either METAPOST or TgX to typeset text. The
METAPOST result looked like:

this string will become a sequence of glyphs (MP)
The same string typeset by Tgx showed up as:
this string will become a sequence of glyphs (TgX)

The following METAPOST features are not covered by the METAPOST manual, but most of them are
discussed in the appendix of the graph package written by John Hobby.

Itis possible to disassemble a picture by means of a special for loop using the within specifier.
The following code walks over a picture and draws the components with their bounding boxes.

%e nPc rédetails Preliminary Version October 27, 2000

for i within currentpicture :
draw boundingbox i withcolor .625yellow ;
endfor ;

We can use the disassemble loop feature to look into the previously shown example text.

this string will become a sequence of glyphs (MP)
this string will becomel a sequence of

The second line is typeset by TgX. The resulting DVI code is converted into a series of pictures,
which METRPOST pastes into one picture. You may also notice that in the set of pictures that origi-
nate in TgX, the space is replaced by a shift (this is because TgX knows no space).

An interesting aspect of this ‘loop over a picture’ feature, is that it can provide your insight in
how TX is composing a paragraph.

in information¥thickl worlds because marvelous land everlyday
capacity to select, edit, single structure, highlight, group, [pair, merge;,
synthesize, focus, organize, condense, feduce, boil down,
list, labstract, scamn, into, idealize, isolate, discriminate, distinguish,
pigeonhole, pick over, sort; integrate blend, inspect, filter, lumip, skip, smooth, chunk,
average, approximate, cluster, aggregate, summarize, review,
into, flip through, browse, glance into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow! the wheat from the chaff land separate the sheep from the goats.

You may also notice, that rules produced by Tgx are converted to straight line segments. Because
the line extends 50% of its linewidth beyond a point, there is a slight overshoot. This picture was
defined in a few lines:

draw btex \framed[width=fit,align=middle]{\input tufte \relax} etex ;
for i within currentpicture :

draw boundingbox i withpen pencircle scaled .2pt withcolor .625yellow ;
endfor ;

If we use a Times Roman instead of a Palatino, we get quite different results.

We thrive in information+thick worlds becauseof manelousandeverydaycapacityto select,
singleout, structure highlight, group,pair, meige, harmonize synthesizefocus, organize,
condensereduce boil down; choose cateyorize| catalog,classify abstractscan,look into,

idealize,isolate,discriminate distinguish,screen pigeonhole pick over, sort| integrate,blend,
inspectfilter, lump; skip} smooth,chunk, average japproximatecluster @mggreate, outline,
summarizejtemize, review, dip into, flip through,browse;, glanceinto, leaf through,skim; refine,
lenumerateglean,synopsizewinnow the wheatfrom thelchaf andseparatéhe sheepfrom

This font has far less kerning. Even more interesting is the Lucida Bright Handwriting font, which
is defined in such a way that no kerning is needed at all.

Preliminary Version October 27, 2000 qe

N0

We/thwive in information--thick worlds because of ouwr mawvelouws and
everyday capacity to-select, edit, single out, structure,
group, paix, merge; harmonige; synthesige, focus, organige; condense;
boil down, choose, categorige, catalog, classify, list, abstract,
idealige; isolate; discriminate, distinguishy
pigeonhole; pick over; sovt; integrate; blend; inspect, flter, lump, skip,
smooth; chunk, average; approximate;
swmmanige; lemige, review, dip into; flip through, browse, glance
leaf throughy skimy refine; evuunerate; gleany synopsize; winmnow

You can ask for the number of components with length . A component can be a stroked or filled
path, or a text resulting from an infont operation. If the (last) path is a clip path, or when the
whole picture has an forced boundingbox, the picture is treated as a whole. We will demonstrate
this later.

You may wonder if this within loop construct has any real application, and as you can ex-
pect, it has. In section 13.4 a macro is defined that draws a color circle. If you want the inverted
alternative, you can pass the inverted color specification, but wouldn’t it be more convenient if
there was an operator that did this for you automatically? Unfortunately there isn't one so we
have to define one ourselve a macro.

o0&

These circles were drawn using:

colorcircle(4cm,(.4,.6,.8),(.4,.8,.6),(.6,.4,.8)) ;
addto currentpicture also inverted currentpicture shifted (5cm,0) ;

When we draw a path, or stroke a path, as it is called officially, we actually perform an addition:
addto currentpicture doublepath somepath

The fill command is actually:
addto currentpicture contour somepath

We will need both doublepath and contour operations in the definition of inverted

When MeTAPOST has digested a path into a picture, it keeps track of some characteristics. We
can ask for them using part... operators. The following operators can be applied to a transform
vector (one of METAPOST data types), but also to a picture. Say that we have drawn a circle:

etails Preliminary Version October 27, 2000

draw fullcircle
xscaled 3cm yscaled 2cm
dashed dashpattern(on 3mm off 3mm)
withpen pencircle scaled 1mm
withcolor .625red ;

picture p ; p := currentpicture ;

This circle looks like:

- T oy
7 N\
\ /
S - e -
We can now ask for some of the characteristics of currentpicture , like its color. We could write
the values to the log file, but it is more convenient to put them on paper.

label.rt("redpart: & decimal redpart p, (4cm,+.5cm)) ;
label.rt("greenpart: " & decimal greenpart p, (4cm, 0Ocm)) ;
label.rt("bluepart: " & decimal bluepart p, (4cm,-.5cm)) ;

The result has no typographic beauty —keep in mind that here we use METAPOST to typeset the
text—but serves its purpose.

- T
7 N redpart: 0.625
/ ‘ greenpart: 0
\ V4 bluepart: 0
~ - o -

We can also ask for the path itself (pathpart), the pen (penpart) and the dashpattern
(dashpart), but these can only be assigned to variables of the corresponding type.

A path can be stroked or filled, in which case it is a cyclic path. It can have a non natural
bounding box, be a clip path, consist of line segments or contain text. All these characteristics can
be tested.

label.rt("filled: " & condition filled p, (4cm,+1.25cm)) ;
label.rt("stroked: " & condition stroked p, (4cm,+0.75cm)) ;
label.rt("textual: " & condition textual p, (4cm,+0.25cm)) ;
label.rt("clipped: " & condition clipped p, (4cm,-0.25cm)) ;
label.rt("bounded: " & condition bounded p, (4cm,-0.75cm)) ;

label.rt("cycle: & condition cycle pathpart p, (4cm,-1.25cm)) ;

filled: false

P4 \ stroked: true
{ \ textual: false
\ y, clipped: false

S bounded: false

cycle: true

Preliminary Version October 27, 2000 e

10

In this code snippet, condition is a macro that takes care of translating a boolean value into a
string (like decimal does with a numeric value).

def condition primary b =
if b : "true" else : "false" fi
enddef ;

Clip paths and bounding boxes are kind of special in the sense that they can obscure components.
The following examples demonstrate this. In case of a clip path or bounding box, the pathpart
operator returns this path. In any case that asking for a value does not make sense —a clipping
path for instance has no color— a zero (null) value is returned.

draw fullcircle withpen pencircle scaled 3mm ;
clip currentpicture to fullcircle ;
setbounds currentpicture to fullcircle ;

n: 1 / length: 1 / stroked: false / clipped: true / bounded: false

draw fullcircle withpen pencircle scaled 3mm ;
setbounds currentpicture to fullcircle ;
clip currentpicture to fullcircle ;

n: 1 / length: 1 / stroked: false / clipped: false / bounded: true

clip currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;
setbounds currentpicture to fullcircle ;

O

n: 1 / length: 0 / stroked: false / clipped: true / bounded: false
n: 2 / length: 1 / stroked: true / clipped: false / bounded: false

clip currentpicture to fullcircle ;

setbounds currentpicture to fullcircle ;

draw fullcircle withpen pencircle scaled 3mm ;
O

n: 1 / length: 1 / stroked: false / clipped: false / bounded: true
n: 2 / length: 1 / stroked: true / clipped: false / bounded: false

setbounds currentpicture to fullcircle ;

clip currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;
O

n: 1 / length: 1 / stroked: false / clipped: true / bounded: false
n: 2 / length: 1 / stroked: true / clipped: false / bounded: false

stails Preliminary Version October 27, 2000

85

setbounds currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;
clip currentpicture to fullcircle ;

n: 1 / length: 0 / stroked: false / clipped: false / bounded: true
: 2 / length: 1 / stroked: true / clipped: false / bounded: false

The description lines were generated by the following loop:

n:=o0;
for i within currentpicture : n :== n + 1 ;
label("'n: " & decimal n&"/"&

“length: " & decimal length i & " /" &
"stroked: " & condition stroked i & "/ " &
“clipped: " & condition clipped i & "/ " &
"bounded: " & condition bounded i , (0,-n*.5cm)) ;

endfor ;

If we have a textual picture, we can also ask for the text and font. Take the following picture:

picture p ;

p := "MetaFun" infont defaultfont scaled 2 rotated 30 slanted .5 ;
p := p shifted (0,-ypart center p) ;

currentpicture = p ;

Here we can ask for:

label.rt("textpart: " & textpart p, (4cm,+0.25cm)) ;
label.rt("fontpart: " & fontpart p, (4cm,-0.25cm)) ;

and get:

ﬂﬂ textpart: MetaFun
Meta fontpart: uplr8t

If we're dealing with a path, the transformations have ended up in the path specification. If we
have a text picture, we can explicitly ask for the transform components.

label.rt("xpart: " & decimal xpart p, (4cm,+1.25cm)) ;
label.rt("ypart: " & decimal ypart p, (4cm,+0.75cm)) ;
label.rt("xxpart: " & decimal xxpart p, (4cm,+0.25cm)) ;
label.rt("xypart: " & decimal xypart p, (4cm,-0.25cm)) ;
label.rt("yxpart: " & decimal yxpart p, (4cm,-0.75cm)) ;
label.rt("yypart: " & decimal yypart p, (4cm,-1.25cm)) ;

Preliminary Version October 27, 2000 A few more details

86

xpart: 0
ypart: -25.72203

Fﬂfl xxpart: 2.23206

Meta xypart: -0.13397
yxpart: 1

yypart: 1.73206

We will now define the inverted macro using these primitives. Because we have to return a
picture, we cannot use draw and fill but need to use the low level operators. Because a picture
can consist of more than one path, we need a temporary picture pp.

vardef inverted expr p =
save pp ; picture pp ; pp := nullpicture ;
for i within p :

addto pp
if stroked i or filled i :
if filled i : contour else : doublepath fi pathpart i
dashed dashpart i withpen penpart i
else :
also i
fi
withcolor white-(redpart i, greenpart i, bluepart i) ;
endfor ;
pp
enddef ;

We probably need to handle a few more border cases, but for general purposes, this macro works
as expected.

From the previous examples it may be clear that each picture has some associated data stored
with it. From the bounded boolean test we can deduce that the bounding box is part of this data
Internally MeTAPOST keeps track of two bounding boxes: the natural one, and the forced one. The
forced one is actually a component of the picture which applies to all previously added graphics.
You can calculate the bounding box from the licorner ~ and urcorner or if you like ulcorner
and Ircorner and the Met aFun command boundingbox does so.

The four corners that make up the bounding box are either the natural ones, or the ones forced
by setbounds . You can force METAPOST to report the natural ones by setting truecorners ~ to 1.
The next example demonstrates this feature.

pickup pencircle scaled 2mm ; path p, q ;
draw fullcircle
scaled 4cm slanted .5 withcolor .625white ;
setbounds currentpicture to
boundingbox currentpicture enlarged -5mm ;
interim truecorners := 0 ; p := boundingbox currentpicture ;
interim truecorners := 1 ; g := boundingbox currentpicture ;
pickup pencircle scaled 1mm ;
draw p withcolor .625red ;
draw q withcolor .625yellow ;

Afew more details Preliminary Version October 27, 2000

We use interim because truecorners is an internal METARPOST variable.

Since METAPOST can handle fonts (it can even generate font metric files) it is no surprise that we can
also ask for the natural size of a font. For this we use fontsize . However, you should beware
of the fact that the size reported is in base points. Since this is METRPOST’s native unit, this is no
problem in calculations, but to may look confusing when you show this size on your terminal and
get less that 10 reported for a cmrl0 font.

show fontsize "cmrl0" ;

In order to demonstrate that fontsize is useful, we extend the infont command. In the process
we show a few macro definition tricks. What we want is a TX like specification of a font size:

draw "MetaFun" infont defaultfont at 20pt ;
We can store the current meaning of a primitive or macro in a new macro. We do so with infont
let normalinfont = infont ;

We can only know the size if we know the name of the font, so we have to redefine infont to
pick up this name.

def infont primary name =
hide(lastfontsize := fontsize name)
normalinfont name

enddef ;

Because we are replacing an operator, and since METARPOST expects one, we have to use def instead
of vardef (which is actually a kind of variable). For the same reason, we have to pick up a
primary . If we would use a expr name , we would end up in an unwanted look ahead. The
hide macro hides the assignment and makes this macro behave like a vardef with respect to
hiding expressions. We may not put a semi colon after the) because it would stop METAPOST from
reading on, and thereby invoke an error message.

We can now define at . This macro picks up an expression (which can me more than just a
number) and return a scale transform that normalized the given size to the design size.

def at expr size =
scaled (size/lastfontsize)
enddef ;

10

Preliminary Version October 27, 2000 qe

211

Because this macro is defined global, and therefore can be used apart from infont , we predefine
the size:

numeric lastfontsize ; lastfontsize = fontsize defaultfont ;

When defined this way at a comfortable 20 points, the string MetaFun comes out as follows:

MetaFun

Additional operators

In this section we will introduce a few Met aFun operators, like enlarged , squeezed ,
randomized , xyscaled ,..sized and superellipsed . We can hardly cover them all, since
Met aFun is evolving.

stails Preliminary Version October 27, 2000

Embedded graphics

3.1

In addition to the beginfig —endfig method, there are other ways to define and include a META-
posT graphic. Each method has its advantages and disadvantages.

In the previous chapter we were still assuming that the graphic was defined in its own file. In
this chapter we will introduce the interface between CONTEXT and METAPOST and demonstrate how
the definitions of the graphics can be embedded in the document source.

Getting started

From now on, we will assume that you have CONTEXT running on your platform. Since PDF has
full graphics support, we also assume that you use PDFTgX, or know how to go from DVI to PDF.
Since this document is not meant as a CONTEXT tutorial, we will limit this introduction to the basics
needed to run the examples.

A simple document looks like:

\starttext
Some text.
\stoptext

You can process this document with the PERL based command line interface to CONTpXT. If the
source code is embedded in the file mytext.tex , you can say:

texexec --pdf mytext
As an alternative to --pdf , you can explicitly set the output driver in your document:

\setupoutput[pdftex]
\starttext

Some text and/or graphics.
\stoptext

Yet another alternative is:

% interface=english output=pdftex
\starttext

Some text and/or graphics.
\stoptext

Here the interface directive tells TEXEXEC that it should force the english user interface.
We will use color, and since traditionally TgX is rather unaware of color, this feature is turned
off by default, so, if you want to see color, you should type:

\setupcolors[state=start]
\starttext

Some \color[blue[{text} and/or \color[green}{graphics}.
\stoptext

As an alternative, you can run TeXEXEC like:

Preliminary Version October 27, 2000 mn dF

texexec --pdf --color mytext

In later chapters we will occasionally see some more CONTEXT commands show up. If you want
to know more about what CONTEXT can do for you, we recommend the beginners manual and the
reference manual, as well as the manual that comes with TRXEXEC.

3.2 External graphics

Since TEX has no graphic capabilities built in, a graphic is referred to as an external figure. A
METAPOST graphic often has a number as suffix, so embedding such a graphic is done by:

\externalfigure[graphic.123][width=4cm]

An alternative method is to separate the definition from the inclusion. An example of a definition
is:

\useexternalfigure[pentastar][star.803][height=4cm]
\useexternalfigure[octostar] [star.804][pentastar]

Here, the second definition inherits the characteristics from the first one. These graphics can be
summoned like:

\placefigure
{A five||point star drawn by \METAPOST.}
{\externalfigure[pentastar]}

Here the stars are defined as stand—alone graphics, in a file called star.mp . Such a file can look
like:

def star (expr size, n, pos) =
for a=0 step 360/n until round(360*(1-1/n)) :
draw (origin -- (size/2,0))
rotatedaround (origin,a) shifted pos ;
endfor ;
enddef ;

beginfig(803) ;
pickup pencircle scaled 2mm ; star(2cm,5,origin) ;
endfig ;

beginfig(804) ;
pickup pencircle scaled 1mm ; star(1cm,8,origin) ;
pickup pencircle scaled 2mm ; star(2cm,7,(3cm,0)) ;
endfig ;

end.

This star macro will produce graphics like:

X % % Xk ¥ K

edded eraphics Preliminary Version October 27, 2000

3.3

Integrated graphics

An integrated graphic is defined in the document source or in a style definition file. The most
primitive way of doing this is beginning with the definition of the graphic.

\startMPgraphic
fill fullcircle scaled 200pt withcolor .625white ;
\stopMPgraphic

Next the graphic can be loaded, using:
\loadcurrentMPgraphic{optional setups}

Finally, the graphic is placed in the document with:
\placeMPgraphic

The optional setups are passed on to the figure inclusion macro, which in CONTEXT is the command
\externalfigure

Since every definition replaces the previous one, this method forces you to embed the defini-
tions in the running text. In this document we also generate graphic while we finish a page, so
there is a good change that when we have constructed a graphic which will be called the next
page, the wrong graphic is placed.

Therefore you may as well forget these commands, since there are more convenient ways of
defining and using graphics, which have the added advantage that you can predefine multiple
graphics, thereby separating the definitions from the usage.

The first alternative is a usable graphic. Such a graphic is calculated anew each time it is used.
An example of a usable graphic is:

\startuseMPgraphic{name}
fill fullcircle scaled 200pt withcolor .625yellow ;
\stopuseMPgraphic

When you put this definition in the preamble of your document, you can place this graphic any-
where in the file, saying;:

\useMPgraphic{name}

As said, this graphic is calculated each time it is placed, which can be time consuming. Apart from
the time aspect, this also means that the graphic itself is incorporated many times. Therefore, for
graphics that don’t change, CONTEXT provides reusable graphics:

\startreusableMPgraphic{name}
fill fullcircle scaled 200pt withcolor .625yellow;
\stopreusableMPgraphic

This definition is accompanied by:
\reuseMPgraphic{name}

Imagine that we use a graphic as a background for a button. We can create a unique and reusable
graphic by saying:

Preliminary Version October 27, 2000 nbe

\def\MyGraphic%

{\startreusableMPgraphic{name:\overlaywidth:\overlayheight}

path p ; p := unitsquare

xscaled \overlaywidth yscaled \overlayheight ;

fill p withcolor .625yellow ;

draw p withcolor .625red ;
\stopreusableMPgraphic
\reuseMPgraphic{name:\overlaywidth:\overlayheight}}

After this we can say:

\defineoverlay[my graphic][\MyGraphic]
\button[background=my graphic,frame=0off|{Go Homel}[firstpage]

Say that we have a 30pt by 20pt button, then the identifier will be name:30pt:20pt . Different
dimensions will lead to other identifiers, so this sort of makes the graphics unique.

We can bypass the ugly looking \def by using a third class of embedded graphics, the unique
graphics.

\startuniqueMPgraphic{name}
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .625yellow ;
draw p withcolor .625red ;
\stopuniqueMPgraphic

Now we can say:

\defineoverlay[my graphic][\uniqueMPgraphic{name}]
\button[background=my graphic,frame=0off|{Go Home}[firstpage]

You may wonder why unique graphics are needed when a single graphic might be used multiple
times by scaling it to fit the situation. Since a unique graphic is calculated for each distinctive case,
we can be sure that the current circumstances are taken into account. Also, scaling would result
in incomparable graphics. Consider the following definition:

\startMPgraphic
draw unitsquare
xscaled 5cm yscaled 1cm
withpen pencircle scaled 2mm
withcolor .625red ;
\stopMPgraphic

Since we reuse the graphic, the dimensions are sort of fixed, and because the graphic is calculated
once, scaling it will result in incompatible line widths.

I | S

These graphics were placed with:

raphics Preliminary Version October 27, 2000

\hbox \bgroup
\loadcurrentMPgraphic{width=5cm,height=1cm}\placeMPgraphic \quad
\loadcurrentMPgraphic{width=8cm,height=1cm}\placeMPgraphic \egroup

Imagine what happens when we add some buttons to an interactive document without taking
care of this side effect. All the frames would look different. Consider the following example.

\startunigueMPgraphic{right or wrong}
pickup pencircle scaled .075 ;
fill unitsquare withcolor .8white ;
draw unitsquare withcolor .625red ;
currentpicture := currentpicture
xscaled \overlaywidth yscaled \overlayheight ;
\stopuniqueMPgraphic

Let’s define this graphic as a background to some buttons.

\defineoverlay[button][\uniqueMPgraphic{right or wrong}]
\setupbuttons[background=button,frame=0ff]

\hbox
{\button {previous} [previouspage]\quad
\button {next} [nextpage]\quad
\button {index} [index]\quad

\button {table of contents} [content]}

The buttons will look like:

previous| |next| |index Itable of Contentsl

Compare these with:

I previous I Inextl I index I table of contents I

Here the graphic was defined as:

\startuniqueMPgraphic{wrong or right}
pickup pencircle scaled 3pt ;
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .8white ;
draw p withcolor .625red ;
\stopuniqueMPgraphic

The last class of embedded graphics are the runtime graphics. When a company logo is defined
in a separate file mylogos.mp , you can run this file by saying:

\startMPrun
input mylogos ;
\stopMPrun

Preliminary Version October 27, 2000 m

3.4

The source for the logo is stored in a file named mylogos.mp .

beginfig(21) ;
draw fullsquare withcolor .625red ;
draw fullsquare rotated 45 withcolor .625red ;
picture cp ; cp := currentpicture ;
def copy = addto currentpicture also cp enddef ;
copy scaled .9 withcolor .625white ;
copy scaled .7 withcolor .625yellow ;
copy scaled .6 withcolor .625white ;
copy scaled .4 withcolor .625red ;
copy scaled .3 withcolor .625white ;
fill fullcircle scaled .2 withcolor .625yellow ;
currentpicture := currentpicture scaled 50 ;
endfig ;
end .

In this example the result is available in the file mprun.21 . This file can be included in the normal
way, using;:

\externalfile[mprun.21][width=5cm]

Figure 3.1 The logo is defined in the file
mylogos.mp as figure 21 and processed by
means of the mprun method.

Graphic buffers

In addition to the macros defined in the previous section, you can use CONTEXT’s buffers to handle
graphics. This can be handy when making documentation, so it makes sense to spend a few words
on them.

A buffer is a container for content that is to be (re)used later on. The main reason for their
existence is that they were needed for typesetting manuals and articles on TgX. By putting the
code snippets in buffers, we don’t have to key in the code twice, since we can either show the

Preliminary Version October 27, 2000

code of buffers verbatim, or process the code as part of the text flow. This means that the risk of
mismatch between the code shown and the typeset text is minimized.

\startbuffer
You are reading the \METAFUN\ manual.
\stopbuffer

This buffer can be typeset verbatim using \typebuffer and processed using \getbuffer , as
we will do now:

An other advantage of using buffers, is that they help you keeping the document source clean.
In a many places in this manual we put table or figure definitions in a buffer and pass the buffer
to another command, like:

\placefigure{A very big table}{\getbuffer}

Sometimes it makes sense to collect buffers in separate files. In that case we give them names.
This time we should say \typebuffer[mfun] to typeset the code verbatim. Instead of TiX
code, we can put METAPOST definitions in buffers.
Buffers can be used to stepwise build graphic. By putting code in multiple buffers, you can
selectively process this code.

\startbuffer[red]
drawoptions(withcolor .625red) ;
\stopbuffer

\startbuffer[yellow]
drawoptions(withcolor .625yellow) ;
\stopbuffer

We can now include the same graphic in two colors by simply using different buffers. This time
we use the special command \processMPbuffer , since \getbuffer ~ will typeset the code frag-
ment, which is not what we want.

\startlinecorrection[blank]
\processMPbuffer[red,graphic]
\stoplinecorrection

The line correction macros take care of proper spacing around the graphic. The [blank] directive
tells CONTEXT to add more space before and after the graphic.

\startlinecorrection[blank]
\processMPbuffer[yellow,graphic]
\stoplinecorrection

Which mechanism you use, (multiple) buffers or (re)usable graphics, depends on your prefer-
ences. Buffers are slower but don't take memory, while (re)usable graphics are stored in memory
which means that they are accessed faster.

Preliminary Version October 27, 2000 nbe:

3.5

Communicating color

Now that color has moved to the desktop, even simple documents have become more colorful, so
we need a way to consistently apply color to text as well as graphics. In CONTEXT, colors are called
by name.

The next definitions demonstrate that we can define a color using different color models, RGB
or CMYK. Depending on the configuration, CONTEXT will convert one color system to the other, RGB
to CMYK, or vice versa. The full repertoire of color components that can be set is as follows.

\definecolor[color one] [r=.1, g=.2, b=.3]
\definecolor[color two] [c=.4, m=.5, y=.6, k=.7]
\definecolor[color three][s=.8]

The numbers are limited to the range 0..1 and represent percentages. Black is represented by:

\definecolor[black 1] [r=0, g=0, b=0]
\definecolor[black 2] [c=0, m=0, y=0, k=1]
\definecolor[black 3] [s=0]

Predefined colors are passed to METAPOST graphics via the \MPcolor . First we define some colors.

\definecolor[darkyellow][y=.625] % a CMYK color
\definecolor[darkred] [r=.625] % a RGB color
\definecolor[darkgray] [s=.625] % a gray scale

These are the colors we used in this document. The next example uses two of them.

\startuseMPgraphic{color demo}
pickup pencircle scaled 1mm ;
path p ; p := fullcircle xscaled 10cm yscaled 1cm ;
fill p withcolor \MPcolor{darkgray} ;
draw p withcolor \MPcolor{darkred} ;
\stopuseMPgraphic

\useMPgraphic{color demo}

The previous example uses a pure RGB red shade, combined with a gray fill.

< >

Since METAPOST does not support the CMYK color space and native gray scales —although gray
colors are reduced to the more efficient POSTSCRIPT setgray — operators in the output— the macro
\MPcolor takes care of the translation from CMYK to RGB as well as gray to RGB. However, there is
a fundamental difference between a yellow as defined in CONTEXT using CMYK and an RGB yellow
in METAPOST.

\definecolor[cmyyellow] [y=1]
\definecolor[rgbyellow] [r=1,0=1]

philcs Preliminary Version October 27, 2000

\definecolor[cmydarkyellow][y=.625]
\definecolor[rgbdarkyellow][r=.625,9=.625]

Figure 3.2 demonstrates what happens when we multiply colors by a factor. Since we are not
dealing with real CMYK colors, multiplication gives different results for CMYK colors passed as

\MPcolor
-
yellow (1,1,0) (.5,.5,0)
I
\MPcolor{rgbyellow} \MPcolor{rgbdarkyellow} .5\MPcolor{rgbyellow}
-
\MPcolor{cmyyellow} \MPcolor{cmydarkyellow} .5\MPcolor{cmyyellow}

Figure 3.2 All kinds of yellow.

So, .625red is the same as [r=.5] , but .625yellow is not the same as [y=.5] , but matches
[r=.5,0=.5] . Figure 3.3 shows the pure and half reds.

(1,0,0) (.625,0,0)
\MPcolor{red} \MPcolor{darkred} .625\MPcolor{red}

Figure 3.3 Some kinds of red.

In order to prevent problems, we advise you to stick to RGB color specifications when possible.
That way you prevent not only conversion problems, but the also (often obscure) ways printing
and viewing devices handle CMYK.

3.6 Common definitions

When using many graphics, there is a chance that they share common definitions. Such shared
components can be defined by:

\startMPinclusions
color mycolor ; mycolor := .625red ;
\stopMPinclusions

Preliminary Version October 27, 2000 FE mbe

3.7

All MeTAPOST graphics defined in the document end up in the files mpgraph.mp and mprun.mp .
When processed, they produce (sometimes many) graphic files. When using TeXEXEC to process
documents, these two files are processed automatically after a run so that in a next run, the right
graphics are available.

When you are using the web2c¢ distribution, CONTEXT can call METAPOST at runtime and thereby
use the right graphics instantaneously. In order to use this feature, you have to enable \write18
in the file texmf.cnf . Also, in the file cont-sys.tex , that holds local preferences, or in the
document source, you should say:

\runMPgraphicstrue

This enables runtime generation of graphics using the low level TzX command \writel8 . First
make sure that your local brand of TgX supports this feature. A simple test is making a TiX file with
the following line:

\immediate\write18{echo It works}

If this fails, you should consult the manual that comes with your system, locate an expert or ask
around on the CONTEXT mailing list. Of course you can also decide to let TEXEXEC take care of pro-
cessing the graphics afterwards. This has the advantage of being faster but has the disadvantage
that you need additional TgX runs.

If you generate the graphics at run time, you should consider to turn on graphic slot recycling,
which means that you often end up with fewer intermediate files:

\recycleMPslotstrue

There are a few more low level switches and features, but these go beyond the purpose of this
manual. Some of these features, like the option to add tokens to \everyMPgraphic are for
experts only, and fooling around with them can interfere with existing features.

One page graphics

Although all of what is demonstrated in this document is done in CONTEXT, some of the features
discussed here can also be done in plain Tgx. In the Met aFun distribution there is a file called
plainfun.tex , which loads the appropriate CONTEXT modules.

Many low level macros are rather generic, and can be used in plain TgX without problems.
However, the big advantage of using CONTXT is, that graphics can be part of the text flow and
that you can put them on layers. If you don't want this, and only want to make stand alone
graphics, you may still consider using CONTgXT for that purpose.

Another advantage is that when using CONTEXT you don’t have to bother about specials, font
inclusion and all those nasty things that can spoil a good day. An example of such a graphic is
the file mfun-888 that resides on the computer of the author.

% output=pdftex

\setupcolors
[state=start]

s Preliminary Version October 27, 2000

3.8

\setupMPpage
[offset=1pt,
background=color,
backgroundcolor=gray]

\definecolor [gray] [s=.625]
\definecolor [red] [r=.625]
\definecolor [yellow] [r=.625,9=.625]

\startuseMPgraphic{test}
fill fullsquare rotated 45 scaled 4cm withcolor \MPcolor{yellow} ;
\stopuseMPgraphic

\starttext

\startMPpage

\includeMPgraphic{test}

fill fullcircle scaled 3cm withcolor \MPcolor{red} ;
\stopMPpage

\stoptext

Given that the CONTpXT english interface format is present on your system, you can process this
file with TEXEXEC, for instance using PDFTgX. The --once directive saves some runtime.

texexec --once --pdf mfun-888

You can define many graphics in one file. The TeXEXEC manual describes how to selectively process
pages. If you use PDFTX, you can include individual pages from PDF files:

\placefigure
{A silly figure, demonstrating that stand||alone||graphics
can be made.}
{\externalfigure[mfun-888][page=1]}

In this case the page=1 specification is not really needed. You can scale and manipulate the figure
in any way supported by the macro package that you use.

Managing resources

A graphic consists of curves, either or not filled with a given color. A graphic can also include
text, which means that fonts are used. Finally a graphic can have special effects, like a shaded
fill. Colors, fonts and special effects go under the name resources, since they may demand special
care or support from the viewing or printing device.

When fonts are used, a METAPOST file is not self contained. This means that the postprocess-
ing program has to deal with the fonts. In CONTgXT, the special driver —and PDFTX support is
considered as such— takes care of this. We will discuss text related issues in chapter 1.12.

Special effects, like shading, are supported by dedicated MeTAPOST modules. These are includ-
ed in the CONTpXT distribution and will be discussed later in chapter 8.

Preliminary Version October 27, 2000 0l

.

Figure 3.4 A silly figure, demonstrating
that stand—alone—graphics can be made.

Since METAPOST supports color, an embedded graphic can be rather colorful. However, when
color support is disabled or set up to convert colors to gray scales, CONTEXT will convert the colors
in the graphic to gray scales.

You may wonder what the advantage is of weighted gray conversion. Figure 3.5 shows the
difference between natural colors, weighted gray scaled and straightforward, non-weighted, gray

506

full color weighted gray linear gray

Figure 3.5 The advantage of weighted gray over linear gray.

When we convert color to gray, we use the following formula. This kind of conversion also takes
place in black and white televisions.

G = .30r + .59 + .11b

Preliminary Version October 27, 2000

Enhancing the layout

4.1

One of the most powerful and flexible commands of CONTEXT is \framed . We can use the back-
ground features of this command to invoke and position graphics that adapt themselves to the
current situation. Once understood, overlays will become a natural part of the CONTEXT users
toolkit.

Overlays

Many CONTEXT commands support overlays. The term overlay is a bit confusing, since such an
overlay in most cases will lay under the text. However, because there can be many layers on top
of each other, the term suits its purpose.

When we want to put a METRPOST graphic under some text, we go through a three step process.
First we define the graphic itself:

\startuniqueMPgraphic{demo circle}
path p ;
p := fullcircle xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .85white ;
draw p withpen pencircle scaled 2pt withcolor .625red ;
\stopuniqueMPgraphic

This graphic will adapt itself to the width and height of the overlay. Both \overlaywidth and
\overlayheight are macros that return a dimension followed by a space. The next step is to
register this graphic as an overlay.

\defineoverlay[demo circle][\unigueMPgraphic{demo circle}]

We can now use this overlay in any command that provides the \framed functionality. Since this
graphic is defined as unique, CONTEXT will try to reuse already calculated and embedded graphics
when possible.

\framed[background=demo circle]{This text is overlayed.}

The background can be set to color , screen , an overlay identifier, like demo circle , or a
comma separated list of those.

E Eis text is overlaiegj

The \framed command automatically draws a ruled box, which can be quite useful when debug-
ging a graphic. However, in this case we want to turn the frame off.

\framed
[background=demo circle,frame=0ff]
{This text is overlayed.}

q Eis text is overlaieb

Preliminary Version October 27, 2000 nhanci

<

In this case, it would have made sense to either set the offset to a larger value, or to set
backgroundoffset . In the latter case, the ellipse is positioned outside the frame.

The difference between the three offsets offset , frameoffset and backgroundoffset is
demonstrated in figure 4.1. While the offset is added to the (natural or specified) dimensions
of the content of the box, the other two are applied to the frame and background and don't add to
the dimensions.

In the first row we only set the offset , while in the second row, the (text) offset is set to
3pt . When not specified, the offset has a comfortable default value of .25ex (some 25% of the
height of an x).

\setupframed
[width=.3\textwidth,
background=demo circle]

\startcombination[3*3]

{\framed[offset=none] {\TeX}} {\tt offset=none}
{\framed|offset=overlay] {\Tex}} {\tt offset=overlay}
{\framed[offset=0pt] {\TeX}} {\tt offset=0pt}
{\framed|offset=1pt] {\Tex}} {\tt offset=1pt}
{\framed[offset=2pt] {\TeX}} {\tt offset=2pt}
{\framed|offset=4pt] {\Tex}} {\tt offset=4pt}
{\framed[offset=3pt] {\Tex}} {\tt offset=3pt}
{\framed[frameoffset=3pt] {\Tex}} {\tt frameoffset=3pt}

{\framed[backgroundoffset=3pt]{\TeX}} {\tt backgroundoffset=3pt}
\stopcombination

= TEX = = T — N TX >

offset=none offset=overlay offset=0pt
—— e e | <
offset=1pt offset=2pt offset=4pt
X D > ™ S
offset=3pt frameoffset=3pt backgroundoffset=3pt

Figure 4.1 The three offsets.

As the first row in figure 4.1 demonstrates, instead of a value, one can pass a keyword. The
overlay keyword implies that there is no offset at all and that the lines cover the content. With
none the frame is drawn tight around the content. When the offset is set to Opt or more, the
text is automatically set to at least the height of a line. You can turn this feature of by saying
strut=off . More details can be found in the CONTEXT manual.

In figure 4.2 we have set offset to 3pt , frameoffset to 6pt and backgroundoffset to
9pt . Both the frame and background offset are sort of imaginary, since they don’t contribute to
the size of the box.

layo Preliminary Version October 27, 2000

\ruledhbox
{\framed
[offset=3pt,frameoffset=6pt,backgroundoffset=9pt,
background=screen,backgroundscreen=.85]
{Welcome in the hall of frame!}}

Welcome in the hall of frame!

Figure 4.2 The three offsets.

4.2 Overlay variables
The communication between TgX and embedded MeTRPOST graphics takes place by means of some
macros.
overlay status macro meaning
\overlaywidth the width of the graphic, as calculated from the actual width and back-
ground offset
\overlayheight the height of the graphic, as calculated from the actual height, depth
and background offset
\overlaydepth the depth of the graphic, if available
\overlaycolor the background color, if given
\overlaylinecolor the color of the frame
\overlaylinewidth the width of the frame
The dimensions of the overlay are determined by dimensions of the background, which nor-
mally is the natural size of a \framed . When a background offset is specified, it is added to
overlayheight and overlaywidth
Colors can be converted by \MPcolor and in addition to the macros mentioned, you can use
all macros that expand into a dimension or dimen registers prefixed by the TgX primitive \the
(this and other primitives are explained in “The TgXbook’, by Donald Knuth).
4.3 Stacking overlays

A background can be a gray scale (screen), a color (color), a previously defined overlay identi-
fier, or any combination of these. The next assignments are therefore legal:

\framed[background=color,backgroundcolor=red}{...}
\framed[background=screen,backgroundscreen=.8{...}
\framed[background=circle}{...}
\framed[background={color,cow},backgroundcolor=red}{...}
\framed[background={color,cow,grid},backgroundcolor=red|{...}

In the last three cases of course you have to define circle , cow and grid as overlay. These items
are packed in a comma separated list, which is to be surrounded by {} .

Preliminary Version October 27, 2000 ﬂP i

4.4

Foregrounds

The overlay system is actually a system of layers. Sometimes we are confronted with a situation
in which we want the text behind another layer. This can be achieved by explicitly placing the
foreground layer, as in figure 4.3.

— R —
(lone, two, three, . ..|) (one, two, three, .. .|)
e o W~ 4

frame on top layer frame on
bottom layer

Figure 4.3 Foreground material moved backwards.
The graphic layer is defined as follows:

\startuniqueMPgraphic{backfore}
draw fullcircle
xscaled \overlaywidth yscaled \overlayheight
withpen pencircle scaled 2pt
withcolor .625yellow ;
\stopuniqueMPgraphic

\defineoverlay[backfore][\uniqueMPgraphic{backfore}]
The two framed texts have a slightly different definition. The leftmost graphic is defined as:

\framed
[background=backfore,backgroundoffset=4pt]
{one, two, three, \unknown}

The rightmost graphic is specified as:

\framed
[background={foreground,backfore},backgroundoffset=4pt]
{one, two, three, \unknown}

The current values of the frame color and frame width are passed to the overlay. It often makes
more sense, as well as is more consistent, to use colors defined at the document level.

\startuniqueMPgraphic{super ellipse}
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight
superellipsed .85 ;
pickup pencircle scaled \overlaylinewidth ;
fill p withcolor \MPcolor{\overlaycolor} ;
draw p withcolor \MPcolor{\overlaylinecolor} ;
\stopuniqueMPgraphic

\defineoverlay[super ellipse][\uniqueMPgraphic{super ellipse}]

This background demonstrated that a super ellipse is rather well suited as frame.

elayo Preliminary Version October 27, 2000

4.5

\framed
[background=super ellipse,
frame=off,
width=3cm,
align=middle,
framecolor=darkyellow,
rulethickness=2pt,
backgroundcolor=darkgray]
{\white This is a\Super Ellipsed\\sentence.}

Such a super ellipse looks quite nice and is a good candidate for backgrounds, for which the
superness should be at least .85.

Typesetting graphics

I have run into people who consider it kind of strange when you want to use TzX for non-mathe-
matical typesetting. If you agree with them, you may skip this section with your eyes closed.

One of the CONTEXT presentation styles (number 15, tagged as balls) stepwise builds screens
full of sentences, quotes or concepts, packages in balloons and typeset as a paragraph. We will
demonstrate that TgX can typeset graphics using the following statement.

“As you may know, TgX’s ambassador is a lion, while METRFONT is represented by a lioness.
It is still unclear if they have a relationship, but if so, and if a baby is born, may it enjoy
Met aFun.”

The low level CONTEXT macro \processwords provides a mechanism to treat the individual
words of its argument. The macro is called as follows:

\processwords{As you may know, \TEX's ambassador is a lion,
while {\METAFONT} is represented by a lioness. It is still
unclear if they have a relationship, but if so, and if a

baby is born, may it enjoy \METAFUN.}

In order to perform a task, you should also define a macro \processword , which takes one
argument. The previous quote was typeset with the following definition in place:

\def\processword#1{#1}
A slightly more complicated definition is the following;:
\def\processword#1{\noindent\framed{#1}\space}

We now get:

Preliminary Version October 27, 2000 nhan

|z

’you‘ ’may‘ ‘know, ’TEX s‘ ‘ambassador l @ ’110r1,

whﬂe‘ ‘METHFONT‘ I ‘represented‘ @

but E E and l @ baby

@ lioness.| [It] still ‘unclear if they‘ ‘have‘ @ ‘relat10nsh1p,
‘born, may‘ H ’en]oy‘ ’Mat aFun. ‘

If we can use \framed , we can also use backgrounds.

\def\processword#1%
{\noindent\framed[frame=off,background=lions[{#1} }

We can add a supperellipsed frame using the following definition:

\startuniqueMPgraphic{lions a}
path p ; p := fullsquare
xyscaled (\overlaywidth\overlayheight) superellipsed .85 ;
pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .625yellow ;
\stopuniqueMPgraphic

\defineoverlay[lions][\uniqueMPgraphic{lions a}]

(3 o)) o) (1) mimsndo) 5]) o) i) v o) Gaprsemed
) o] o) 1] o o] e 1) ey (v o) cltinsup) o (4) nd
4]) o) orm,) (] oy Gt

\startuseMPgraphic{lions b}
path p ; p := fullsquare
xyscaled (\overlaywidth,\overlayheight) randomized 5pt ;
pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .625yellow ;
\stopuseMPgraphic

\defineoverlay[lions][\uniqueMPgraphic{lions b}]
NETE
SR

\startuniqueMPgraphic{lions c}
path p ; p := fullsquare
xyscaled (\overlaywidth\overlayheight) squeezed 2pt ;
pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .625yellow ;
\stopuniqueMPgraphic

\defineoverlay[lions][\uniqueMPgraphic{lions c}]

layo Preliminary Version October 27, 2000

4.6

B o Jmay{ Jenow] JixXq fnbassadod J§ ¥ Jion| whild peverow J{ pepresented
By X Boness J{ J{ Bl Juncleaf J{ Moy favd }{ kelationship] bl J{ pof Jind
H K peby J{ o] Jray{ J{ ooy MefaFun{

These paragraphs were typeset with the following settings.

\setupalign[broad, right] % == \veryraggedright
\setupalign[broad, middle] % == \veryraggedcenter
\setupalign[broad, lefff % == \veryraggedleft

The broad increases the raggedness. We defined three different graphics (a, b and c) because
we want some to be unique, which saves some processing. Of course we don't reuse the random
graphics. In the definition of \processword we have to use \noindent because otherwise TgX
will put each graphic on a line of its own. Watch the space at the end of the macro.

Graphics and macros

Because TiX's typographic engine and METAPOST’s graphic engine are separated, interfacing be-
tween them is not as natural as you may expect. In CONTEXT we have tried to integrate both as
good as possible, but using the interface is not always as convenient as it should be. What method
you follow, depends on the problem at hand.

The official METARPOST way to embed TgX code into graphics is to use btex —etex . As soon as
CONTRXT writes the graphic data to the intermediate MeTAPOST file, it looks for these commands.
When it has encountered an etex , CONTEXT will make sure that the text that is to be typeset by Tex
is not expanded. This is what you may expect, because when you would embed those commands
in a stand-along graphic, they would also not be expanded, if only because METAPOST does not
know Tgx. With expansion we mean that TeX commands are replaced by their meaning (which can
be quite extensive).

When METAPOST sees an btex command, it will consult a so called mpx file. This file holds the
METAPOST representation of the text typeset by TgX. Before METRPOST processes a graphic definition
file, it first calls another program that filters the btex commands from the file, and generates a
TeX file from them. Next, this file is processed by TgX, and after that converted to a mpx file. In
CONTEXT we let TeXEXEC take care of this whole process.

Because the btex —etex commands are filtered from the raw METAPOST source code, they can-
not be part of macro definitions and loop constructs. When used that way, only one instance
would be found, while in practice multiple instances may occur.

This drawback is overcome by Met aFun’s textext = command. This commands still uses
btex —etex but writes those commands to a separate file each time it is used. After the first
METAPOST run, this file is merged with the original file, and MeTAPOST is called again. So, at the
cost of an additional run, we can use text typeset by TgX in a more versatile way. Because METAPOST
runs are much faster than TeX runs, the price to pay in terms if run time is acceptable. Opposite to
btex —etex , the TgX code in textext ~ command is expanded, but as long as CONTEXT is used this
is seldom a problem, because most commands are kind of protected.

If we define a graphic with text to be typeset by TgX, there is a good change that this text is not
frozen but passes as argument. A rather TgX like solution for passing arbitrary content to such a
graphic is the following;:

Preliminary Version October 27, 2000 1]? n

\def\Rotated Text#1#2%
{\startuseMPgraphic{Rotated Text}
draw btex #2 etex rotated #1 ;
\stopuseMPgraphic
\useMPgraphic{RotatedText}}

This macro takes two arguments (the # identifies an argument):
\RotatedText{15}{Some Rotated Text}

The text is rotated over 15 degrees counter clockwise.

A
me Rotaked e
90

In CONTEXT we seldom pass settings like the angle of rotation in this way. The next alternative is
therefore better.

\def\RotatedText[#1]#2%
{\setupMPVvariables[RotatedText][rotation=90,#1]%
\startuseMPgraphic{RotatedText}
draw btex #2 etex rotated \MPvar{rotation} ;
\stopuseMPgraphic
\useMPgraphic{RotatedText}}

We now need to pass the angle as a key value pair.
\RotatedText[rotation=-15]{Some Rotated Text}
The rotated text becomes:

Som
Otatey Texs

In this case the graphic is rather simple, but when a large graphic is used, it makes sense to keep
its definition outside the macro. In order to do so, we need a way to pass the argument to the
graphic.

\def\RotatedText[#1]#2%
{\setupMPvariables[Rotated Text][#1]%
\setMPtext{Rotated TextH{#2}%
\useMPgraphic{RotatedText}}

\setupMPvariables[Rotated Text][rotation=90]

\startuseMPgraphic{RotatedText}
draw \MPbetex{RotatedText} rotated \MPvar{rotation} ;
\stopuseMPgraphic

You may wonder why we don't use the variable mechanism here. The main reason is that the text
mechanism offers a few more features, one of which is that is passes the text straight on, without
the danger of unwanted expansion.

layo Preliminary Version October 27, 2000

\RotatedText[rotation=165]{Some Rotated Text}

That this method works equally well is demonstrated below.

X5
UL PS.]QJOEI
o,
There are three ways to access a text defined with \setMPtext . Imagine that we have the follow-

ing definitions:

\setMPtext {1} {Now is this \TeX\ or not.}
\setMPtext {2} {See what happens here.}
\setMPtext {3} {Text streams become pictures.}

The \MPbetex macro returns a btex —etex construct. The \MPstring returns the text as a
METAPOST string, between quotes. The raw text can be fetched with \MPtext

\startMPcode
picture p ; p = \MPbetex {1} ;
picture q ; q := textext(\MPstring{2})

picture r ; r := thelabel("\MPtext {3}",origin) ;

for i=p, boundingbox p : draw i withcolor .625red ; endfor ;
for i=q, boundingbox q : draw i withcolor .625yellow ; endfor ;
for i=r, boundingbox r : draw i withcolor .625white ; endfor ;

currentpicture := currentpicture scaled 2 ;

draw origin withpen pencircle scaled 2.0mm withcolor white ;

draw origin withpen pencircle scaled 1.5mm withcolor black ;
\stopMPcode

The first two lines return text typeset by TzX, while the last line leaves this to METAPOST.

Setrashat Tl OMRiSHEMSHEA or not.

If you watch closely, you will notice that the first (red) alternative is positioned with the baseline
on the origin.

Beatwvil i ppeasdnetd |

This picture demonstrates that we can also position textext ’s and label ’s on the baseline. For
this purpose the repertoire of positioning directives (top , Ift , etc.) is extended with a origin
directive.

picture g ; q = textext.origin(\MPstring{2})
picture r ; r := thelabel.origin("\MPtext {3}",origin) ;

We will now apply this knowledge of text inclusion in graphics to a more advanced example. The
next definitions are the asnwer to a question on the CONTEXT mailinglist with regards to framed
texts with titles.

Preliminary Version October 27, 2000 ﬂP n

—| Zapf (1) I
Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer maga-
zines or the instruction manuals which they get with the purchase

of a PC or software.

In this example, the title is positioned on top of the frame. Title and text are entered as:

\FrameTitle{Zapf (1)}

\StartFrame

Coming back to the use of typefaces in electronic

publishing: many of the new typographers receive their
knowledge and information about the rules of typography from
books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software.
\StopFrame

The implementation is not that complicated and uses the frame commands that are built in
CONTEXT. Instead of letting TiX draw the frame, we use MeETAPOST, which we also use for handling

the title. The graphic is defined as follows:

\startuseMPgraphic{FunnyFrame}
picture p ; numeric w, h, o ;
p := textext.rt(\MPstring{FunnyFrame}) ;
w := OverlayWidth ; h := OverlayHeight ; o := BodyFontSize ;
p = p shifted (20,h-ypart center p) ; draw p ;
drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
draw (20,h)--(0,h)--(0,0)--(w,0)--(w,h)--(xpart urcorner p,h) ;
draw boundingbox p withcolor .625red ;
setbounds currentpicture to unitsquare xyscaled(w,h) ;
\stopuseMPgraphic

The macros that use this graphic combine some techniques of defining macros, using predefined

CONTEXT classes, and passing information to graphics.

\defineoverlay[FunnyFrame][\useMPgraphic{FunnyFrame}]
\defineframedtext[FunnyText][frame=off, background=FunnyFrame]

\def\StartFrame{\startFunnyText}
\def\StopFrame {\stopFunnyText }

\def\FrameTitle#1%
{\setMPtext{FunnyFrame}{\hbox spread lem{\hss\strut#1\hss}}}

\setMPtext{FunnyFrame}}

There is a little bit of low level Tgx code involved, like an horizontal box (\hbox) that stretches one
em-space beyond its natural size (spread lem) with a centered text (to times \hss). We could

also have taken care of the offset in the graphic itself.

layo Preliminary Version October 27, 2000

111

In the previous graphic we calculated the big rectangle taking the small one into account. This
was needed because we don't use a background fill. The next definition does, so there we can use
a more straightforward approach by just drawing (and filling) the small rectangle on top of the
big one.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;

p := textext.rt(\MPstring{FunnyFrame}) ;

a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
0 := BodyFontSize ;

p := p shifted (20,0verlayHeight-ypart center p) ;

drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a randomized (0/2) ;

fill b withcolor .85white ; draw b ;

b := (boundingbox p) randomized (0/8) ;

fill b withcolor .85white ; draw b ;

draw p withcolor black;

setbounds currentpicture to a ;

\stopuseMPgraphic

There is not so much basic instruction, as of now, as there was in the
old days, showing the differences between good and bad typograph-
ic design.

Because we use a random graphic, we cannot on forehand guarantee that the left and right edges
of the small shape touch the horizontal lines in a nice way. The next alternative displaces the small
shape plus text so that its center lays on the line. On the average, this looks better.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
o] BodyFontSize ;
p p shifted (20,0verlayHeight-ypart center p) ;
drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a randomized (0/2) ;
fill b withcolor .85white ; draw b ;

c := center p ;

¢ = b intersectionpoint (c shifted (0,-0)--c shifted(0,0)) ;
p := p shifted (c-center p) ;

b := (boundingbox p) randomized (0/8) ;

fill b withcolor .85white ; draw b ;
draw p withcolor black;

setbounds currentpicture to a ;
\stopuseMPgraphic

Preliminary Version October 27, 2000 Enhancing the layott

There is not so much basic instruction, as of now, as there was in the
old days, showing the differences between good and bad typograph-
ic design.

Yet another definition uses super ellipsed shapes instead of random ones. We need a high degree
of superness (.95) in order to make sure that the curves don’t touch the texts.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;

p = textext.rt(\MPstring{FunnyFrame}) ;

0 := BodyFontSize ;

a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
p := p shifted (20,0verlayHeight-ypart center p) ;

drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a superellipsed .95 ;
fill b withcolor .85white ; draw b ;
b := (boundingbox p) superellipsed .95 ;
fill b withcolor .85white ; draw b ;
draw p withcolor black ;
setbounds currentpicture to a ;
\stopuseMPgraphic

Many people are just fascinated by their PC’s tricks, and think that a
widely—praised program, called up on the screen, will make every-
thing automatic from now on.

There are quite some hard coded values in these graphics, like the linewidths, offsets and colors.
Some of these can be fetched from the \framed environment either by using Tgx macros or di-
mensions, or by using their Met aFun counterparts. In the following table we summarize both the
available METAPOST variables and their TgX counterparts. They may be used intermixed.

METAPOST variable Tx command meaning

OverlayWidth \overlaywidth current width
OverlayHeight \overlayheight current height
OverlayDepth \overlayheight current depth (often zero)
OverlayColor \MPcolor{\overlaycolor} background color
OverlayLineWidth \overlaylinewidth width of the frame
OverlayLineColor \MPcolor{} color of the frame
BaseLineSkip \the\baselineskip main line distance
LineHeight \the\baselineskip idem

BodyFontSize \the\bodyfontsize font size of the running text
StrutHeight \strutheight space above the baseline
StrutDepth \strutdepth space below the baseline

lavo Preliminary Version October 27, 2000

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;

p := textext.rt(\MPstring{FunnyFrame}) ;
0 := BodyFontSize ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;

p := p shifted (20,0verlayHeight-ypart center p) ;

pickup pencircle scaled OverlayLineWidth ;

b := a superellipsed .95 ;

fill b withcolor OverlayColor ;

draw b withcolor OverlayLineColor ;

b := (boundingbox p) superellipsed .95 ;

fill b withcolor OverlayColor ;

draw b withcolor OverlayLineColor ;

draw p withcolor black ;

setbounds currentpicture to a ;
\stopuseMPgraphic

Many people are just fascinated by their PC’s tricks, and think that a widely—praised pro-
gram, called up on the screen, will make everything automatic from now on.

We used the following command to pass the settings:

\setupframedtexts

[FunnyText]

[backgroundcolor=lightgray,
framecolor=darkred,
rulethickness=2pt,
offset=\bodyfontsize,
before={\blank[big,medium},
after={\blank[big]},
width=\textwidth]

In a real implementation, we should also take care of some additional spacing before the text,
which is why we have added more space before than after the framed text.

We demonstrated that when defining graphics that are part of the layout, you need to have
access to information known to the typesetting engine. Take figure 4.4. The line height needs to
match the font and the two thin horizontal should match the x-height. We also need to position
the baseline, being the lowest one of a pair of lines, in such a way that it suits the proportions of
the line as specified by the strut. A strut is an imaginary large character with no width.

\setupbodyfont[lbr,hw]

\startMPenvironment \setupbodyfont[lbr,hw] \stopMPenvironment

\startMPpage
StartPage ;
path p ; numeric |, n ; | := 1.5LineHeight ; n := 0 ;

p := origin shifted (1,0) -- origin shifted (PaperWidth-1,0) ;

Preliminary Version October 27, 2000 nhan

aq

<
o

Howrore o oy vt

Howaret TPy ot 3t

How e e T ooy Vit 5t

Howaret T oy vt 5

Howmre e ‘ . v v ates s

Howoret] trercodieds Ty ot st

Howaret T ooy vt 5

Hownre o £ b2y ot

Howoret T oy ot 10

Howoret] T ooy vt 5t TT

Howmre o oy vt

Howaret Ty ot st T

Howoret] e T ooy Vit 5t T4

Howaret TPy ot st 16

Howwre e ‘ vt Ty vyt

Howoret] trercotieds T Wy ot T

Howaret T ooy vt 5t T

Howmre e ‘ v Ty ot

Howoret torercotieds Ty ot T

Howaret T ooy vt 5t

Howore s oy vt

Howaret TPy ot st 3

Howoret] T ooy Vit 5t

Howrore o Ty vt s

Howaret TPy ot 3t

Howoret] e T ooy vt 5t

Howaret T oy vt 5 0

Howwre e ‘ . s v oz

Howoret] trer oot T Wy ot

Howaret T ooy vt

Howmre e ‘ . v e st 4

Figure 4.4 Penalty lines.

for i=PaperHeight-l step -I until | :
n:=n+1;
drawoptions(withcolor .85white) ;
fill p shifted (0,i+StrutHeight) -- reverse
p shifted (0,i-StrutDepth) -- cycle ;
drawoptions(withpen pencircle scaled .25pt withcolor .5white) ;
draw p shifted (0,i) ; draw p shifted (0,i+ExHeight) ;
draw textext.origin("How are those penalty lines called in english?
| may not steal candies ..." & decimal n) shifted (l,i) ;
endfor ;
StopPage ;
\stopMPpage

This code demonstrates the use of LineHeight , ExHeight , StrutHeight and StrutDepth
We set the interline spacing to 1.5 so that we get a bit more loose layout. The variables mentioned
are set each time a graphic is processed and thereby match the current font settings.

Iﬁ Preliminary Version October 27, 2000

Positional graphics

51

In this chapter, we will explore stepwise some of the more advanced, but also conceptually more
difficult, graphic capabilities of CONTEXT. It took quite some experiments to find the right way to
support these kind of graphics, and you can be sure that in due time extensions will show up.

The concept

After TiX has read a paragraph of text, it will try to break this paragraph into lines. When this is
done, the result is flushed and after that, Tex will check if a page should be split off. As a result,
we can hardly predict how a document will come out. Therefore, when we want graphics to adapt
themselves to this text, we have to deal with this asynchronous feature of TgX in a rather advanced
way. Before we present one way of dealing with this complexity, we will elaborate on the nature
of such graphics.

When Tgx entered the world of typesetting desktop printers were not that common, let alone
color desktop printers. But times have changed and nowadays we want color and graphics, if
possible integrated in the text. To accomplish this several options are open:

1. Use a backend that acts on the typeset text: this is the traditional way, using specials to embed
directives in the DVI output file.

2. Use the power of a second language and pass snippets of code to the backend which takes care
of proper handling of those snippets: impressive results are booked by passing POSTSCRIPT to
the DvI file.

3. Extend TgX in such a way that TeX itself takes care of these issues: this is the way PDFTEX works.

The first method is rather limited, although for business graphics acceptable results are booked.
The second method is very powerful but hardly portable, since it depends on the DVI to POSTSCRIPT
postprocessor. But what about the third method?

There has been some reluctance to divert from traditional TgX and DVI, but since PDFIgX came
around and the lack of a postprocessing stage forced new primitives into the core, the third option
mentioned before more and more became reality. Much of what I will discuss here can be realized
in DVI, using a dedicated postprocessor to extract the information needed. Although we think that
the PDFTEX way is the natural way to go, CONTEXT also supports the same mechanism in DVIL

- ~—~——

lines is a.dvnamic process. The space between words is flexible artd we dan’t know in advance
when a d)or piece of a word —maybe it’s best to talk of typographiinstead— will end
up on the page. It might even cross the page boundary.

In the previous paragraph word and [globs are encircled and connected by an arrow. This
graphic can only be drawn when the positions and dimensions are known which is after the
paragraph is typeset and the best breakpoints are chosen. Because the text must be laid on top of
the graphic, the graphic must precede the first word in the typeset stream or it must be positioned|
on a separate layer. In the latter case it can be calculated directly after the paragraph is typeset, but
in the former case a second pass is needed | Because such graphics are not bound to one paragraph,
the multi-pass option suits better because it gives us more control: the more we know about he

1C

T

Preliminary Version October 27, 2000 Posi

52

final state, the better we can act upon it. Think of graphics on the first page that depend on the
content of the last page pr, as in this paragraph, backgrounds that depend on the typeset text|

It may be clear now that we need some positional information in order to provide features
like the one shown here. The fact that we will act upon in a second pass simplifies the task,
although it forces us to store the positional information in some place between runs. This may
look uncomfortable at first sight, but it also enables us to store some additional information. Now
why is that needed?

A position has no dimensions, it’s just a place somewhere on the page. In order to do tricks
like shown here, we also need to know the height and depth of lines at a specific point as well
as the width of the box(es) we're dealing with. In the encircled examples the dimensions of the
box following the positional node are stored along with the position. In the background example,
we store the current height and depth of the strut (an imaginary character |with maximum height
and depth and no width) along with the current text width.

In order to process the graphics, we tag each point with a name, so that we can attach actions
to those points. In fact they become trigger points. As we will demonstrate, we also need to store
the current page number. This brings the data stored with a point to:

<identifier><pagenumber><x><y><width><height><depth>

The page number is needed in order to let the graphics engine determine boundary conditions.
Backgrounds like shown here can span multiple pages. In order to calculate the right back-
grounds, some additional information must be available, like the top and bottom of the current
text area. In fact these are just normal points that can be saved while processing the split off page.
So, apart from positioning anchors in the text we need anchors on crucial points of the layout.
This means that this kind of support cannot be fully integrated into the TgX kernel, unless we also
add extensive support for layout definitions, and that is probably not what we want.

As soon as something (x, y) shows up, a logical question is where (0, 0) is located. Although
this is a valid question, the answer is less important than you may expect. Even if we know that
(0, 0) is “officially’ located in the bottom left corner of the page, the simple fact that in CONTEXT
we are dealing with a mixed page concept, like paper size and print paper size, or left and right
pages, forces us to think in relative positions instead of absolute ones. Therefore, graphics, even
those that involve multiple positions, are anchored to a position on the layer on which they are
located. The \MPanchor macro takes care of this.

Users who simply want to use these features may wonder why we go into so much detail. The
main reason is that in the end many users will want to go beyond the simple cases, and when
dealing with these issues, you must be aware —and when defining graphics, sometimes needs to
take care too— not only of height, depth and width, but also of the crossing of a page boundary,
and the height and depth of lines. Given that unique identifiers are used for anchor points, in
CONTEXT you can have access to all the information needed.

\ - <
\

Anchors and layers

/
/
N\
In a previous section we saw that some @ were @ and connected by an As with
most things in CONTEXT, marking these words is separated from declaring what to'de“with those

words. This paragraph is keyed in as:

YT

hics Preliminary Version October 27, 2000

117

In a previous section we saw that some \hpos {X-1} {words} were
\hpos {X-2} {circled} and connected by an \hpos {X-3} {arrow}.

As with most things in \CONTEXT, marking these words is separated
from declaring what to do with those words. This paragraph is keyed
in as:

We see three so called position anchors, each marked by an identifier: X-1, X-2 and X-3 . Each of
these anchors can be associated with a (series) of graphic operations. Here we defined:

\setMPpositiongraphic{X-1}{mypos:arrow}{to=X-2}
\setMPpositiongraphic{X-2}{mypos:arrow}{to=X-3}

These examples clearly demonstrate that we are not in complete control over to what extend
graphics will cover text and vise versa. A solution to this problem is using so called position
overlays. We can define such an overlay as follows:

\startpositionoverlay{backgraphics}
\setMPpositiongraphic{G-1{mypos:circle}
\setMPpositiongraphic{G-2}{mypos:circle}
\setMPpositiongraphic{G-3{mypos:circle}
\setMPpositiongraphic{G-4}{mypos:circle}

\stoppositionoverlay

\startpositionoverlay{foregraphics}
\setMPpositiongraphic{G-1{mypos:line{to=G-2}
\setMPpositiongraphic{G-2{mypos:line{to=G-3}
\setMPpositiongraphic{G-3{mypos:line{to=G-4}

\stoppositionoverlay

First we have defined an(overlay, This gverlay can be attached to some overlay layer, like, in our
case, the (page—We-definefour-small-circles—These are drawn as soon as the page overlay is
typeset. Becatse they are located in the background, they don’t cover theftext, while the lines do.
The previous paragraph was typeset by saying:

First we have defined an \hpos {G-1} {overlay}. This

overlay can be attached to some overlay layer, like, in our
case, the \hpos {G-2} {page}. We define four small \hpos
{G-3} {circles}. These are drawn as soon as the page
overlay is typeset. Because they are located in the
background, they don’t cover the \hpos {G-4} {text}, while
the lines do. The previous paragraph was typeset by saying:

As said, the circles are on the background layer, but the lines are not! They are positioned on top
of the text. This is a direct result of the definition of the page background:

\defineoverlay [foregraphics] [\positionoverlay{foregraphics}]
\defineoverlay [backgraphics] [\positionoverlay{backgraphics}]

\setupbackgrounds

[page]
[background={backgraphics,foreground,foregraphics}]

Preliminary Version October 27, 2000 Positional'graphics

118

In this definition, the predefined overlay foreground inserts the page data itself, so the fore-
ground graphics end up on top. This example also demonstrates that you should be well aware
of the way CONTXT builds a page. There are six main layers, in some cases with sublayers. The
body text goes into the main text layer, which, unless forced otherwise, lays on top.

1. paper background 3. page backgrounds 5. logo areas
2. area backgrounds 4. text areas 6. main text

The paper background is used for special (sometimes internal) purposes. There are three page
backgrounds: left, right and both. The text areas, logo areas and backgrounds are a 5 x 5 matrices:
leftedge, leftmargin, text, rightmargin, rightedge x top, header, text, footer and bottom. The main
text is what you are reading now.

Since the page background is applied last, the previous layers can considered to be the fore-
ground to the page background layer. And, indeed, it is available as an overlay under the name
foreground , as we already saw in the example. Foregrounds are available in most cases, but (for
the moment) not when we are dealing with the text area. Since anchoring the graphics is imple-
mented rather independent of the position of the graphics themselves, this is no real problem, we
can put them all on the page layer, if needed in separate overlays.

How is such a graphic defined? In fact these graphics are a special case of the already present
mechanism of including METAPOST graphics. The circles are defined as follows:

\startMPpositiongraphic{mypos:circle}
initialize_box(\MPpos{\MPvar{self}}) ;
path p ; p := lixy..Irxy..urxy..ulxy..cycle ;
pickup pencircle scaled 1pt ;
fill p withcolor .800white ;
draw p withcolor .625yellow ;
anchor_box(\MPanchor{\MPvar{self}}) ;

\stopMPpositiongraphic

Drawing the lines is handled in a similar fashion.

\startMPpositiongraphic{mypos:line}
path pa, pb, pab ; numeric na, nb ;
initialize_box(\MPpos{\MPvar{from}}) ;
na := nxy ; pa := lIxy.Irxy..urxy..ulxy..cycle ;
initialize_box(\MPpos{\MPvar{to}}) ;
nb := nxy ; pb := IlIxy..Irxy..urxy..ulxy..cycle ;
if na=nb :
pab
pab
pab := pab cutafter (pab intersectionpoint pb) ;
pickup pencircle scaled 1pt ;
draw pab withcolor .625yellow ;
anchor_box(\MPanchor{\MPvar{from}}) ;
fi ;
\stopMPpositiongraphic

center pa -- center pb ;
pab cutbefore (pab intersectionpoint pa) ;

The command \startMPpositiongraphic defines a graphic, in this example we have called
it mypos:circle

Positional graphics Preliminary Version October 27, 2000

5.3

The METAPOST macro initialize_box returns the characteristics of the box as identified by
\MPpos . After this call, the corners are available in lIxy , Irxy ,urxy and ulxy . The center is
defined by cxy and the path stored in pxy . When we are finished drawing the graphic, we can
anchor the result with anchor_box . This macro automatically handles positioning on specific
layers.

The position macro \MPpos returns the current characteristics of a position. The previously
defined G positions return:

position page X y width height depth

G-1 121 182.83447pt 370.73158pt 31.94986pt 7.28491pt 2.81995pt
G-2 121 114.09833pt 357.59975pt 21.16978pt 4.84497pt 2.81995pt
G-3 121 244.37132pt 357.59975pt 27.57951pt 7.28491pt 0.21497pt
G-4 121 395.46603pt 344.46791pt 16.29967pt 6.05992pt 0.21497pt

The numbers represent the pagenumber p, the current position (x, y), and the dimensions of the
box (w, h, d) if known. These values are fed directly into MeTAPOST graphics but the individual
components can be asked for by \MPp, \MPx, \MPy, \MPw, \MPh and \MPd.

In the previous definition of the graphic, we saw another macro, \MPvar . When we invoke a
graphic or attach a graphic to a layer, we can pass variables. We can also set specific variables in
other ways, as we will see later.

\setMPpositiongraphic{G-1{mypos:circle}
\setMPpositiongraphic{G-1}{mypos:line{to=G-2}

In the second definition, we let the variable to point to another position. When needed, we
can ask for the value of to by \MPvar{to} . For reasons of convenience, the current position is
assigned automatically to from and self . This means that in the line we saw in the graphic:

initialize_box(\MPpos{\MPvar{self}}) ;

\MPvar{self} will return the current position, which, fed to \MPpos will return the list of
positional numbers. We already warned the reader: this is not an easy chapter.

Some examples

In due time, there will a few more examples here. For that, the interface has to be more frozen
than it currently is.

Preliminary Version October 27, 2000 Posi

1C

rraphics

Preliminary Version October 27, 2000

Page backgrounds

6.1

Especially in interactive documents, adding backgrounds to the page and text areas not only en-
hances readability, but also makes it more convenient to identify header, footers and navigational
areas. In this chapter we will demonstrate that with MmeTAPOST we can go beyond the Tgx based
features present in CONTEXT.

The basic layout

In the CONTEXT manual you can find many details on the composition of the page. When Tgx
typesets text, crossing the page boundary triggers TiX’s output routine. This routine is responsible
for pasting the body text that goes onto a page into the correct area. A simple representation of
such a page is:

The red areas are the header and footer, while the yellow areas contains the text flow. We can turn
headers on and off and/or hide them. For this reason, the header, text and footer areas together
make up the height of the text.

A close look at the left picture will reveal that the two arrows point to the center of the lines.
This is achieved by the top and Ift directives. If we would not have clipped the picture, the
arrow would have stuck half a line width outside the gray area that represents the page. When
constructing such pictures, one should really pay attention to such details, since it pays off in the
overall look and feel of the document.

The vertical arrow represents the top space, while the horizontal arrow denotes the distance
to the back of the cover (back space). By changing their values, you can shift the main body text
on the page. In a double sided layout scheme, the back space is automatically mirrored on even
pages.

Since we want to teach a bit of METAPOST now and then, we will also show how these graphics
were drawn. An advanced METAPOST user may wonder why we hard code the dimensions, and

Preliminary Version October 27, 2000 c

122

avoid METAPOST’s powerful mechanisms for defining relations. Our experience has taught us that
in pictures like this, providing a general solution seldom pays large dividents or savings in time.

\startuseMPgraphic{layout 1}
pickup pencircle scaled 1mm ;
fill unitsquare xyscaled (7cm,8cm)
withcolor .85white ;
fill unitsquare xyscaled (5cm,5cm) shifted (1cm,1.5cm)
withcolor .625yellow ;
fill unitsquare xyscaled (5cm,1cm) shifted (1cm,.5cm)
withcolor .625red ;
fill unitsquare xyscaled (5cm,lcm) shifted (1cm,6.5cm)
withcolor .625red ;
draw unitsquare xyscaled (5cm,7cm) shifted (1cm,.5cm)
withcolor .25white ;
drawarrow (2cm,8cm) -- top (2cm,7.5cm) ;
drawarrow (Ocm,7cm) -- Ift (1cm,7cm) ;
clip currentpicture to unitsquare xyscaled (7cm,8cm) ;
\stopuseMPgraphic

As you can see, the left graphic is defined as a series of rectangles. The xyscaled macro is part
of the CONTgXT files, and saves some typing and space. It is defined as a primary, requiring both
left and right operands.

primarydef p xyscaled q =
p xscaled (xpart q) yscaled (ypart q)
enddef ;

Zooming in on the top left corner only takes a few lines. First we clip the correct part, next we
scale it up, and finally we let the bounding box suit the left picture.

\startuseMPgraphic{layout 2}
\includeMPgraphic{layout 1}
clip currentpicture to unitsquare scaled 3cm shifted (0,5cm) ;
currentpicture := currentpicture scaled 2 shifted (0,-8cm) ;
setbounds currentpicture to unitsquare xyscaled (6cm,8cm) ;
\stopuseMPgraphic

This code demonstrates how you can reuse a graphic inside another one. This strategy can easily
be used to stepwise build (or extend) graphics. The two graphics were put side by side with the
following command. Watch the use of line correction commands. They optimize the white space
around the graphic.

\startlinecorrection[blank]
\hbox
{\useMPgraphic{layout 1}hskiplcm
\useMPgraphic{layout 2}}
\stoplinecorrection

Page backgrounds Preliminary Version October 27, 2000

123

As soon as you want to make an electronic document, you will want to use different areas of the
screen for different purposes: text, menus, buttons, etc. For this reason, CONTEXT provides not only
left and right margins, but also additional left and right edge areas and top and bottom margins.
These areas are shown in the figure on the next page.

When defining this graphic, all areas have related dimensions. Here it makes sense to let
METAPOST calculate these dimensions as much as possible. First we define the five by five matrix
of areas. We pass the width and height of the main text area. Because they are stored in TX
dimension registers, we have to prefix them by \the .

pickup pencircle scaled 2pt ;

numeric w[], h[], X[I, y[l, u ; u

numeric width ; width
numeric height ; height := \theltextheight ;

.5cm

= \theltextwidth ;

We now specify the lower left corners using = instead of the := , which means that MeTAPOST Will

calculate w[3] and h[3]

for us.

w[l] = 2u ; w[2] = 3u ; w[4] = 3u ; w[5] = 2u ;

h[1] = 1u ; h[2] = 1u

; h[4] = 1u ;

h[5] = 1u ;

w[1]+w[2]+w[3]+w[4]+w[5]+4u = width
= height ;

h[1]+h[2]+h[3]+h[4]+h[5]+4u

X[1] = 1lu ;

X[2] = x[1] + w[1]
X[3] = x[2] + w[2]
X[4] = x[3] + w[3]
X[5] = x[4] + w[4]

+ + + +

.5u
.5u
.5u
.5u

; yl4]
; yI[5]

y[1l] = 1u
; y[2] = y[1]
; Y38l =

+

h[1]
y[2] + h[2]
y[3] + hi3]
y[4] + h[4]

+ + + +

Su g
Su
Su g
Su g

Because we are going to repeat ourselves, we draw the areas using a macro. Depending on its

importance, we color it red or yellow.

def do_it (expr xx, yy, cc) =

draw unitsquare

xyscaled (w[xx],h[yy]) shifted (X[xx],y[yy])

withcolor if cc :

enddef ;

fill unitsquare xyscaled (width,height) withcolor .85white;

.625red else :

do_it (1,1,false) ; do_it (5,1,false) ;

do_ it (2,1,false) ; do_it (3,1,false) ; do_it (4,1,false) ;

do it (1,2,false) ; do_it (5,2,false) ;

do_it (2,2,true) ; do_it (3,2,true) ; do_it (4,2,true) ;

do_it (1,3,false) ; do_it (5,3,false) ;

do_it (2,3,true) ; do_it (3,3,true) ; do_it (4,3,true) ;

do_it (1,4,false) ; do_it (5,4,false) ;

do_ it (2,4,true) ; do_it (3,4,true) ; do_it (4,4,true) ;

Preliminary Version October 27, 2000

.625yellow fi ;

Page backgrounds

edge margin text margin edge

p]| | | | | | .

header | || | | I | L]
text

footer | || | | I | L]

bottom | || | | | | L]

age bad u ZH Preliminary Version October 27, 2000

6.2

do_it (1,5false) ; do_it (5,5false) ;
do_it (2,5,false) ; do_it (3,5,false) ; do_it (4,5,false) ;

This picture in itself is not yet explanatory, so we add some labels. Again, we use a macro, which
we feed with a picture generated by TgX. Since these pictures are filtered from the source and pre-
processed, we cannot embed the btex —etex in the macro do_it and pass a string. It has to be
done this way.

def do_it (expr yy, tt) =
path p ;
p := unitsquare xyscaled (w[1],h[yy]) shifted (X[1],ylyy]) ;
label.Ift(tt, center p shifted (-w[1]/2-u-.25cm,0)) ;

enddef ;

do_it (1,btex bottom etex) ;
do_it (2,btex footer etex) ;
do_it (3,btex text etex) ;
do_it (4,btex header etex) ;
do_it (5,btex top etex) ;

In the horizontal direction we have edges, margins and text. There are left and right edges and
margins, which are swapped on even pages when you typeset a double sided document.

def do_it (expr xx, tt) =
path p ;
p := unitsquare xyscaled (w[xx],h[1]) shifted (x[xx],y[1]) ;
label(tt, center p shifted (0,height-h[1]/2)) ;

enddef ;

do_ it (1,btex edge etex) ;
do_it (2,btex margin etex) ;
do_ it (3,btex text etex) ;
do_it (4,btex margin etex) ;
do_ it (5,btex edge etex) ;

Since we want the graphic to match the dimensions of the text area of the current page, we have to
make sure that the bounding box is adapted accordingly. By this action, the labels will fall outside
the bounding box. When we directly embed a graphic, this works ok, but when we start scaling
and reusing, due to the object reuse mechanism the graphic will be clipped to the bounding box.

setbounds currentpicture to
unitsquare xyscaled (width,height) ;

In the following sections we will demonstrate how you can put graphics behind these 25 areas, as
well as behind the (left and right) page.

Setting up backgrounds

One way of protecting a document for unwanted usage is to put an annoying word in the back-
ground. If you like this, you may try the following. The macro ysized is part of the macros that
come with CONTEXT and scales a picture to a specific size.

Preliminary Version October 27, 2000

126

\startuniqueMPgraphic{concept}
draw btex \bf CONCEPT etex rotated 60 withcolor .8white ;
currentpicture := currentpicture ysized (\overlayheight-.5cm) ;
\stopuniqueMPgraphic

\defineoverlay[concept][\uniqueMPgraphic{concept}]
You can now put this graphic in the page background by saying:
\setupbackgrounds[page][background=concept]

You may consider the next alternative a bit better, but still it renders the text unreadable. Like
xysized , the macro enlarged is not part of standard MeTAPOST, but comes with CONTEXT.

\startuniqueMPgraphic{copyright}
picture p ; p = btex COPYRIGHT etex rotated 90 ;
setbounds p to boundingbox p enlarged 1pt ;
draw p withcolor .8white ;
currentpicture := currentpicture
xysized (\overlaywidth\overlayheight) ;
\stopuniqueMPgraphic

\defineoverlay[copyright][\uniqueMPgraphic{copyright}]

Again, we put this graphic in the background. By using a unique graphic, we make sure that it’s
rendered only once. and reused when possible.

\setupbackgroundsJtext][rightmargin][background=copyright]

In both cases, we slightly scale down the graphic. We do so because otherwise a small portion
of the text if clipped off. This is unrelated to TgX or METAPOST, but a characteristic of the font.
Compare the following Palatino, Computer Modern and Times 0’s (the Palatino is the body font
of this text).

\definefont[fP][Palatino-Roman at 5cm]
\definefont[fC][ComputerModern at 5cm]
\definefont[fT][Times-Roman at 5cm]
{\showboxes\hbox{\hbox{\fP oP\hbox{\fC oRlhbox{\fT o}}}

The dashed line is the baseline. Watch how the bounding boxes differ and sometimes cross the
shape. So, in order not to loose part of a glyph when clipping, you need to add a bit space.
Figure 6.1 shows the two backgrounds in action.

Page backgrounds Preliminary Version October 27, 2000

Edward R. Tufte

Edward R Tufte

apacity to select,

Donald E. Knuth

Douglas R. Hostadter

Donald Knuth has sp pas

e underlying

concept copyright

Figure 6.1 Two examples of annoying backgrounds.

If you really want to add such texts to a document, in CONTEXT we don’t have to use

the page background, but can use one of the layout areas instead (like [text][text] or
[text][leftmargin])
\setupframedtexts
[FunnyText]

[backgroundcolor=lightgray,
framecolor=darkred,
rulethickness=2pt,
offset=\bodyfontsize,
before={\blank[big,medium},
after={\blank[big]},
width=\textwidth]

There is one drawback: when your left and rightmargin have different dimensions, the text will
be scaled differently on odd and even pages. Normally this is no problem for a draft.

As an alternative you can use the \setuptexts command and wraps the graphic in a box
with the right dimensions, using code like:

\startuniqueMPgraphic{copyright}
picture p ; p = btex COPYRIGHT etex rotated 90 ;
setbounds p to boundingbox p enlarged 1pt ;
draw p withcolor .8white ;
xyscale_currentpicture(\the\leftmarginwidth,\the\textheight) ;
\stopuniqueMPgraphic

\setuptexttexts [margin] [] [\unigueMPgraphic{copyright}]

Preliminary Version October 27, 2000 c

The graphic goes into the outer margin. The second argument can be used to put something in
the inner margin.

6.3 Multiple overlays
You can stack overlays. Consider the next case, where we assume that you have enabled interac-
tion support using \setupinteraction[state=start]

\setupbackgrounds

[page]
[background={color,nextpage},
backgroundcolor=darkyellow]
Here, the page gets a colored background and a hyperlink to the next page, previously defined
by:

\defineoverlay[nextpage][\overlaybutton{nextpage}]

An \overlaybutton is just a button, with all attributes (color, frame, etc) set to nothing, having
the dimensions of the overlay. The argument is one of the permitted destinations, like nextpage ,
firstpage , SearchDocument and alike.

For efficiency reasons, the backgrounds areas (like [text][text]) are calculated only when
their definition has changed. When a background changes per page, we have to recalculate it
on each page. In the next example, the macro \overlaybutton generates a different button on
each page. But, since we don’t explicitly set the background at each page, there is no way the
background drawing mechanism can know that this button has changed. Therefore, we must
force recalculation with:

\setupbackgrounds[state=repeat]

You can test this concept yourself with the following code. Here we assume that you have a file
called tufte.tex on your system, which is the case if you have CONTEXT installed. However, you
can just as easily use any file having a paragraph of two of text.

\starttext

\setupinteraction[state=start]

\setupbackgrounds[state=repeat]

\defineoverlay[nextpage][\overlaybutton{nextpage}]

\setupbackgrounds]text][text][background=nextpage]

\dorecurse{20}{\input tufte \par}

\stoptext
Note that you can move forward from page to page in the resulting PDF file by clicking on each
page with the mouse. Now compile this file without setting the background state to repeat and
note the difference as you click pages with the mouse.

Setting the state was not needed when we used the page background:

\setupbackgrounds[page][background=nextpage]

age backgr 3 Preliminary Version October 27, 2000

6.4

The \dorecurse macro is handy for testing since it saves us typing. One can nest this macro as
in:

\dorecurse{20}{\dorecurse{10K{Hello World! Npar}

The current step is available in \recurselevel and the depth (nesting level) in \recursedepth

Crossing borders

In many cases, the previously mentioned background areas will suffice, but in the case of more
complicated backgrounds, you may wish to use METRPOST to draw graphics that combine or span
these areas.

At runtime CONTEXT saves information on the layout that can be picked up by MeTAPOST. The
framework for a page graphic is:

StartPage;
% all kind of commands
StopPage ;

Between the StartPage and StopPage command you have access to a wide range of variables:

page PaperHeight PaperWidth
PrintPaperHeight PrintPaperWidth
PageOffset PageDepth

margins TopSpace BackSpace

text MakeupHeight MakeupWidth

vertical TopHeight TopDistance
HeaderHeight HeaderDistance
TextHeight
FooterDistance FooterHeight
BottomDistance BottomHeight

horizontal LeftEdgeWidth LeftEdgeDistance
LeftMarginWidth LeftMarginDistance
TextWidth
RightMarginDistance RightMarginWidth
RightEdgeDistance RightEdgeWidth

Since using these variables to construct paths is not that handy the areas are available as prede-
fined paths, which we will demonstrate here.

In figure 6.2 you see two pages (odd and even) with a background spanning the outer margin
and the text area. You can access an area in two ways. The area itself is available as Area .

StartPage ;
fill Area[Text][Text] withcolor .85white ;
StopPage ;

If you use an area this way, you will notice that it is not positioned at the right place. An Area is
just a rectangle. If you want a positioned area, you should use the Field array:

Preliminary Version October 27, 2000 c

Edward R. Tufte

Edward R. Tufte

edit, single out, structure, highlight, i

ize, synthesize, focus, organize,

i

condense, reduce, boil down, choose, categorize, catalog, classify,lst, abstract, scan, look into,
idelize slate, iscriminte disingish, scren, pigeonhole, pick over,srt,itegrat,blnd,
inspeet, il K

edsuinslemmnm hlghlghi,gmlp pair, merge,
., reduce, boil down, choose, categorize,c

4, flte, I

mrize, itemise, review, ip nto ﬂlplhmlld\,mvw:e ghxwemwlulllnvu;\n m.am

harmonize,

atalog, classify, lst, abstract, scan, look nto,

deallm solat, discriminate, isingish,screen, igeontle, ic over,srt, inegrte, blen,
kip, smooth,

‘marize, itemize, review, dip into, ﬂlptl\lml@\,brvw:e ﬂnu:emw Ic-fﬁ\wughshmxeﬁm

goats.

Donald E. Knuth

Th

enumerate, gl

goats.

Donald E. Knuth

Th

“The separation of any of these four components would have hurt T signifcanty. I 1 had

[

‘The separation of any of these four components would have hurt TEX significantly. If I had.

But a system cannot be successful f it s too strongly influenced by a single person. Once
i fairly robust the real : oy

b

viewpoints undertake their own experiments.

Douglas R. Hostadter

d igh perceived why they
But a system cannot be successful if it s t0o strongly influenced by a single person. Once

viewpoints undertake their own experiments.

Douglas R. Hostadter

Donald

shapes of the letters! thor had
il

y

Shapes of the letters! Seldom has an author had anything remotely like this power to control the.
and.

work. Knuth's Tix

article “The Concept of a Meta-Font”,

available in many countries around the world. By contrast, his METRFONT system for designing.
familiesoftypefaces has not become as well knovn or available.
is " Krth sets orth for the first time the underlying;

available in many countries around the world. By contrast, his MerAFONT syst

hmmumcma Meta—Font”, Knuth ses forthfor the firttime the underlying

Al

as well.
m«d&mlhususmicrknuﬁ\smmamcle thmaresenmpmmsmht\ntlhelmlgt\lbe

However,
e T ﬂm!msmpommmnlhaﬂieelm;htbe

st s

neligence and st
certain important issues raised by “The Concept.

even

Figure 6.2

StartPage ;

y, 1 felt compelled
of a Meta—Font’.

o clarify

ool iligoaca o st theuey 1l compelld o ke s comunents o lcify’
by “The C 2

odd

A background with combined areas.

fill Field[Text][Text] withcolor .85white ;

StopPage ;

The location of an area is available in Location

StartPage ;

fill Area[Text][Text] shifted Location[Text][Text]

withcolor .85white ;
StopPage ;

The following definition fills and draws the margin and text areas.

\startuseMPgraphic{page}
StartPage ;

pickup pencircle scaled 2pt ;

fill Page

withcolor .625white ;

fill Field[OuterMargin][Text] withcolor .850white ;

fill Field[Text]

[Text] withcolor .850white ;

draw Field[OuterMargin][Text] withcolor .625red

draw Field[Text]
StopPage ;
\stopuseMPgraphic

[Text] withcolor .625red

This background is assigned to the page layer by saying:

Preliminary Version October 27, 2000

, so the previous definition is the same as:

\defineoverlay[page][\useMPgraphic{page}]
\setupbackgrounds[page][background=page]

As you can see in figure 6.3, the text is typeset rather tightly between the left and right margins.

i
luce, boil down, choose, categorize, catalog, classif

Ponald E. Knuth

have hurt TgX significantly. 1 I had

The separation of any of these four components would have hurt TEX significantly. If I had

been made, because |

But a system cannot be successful if it is too strongly influenced by a single person. Oned
A P St . e 9

iewpoints undertake their own experiments.

Pouglas R. Hostadter

Ehapes of the letters!

work.
ailable in many countries around the world. By contrast, his METAFONT system for designing

In his article “The Concept of a Meta-Font”,

I exccuted, but in my opinion the artcl is charmingly written as well. However, despite my

brerall enthusias for Knuth's idea and article, there are some points in i that I feel might be

artifical ntelligence and estheti 1 felt compelled o clai
Lertain important issues raised by “The Concept of a Meta-Font”.

even

d perceived why they were
But a system cannot be successful if it is 0o strongly influenced by a single person. Oncd
e P, =5

iewpoints undertake their own experiments.

Douglas R. Hostadter

spes of the letters! Seldom has an author had anything remotely like this power to control thd

wailable in many countries around the world. By contrast, his METAFONT system for designing

In his artcle Meta-Font”,
losophy

A xccuted, but in my opinion the artile i writen as we despite m
breral enthusiasm for Knul's idea and article there are some points i it that I feel might b

important issues raised by “The Concept of a Meta-Font”.

odd

Figure 6.3 A background with split areas.

This can easily be solved by enlarging the areas a bit. The next example demonstrates this on the

text area, which is shown in figure 6.4.

\startuseMPgraphic{page}
StartPage ;
pickup pencircle scaled 2pt ;
fill Page

withcolor .625white ;

fill Field[Text][Text] enlarged .5cm withcolor .850white ;
draw Field[Text][Text] enlarged .5cm withcolor .625red ;

StopPage ;
\stopuseMPgraphic

The enlarged macro can be used like shifted

and accepts either a numeric or a pair.

How do we define a background as in figure 6.2? Because Field provides us the positioned

areas, we can use the corners of those.

\startuseMPgraphic{page}
StartPage ;
path Main ;
if OnRightPage

Main := Ircorner Field[OuterMargin][Text] --
llcorner Field[Text] [Text] --

Preliminary Version October 27, 2000

Edward R. Tufte

edit,single out,structure, highlight, i harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify,lst, abstract, scan, look into,

idelize slate, iscriminte disingish, scren, pigeonhole, pic over,srt,itegat,blnd,

inspect,lter, I

marize, mma.pm mywhm ghxwemw lenlllmm@\, pragig

goats.

Donald E. Knuth

Th

ion of any of npon have hurt TEX signiicanty. 11 had

‘been mad P i
But a system cannot be successful f it s too strongly influenced by a single person. Once
it fairly robust the real : oy

viewpoints undertake their own experiments.

Douglas R. Hostadter

y
shapes ofth eters! thor had
work. Knuth's Tix

around the world. By contrast, his METRFONT system for designing.
htmﬂlzsoﬂypefaeeshas ot become as well known or available.
In s artcle “The Concept of Meta-Font”, Knuth setsfoth for the first time the underlying

il as well. However, despite
m«d&mlhushm\icrknums:dnmdnmcle mmaresempmmsmhtlnt”aelmlgmbe

in ariicial ineligence and esthtic theory 1 et compelled o clarify
certain important issues raised by “The Concept of a Meta-Font".

even

Edward R. Tufte

e«sw.@emsmmm hlghhghi,gmlp pa({,mmmmlusymlvslxebmsm«yn(u

condense, reduce, boil down, choose, categorize, catalog, classify,lst, abstract, scan, look into,

ideaize, slate, discriminae, isingsh,screen, igeontle, ic over,srt, inegrte, bl
+, Bler, lump, ski

marize, itemize, mwwﬁpmﬁpﬂum\ytmﬂmmwwmmsknnnﬂ»e
enumerate, gl
goats.

Donald E. Knuth

Th

‘The separation of any of these four components would have hurt TgX significantly. If I had.

been mad igh perceived why they
But a system cannot be successful if it s t0o strongly influenced by a single person. Once

viewpoints undertake their own experiments.

Douglas R. Hostadter

Donald

Shapes of the letters! Seldom has an author had anything remotely like this power to conrol the.
and

available in many countries around the world. By contrast, his METAFONT system for designing

In s article “The Concept of a Meta-Font”, Knuth sets forth for the fist time the underlying

1
e e ﬂm!msmpommmnll\nneelmg\tbe

el iligoaca o st theuey 1l compelld to clarify
by “The C 2

odd

Figure 6.4 A background with enlarged text area.

ulcorner Field[Text]

[Text]

urcorner Field[OuterMargin][Text] -- cycle ;

else
Main := licorner Field[OuterMargin][Text]
Ircorner Field[Text] [Text] --
urcorner Field[Text] [Text] --
ulcorner Field[OuterMargin][Text] -- cycle ;
fi ;
Main := Main enlarged 6pt ;

pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red

StopPage ;

\stopuseMPgraphic

In this definition we calculate a different path for odd and even pages. When done, we enlarge the
path a bit. If you want to use different offsets in all directions, you can use moved corner points.

\startuseMPgraphic{page}

g

StartPage ;

def somewhere =
(uniformdeviate 1cm,uniformdeviate 1cm)
enddef ;
path Main ;
= Field[Text][Text] Irmoved somewhere --

Main

Preliminary Version October 27, 2000

Field[Text][Text] llmoved somewhere --
Field[Text][Text] ulmoved somewhere --
Field[Text][Text] urmoved somewhere -- cycle ;

pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red
StopPage ;
\stopuseMPgraphic

Here we displace the corners randomly which leads to backgrounds like figure 6.5. The following

definition would have worked as well:

\startuseMPgraphic{page}
StartPage ;

path Main ; Main := Field[Text][Text] randomized 1cm ;

pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red
StopPage ;
\stopuseMPgraphic

Edward R. Tufte

edi, single out, structure, highlight i hesize, focus, organize,
e T categorize, uule;,dzwfy S
ideaize,iclate, discriminate, disingsish, sreen, pigeonhole, pck ovr, sort, integrte blend,
inspect, ite, | outline, sum-
marize, mmunvnwdpmm ﬂlyl.hm gumwu glnm!mm leaf through, skim, refine,

the

goats.

Donald E. Knuth

Th

of any of these e have hurt TgX significantly. 1f | had

been made, because |
But a system cannot be mmeuiuh[iumosnw&\ymﬂumudhy single person. Once

Viewpaints undertake their own experiments.

Douglas R. Hostadter

ipes

work. Knuth's
available in many countries around the world. By contrast, his veTaeoNT system for designing
families of typefaces has not become as well known o availabl

In his asticle “The Concept of a Meta-Font”, Kt s forth for the frs time the underlying

Wemtial ‘written as well. H
overall enthusiasm for Knuth's idea and article, there are some points in it that I feel might be

y
in aniical ineligence and y, 1 felt compelled o clarify
certain important issues raised by “The Cancept of a Meta-Font”.

even

‘marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
e, gl i sepa
goats.

Donald E. Knuth

Th

R i

b

i
per y they
But a system cannot be successful if it s too strongly influenced by a single person. Once.
fairly rob

viewpoints undertake their own experiments.

Douglas R. Hostadter

Donald

e T ST S S Lo s e

avaiable in many countres around ey By contrast, his MeTaFonT system for designing

I his article “The Concept ofa Meta-Fon”, Knuth sts forth for thefirst time the underlying

st opinion
overall enthusiasm for Knuth's ﬂunﬂmﬂ@mmlmwﬂumllﬂuﬂhlmgmbe

A5 g e S e o 5 sy
certain important issues raised by “The Concept of a Meta-Font’”.

odd

Figure 6.5 A random text area.

The previous graphics are defined as usable ones, which means that they will be recalculated
each page. This is rather inefficient when the shapes don’t change. But, using a reusable graphic

Preliminary Version October 27, 2000

134

instead, would result in only one graphic for both pages. Since the layout for the left and right

page differs, another method is needed.

Instead of putting the same graphic on the page layer, we put two different ones on the left

and right page layer.

\defineoverlay[left page] [\useMPgraphic{left page}]
\defineoverlay[right page][\useMPgraphic{right page}]

\setupbackgrounds]leftpage] [background=left page]
\setupbackgrounds[rightpage][background=right page]

Now we only have to split the previously defined graphic into two parts. In order to force consis-

tency, we isolate the code that fills and draws. The left page code looks like:

\startreusableMPgraphic{left page}
StartPage ;
path Main ; Main =
llcorner Field[OuterMargin][Text] --
Ircorner Field[Text] [Text] --
urcorner Field[Text] [Text] --
ulcorner Field[OuterMargin][Text] -- cycle ;
\includeMPgraphic{draw page}
StopPage ;
\stopreusableMPgraphic

The right page text looks similar:

\startreusableMPgraphic{right page}
StartPage ;
path Main ; Main =
Ircorner Field[OuterMargin][Text] --
llcorner Field[Text] [Text] --
ulcorner Field[Text] [Text] --
urcorner Field[OuterMargin][Text] -- cycle ;
\includeMPgraphic{draw page}
StopPage ;
\stopreusableMPgraphic

Watch how we used a reusable graphic first and a simple usable one next.

graphic is not a stand alone graphic.

\startuseMPgraphic{draw page}
Main := Main enlarged 6pt ;
pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red ;

\stopuseMPgraphic

Actually, the next

We have seen some predefined paths and locations. Apart from the Page path, they take two

arguments that specify their position on the layout grid.

Page backgrounds Preliminary Version October 27, 2000

path Area [][] an area similar to a CONTEXT one

pair Location [][] the position of this area
path Field [][] the area positioned at theright place
path Page the page itself

Some less used and more obscure variables are the following.

numeric Hstep [] the horizontal distance to the previous area
numeric Vstep [l the horizontal distance to the previous area
numeric Hsize [] the width of an area
numeric Vsize [] the height of an area

The array variables are accessed by using constants:

horizontal vertical

LeftEdge Top
LeftEdgeSeparator TopSeparator
LeftMargin Header
LeftMarginSeparator =~ HeaderSeparator
Text Text
RightMarginSeparator FooterSeparator
RightMargin Footer
RightEdgeSeparator BottomSeparator
RightEdge Bottom

In addition to these, there are Margin , InnerMargin and OuterMargin ~ which adapt them-
selves to the current odd or even page. The same is true for Edge, InnerEdge and OuterEdge ,
although these will seldom be used, since interactive documents are always single sided.

We started this chapter with spending a lot of code to simulate the page areas. It will be clear
now that in practice this is much easier using the mechanism described here.

In figure 6.6 we see all used areas. Areas that are not used are not drawn (which saves some
testing). This background was defined as:

\startuseMPgraphic{page}
StartPage
for i=Top,Header,Text,Footer,Bottom :
for j=LeftEdge,LeftMargin, Text,RightMargin,RightEdge :
draw Field[i][j] withpen pencircle scaled 2pt withcolor .625red ;
endfor ;
endfor ;
StopPage
\stopuseMPgraphic

We use two nested for loops to step over the areas. A for loop with a step of 1 will fail, be-
cause the indices are defined in a rather special way. On the other hand, the mechanism is rather
tolerant, in the sense that [i][j] and [j][i] are both accepted.

Preliminary Version October 27, 2000 c

|

P [

even

[Edward R Tufte [Edward R Tufte
b everyday capacity pacity to select)
dit,single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize it single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize)
dense, reduce, boil down, choose, categorize, catalog, classify,list, abstract, scan, look into} ondense, reduce, boil down, choose, categorize, catalog, classify, lst, abstract, scan, look into}
dealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, dealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
fnspect,filter, lump, ski i, chunk, ave | i 4, flte, I i, chunk, L it
prarize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine fnarize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refinc
Enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the numerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from th
soats. outs.
[Ponald E. Knuth onald E. Knuth
[Mhus, hus,
i firs . , ind first 5
‘The separation of any of these four components would have hurt TeX significantly. 1 I hat ‘The separation of any of these four components would have hurt TEX significantly. 1f I ha
ly in all thes 5, s of impr would never hav fully in al y p s
been made, because I would never have thought of them or perceived why they were important d ght of them y they
But a system cannot be successful if it s too strongly influenced by a single person. On But a system cannot be successful if it is too strongly influenced by a single person. Once
lete and fairly robust, the real differen e initial design fairly robust, the real many different
Lieswpoints undertake their own experiments. Liewpoints undertake their own experiments.
Douglas R. Hostadter Douglas R. Hostadter
d P many onald Knuth has spent the p
P y y
hapes of the letters! Seldom has an author had anything remotely like this poser to control th hapes of the leters! Seldom has an author had anything remotely like this power to control the
inal appearance of his or her work. Knuth's T typesetting system has become well-known an inal appearance of his or her work. Knuth's T typesetting system has become well-known ang
wailable in many countries around the world. By contrast, his METRZONT system for designiny wailable in many countries around the world. By contrast, his METAFoNT system for designing
families of typefaces has not become as well known or available. Families of typefaces has ot become as well known or available.
In his article “The Concept of a Meta-Font”, Knuth sets forth for the frst time the underlying In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
Pl onT, sopl il s products
vell executed, but in my opinion the article s charmingly written as well. However, despite my ell executed, but in my opinion the article s charmingly written as well. However, despite m
bverall enthusiasm for Knuth's idea and article, there are some points in it that I feel might b werall enthusiasm for Knuth's idea and article, there are some points in it that I feel might b
d P
in artificial intelligence and esthetic theory, 1 felt compelled to make some comments to clarify n artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
bertain important issues raised by “The Concept of a Meta-Font” ertain important issues raised by “The Concept of a Meta-Fon”.

odd

Figure 6.6 A quick way to draw all used areas.

Advanced features

Coming up with some more advanced graphics is not so much a problem of definition, as well as
knowing how to combine features. Here we will demonstrate how page backgrounds can contain
foreground graphics (like menus).

Preliminary Version October 27, 2000

Shapes, symbols and buttons

71

One can use mMeTAPOST to define symbols and enhance buttons. Here we introduce some of the
gadgets that come with CONTEXT, as well as explain how to integrate such gadgets yourself.

Interfacing to TEX

In the early days of METAPOST support in CONTEXT, Tobias Burnus asked me if it was possible to
define English rules. What exactly does an english rule look like? Here is one:

As you can see, such a rule has to adapt itself to the current text width, normally \hsize in TgX,
or on request \localhsize in CONTEXT. We need to set the height to a reasonable size, related to
the font size, and we also need to take care of proper spacing. Of course we want to run METAPOST
as less times as possible, so we need to use unique graphics. Let’s start with the graphic.

\setupMPvariables
[EnglishRule]
[height=1eX,

width=\localhsize,
color=darkgray]

\startuniqueMPgraphic{EnglishRule}{height,width,color}

height = \MPvar{height} ;

x1 = 0 ; x3 = \MPvar{width} ; x2 = x4 = .5x3 ;

yl =y3 =0 ; y2 = -y4 = height/2 ;

fill z1..z2..z23 & z3..z4..z1 & cycle withcolor \MPvar{color} ;
\stopuniqueMPgraphic

As you can see, we pass two arguments to the graphic definition. The first argument is the name,
the second argument is a comma separated list of variables. This list serves two purposes. First
this list is used to create a unique profile for the graphic. This means that when we change the
value of a variable, a new graphic is generated that reflects the change. A second purpose of the
list is to convert TgX data structures into METRPOST ones, especially dimensions and colors. The
graphic itself is not that spectacular. We use & because we don’t want smooth connections.

\defineblank
[EnglishRule]
[medium]

\def\EnglishRule%
{\startlinecorrection[EnglishRule]
\setlocalhsize \noindent \reuseMPgraphic{EnglishRule}
\stoplinecorrection}

When setting the variables, we used \localhsize . This variable is set by \setlocalhsize

We need to use \noindent , a rather familiar TzX primitive, that we use here to start a non indent-
ed paragraph, being the graphic. The line correction is needed to get the spacing around the rule
(graphic) right. We pass a blank skip identifier that is mapped to a convenient medium skip.

Preliminary Version October 27, 2000 hapes, symbo

s

72

Why is this called an English line?

\startnarrower
\EnglishRule
Is it because they cannot draw a straight one? This
could be true after a few strong beers, but then, how
do Germans draw a line?
\EnglishRule
\stopnarrower

As expected, the rule adapts itself to the current width of the text. The height of the rule in the
middle matches the height of a character with no ascenders and descenders.
Why is this called an English line?

Is it because they cannot draw a straight one? This could be true after a few strong beers,
but then, how do Germans draw a line?

Random graphics

Given enough time and paper, we can probably give you some

T LT JHT JHT L JHT LHT T AT JHT LA THT HET T LT T LT AT JHT JHT LA LT JHE LT JHT T AT JHT I JHT T JHT I T
JHT LU LHE JHT JHTJHT LHT LT JHT JHT AT T W AT T LHT AT JHT JHTE T LI JHT I LT JHT AT AT JHT JHT T LHT T LA T
JHT AT JHT LHT JHT LHT AT JHT JHT LA JHT LT T LT LHT LT HHT LRT AT LHT AT JHT AT LHEJHT JHT T LHT JHT JHT JHT AT LT T
LHT AT LHT LHE T LHT T LHT LHT LAE L AT T T JHT JHT T JHT T JHT LHT LHT JHT LT JHT LT T LHE LHT JHT T T L1 I
LI JHT LK JAT I LT T LHT W LT JHT HAT AT LT T LU LT T LT T JHT T JHT I AT T JHE T T U1 LT T T
JHT JHT JHT KT AT JHT JHT LHT JHEJHT LHT JHT LHT LT JHT I JHT LT LHE T HT LT LT HHT LHE LHT LHT LT JHT I |

reasons why METAPOST is fun. To mention a few: you can enhance the layout with graphic or-
naments, you can tune your graphics at runtime, and simple high quality graphics can be very
effective.

The previous graphics draws exactly 1001 lines in a scratch-numbers-in-a-wall fashion. In
1998, the NTG did a survey among its members, and in the report, we used this fuzzy counter to
enhance the rather dull tables.

system % #users

Atari 104 M|

MSDOS 49.1 HT JHTLHT A LHE JHT LT IHT LHE KT 1]
0s/2 9.4 MWt

MacOS 57 M|

UNIX 51.9 LM HT L T AT T IHT T LT LT

WINDOWS 64.2 W T LU LHT It AT LHT LT JHT LHT LHT T LHE L1

Table 7.1 Operating system (n=106).

Table 7.1 demonstrates how scratch numbers can be used. An interesting side effect is that when
you look long enough to these kind of graphics, it looks like the lines are no longer horizontal.
This table is defined as follows:

ols and buttons Preliminary Version October 27, 2000

139

\starttabulate[|l|c|l|]

\HL

\NC system \NC \% \NC W users \NC\NR
\HL

\NC Atari \NC 10.4 \NC \useMPgraphic{fuzzycount}{n=11} \NC\NR
\NC MSDOS \NC 49.1 \NC \useMPgraphic{fuzzycounti{n=52} \NC\NR
\NC 0OS/2 \NC 9.4 \NC \useMPgraphic{fuzzycounti{n=10} \NC\NR
\NC MacOS \NC 75.7 \NC \useMPgraphic{fuzzycount{n= 6} \NC\NR
\NC UNIX \NC 51.9 \NC \useMPgraphic{fuzzycount}{n=55} \NC\NR
\NC WINDOWS \NC 64.2 \NC \useMPgraphic{fuzzycount{n=68} \NC\NR
\HL

\stoptabulate

You will notice that we pass a variable to the graphic using a second argument. We can access this
variable with \MPvar . The graphic is defined as usable graphic, because we want to generate a
unique random one each time.

\startuseMPgraphic{fuzzycount}
begingroup
save height, span, drift, d, cp ;
height := 3/ 5 * \baselinedistance ;
span = 1/ 3 * height ;
drift := 1/10 * height ;
pickup pencircle scaled (1/12 * height) ;
def d = (uniformdeviate drift) enddef ;
for i := 1 upto \MPvar{n} :
draw
if (i mod 5)=0 : ((-d-4.5span,d)--(+d-0.5span,height-d))
else : ((-d,+d)--(+d,height-d)) fi
shifted (span*i,d-drift) ;
endfor;
picture cp ; cp := currentpicture ; % for readability
setbounds currentpicture to
(llcorner cp shifted (0,-ypart llcorner cp) --
Ircorner cp shifted (0,-ypart Ircorner cp) --
urcorner cp -- ulcorner cp -- cycle) ;
endgroup ;
\stopuseMPgraphic

The core of the macro is the for loop. Within this loop, we draw groups of four plus one lines.
The draw path’s look a bit complicated, but this has to do with the fact that a modreturns 0 — 4
while we like to deal with 1 — 5.
The height adapts itself to the height of the line. The bounding box correction at the end
ensures that the baseline is consistent and that the random vertical offsets fall below the baseline.
Because we want to be sure that n has a value, we preset it by saying:

\setupMPvariables[fuzzycount][n=10]

Preliminary Version October 27, 2000 Shapes, symbols and/buttons

In the table, it makes sense to adapt the drawing to the lineheight, but a more general solution is
to adapt the height to the fontsize.

height := 3/ 4 * \the \bodyfontsize * \currentfontscale ;

In the table we called the graphic directly, but how about making it available as a conversion
macro? In CONTEXT this is not that hard:

\def\fuzzycount#1{{\tx\useMPgraphic{fuzzycount{n=#1}}}
\defineconversion[fuzzy][\fuzzycount]

Because such a counter should not be that large, we use \tx to switch to a smaller font. This also
demonstrates how the graphic adapt itself to the font size.

We can now use this conversion for instance is an itemize. To save space we use three columns
and no white space between the lines. The 2*broad directive makes sure that we have enough
room for the number.

. one m. four M. seven
Il two . five Wi eight
1. three Il six Wil nine

\startitemize[fuzzy,pack,2*broad,columns,three]
\item one \item two \item three

\item four \item five \item six

\item seven \item eight \item nine
\stopitemize

A careful reader will have noticed that the previous definition of the fuzzy counter drawing is not
suited to generate the graphics we started with.

\useMPgraphic{fuzzycount}{n=1001}

This time we want to limit the width to the current \hsize . We only need to add a few lines of
code. Watch how we don't recalculate the bounding box when more lines are used.

\startuseMPgraphic{fuzzycount}
begingroup
save height, vstep, hsize, span, drift, d, cp ;
height := 3/ 4 * \the \bodyfontsize * \currentfontscale ;

span = 1/ 3 * height ;
drift := 1/10 * height ;
hsize := \the\hsize ;

vstep := \thellineheight ;
Xmax = hsize div 5span ;

pickup pencircle scaled (1/12 * height) ;
def d = (uniformdeviate drift) enddef ;
for i ;= 1 upto \MPvar{n} :

xpos = ((i-1) mod (5*xmax))*span ;
ypos = ((i-1) div (5*xmax))*vstep ;
draw

0ls and buttons Preliminary Version October 27, 2000

if (i mod 5)=0 : ((-d-4.5span,d)--(+d-0.5span,height-d))

else : ((-d,+d)--(+d,height-d)) fi
shifted (xpos,-ypos+d-drift) ;
endfor;

picture cp ; cp := currentpicture ;
if (ypart ulcorner cp - ypart llcorner cp) <= vstep :
setbounds currentpicture to

(lcorner cp shifted (0,-ypart licorner cp) --
Ircorner cp shifted (0,-ypart Ircorner cp) --
urcorner cp -- ulcorner cp -- cycle) ;

fi

endgroup ;

\stopuseMPgraphic

7.3 Graphic variables

In the previous sections we have seen that we can pass information to the graphic by means of
variables. How exactly does this mechanism work?
To do: an explanation of the : mechanism to pass variables.

74 Shape libraries

Unfortunately it takes some effort to define graphics, attach them to an overlay, and invoke the
background. However, the good news is that since in many cases we want a consistent layout, we
only have to do it once. The next table has some hashed backgrounds. (More information about
how to define tables can be found in the CONTXT documentation and Up-To-Date documents.)

(00}
=
=
(@)
S5}

Table 7.2 A hashed table.
This table is defined as:

\bTABLE[frame=off, meta:hash:linecolor=darkyellow,offset=3ex]

\bTR
\bTD[background=meta:hash:right] right \eTD
\bTD[background=meta:hash:left] left \eTD

\bTD[background=meta:hash:horizontal] horizontal \eTD
\bTD[background=meta:hash:vertical] vertical \eTD
\eTR
\eTABLE

The graphics themselves are defined in a METAPOST module. In this particular example, the macro
some_hash is defined in the file mp-back.mp . This macro takes six arguments:

some_hash (width, height, linewidth, linecolor, angle, gap) ;

Preliminary Version October 27, 2000 hapes, symba

Ik

Because we don’t want to define a specific overlay for each color and linewidth, we will use vari-
ables in the definition of the unique graphic.

\startuniqueMPgraphic{meta:hash}{linewidth,linecolor,angle,gap}
input mp-back ;
some_hash (\overlaywidth, \overlayheight ,
\MPvar{linewidth}, \MPvar{linecolor} ,
\MPvar{angle}, \MPvar{gap}) ;
\stopuniqueMPgraphic

These variables are preset using \setupMPvariables

\setupMPvariables
[meta:hash]
[gap=.25\bodyfontsize,
angle=45,
linewidth=\overlaylinewidth,
linecolor=\overlaylinecolor]

The last step in this process is to define the different alternatives as overlays:
\defimetahashoverlay#1{\uniqueMPgraphic{meta:hash}{angle=#1}}

\defineoverlay[meta:hash:right] [\metahashoverlay{ +45}]
\defineoverlay[meta:hash:left] [\metahashoverlay{ -45}]
\defineoverlay[meta:hash:horizontal][\metahashoverlay{+180}]
\defineoverlay[meta:hash:vertical] [\metahashoverlay{ -90}]

As we can see in the definition of the table, we can pass settings to the \DTABLE command. Ac-
tually, we can pass such settings to each command that supports backgrounds, or more precisely
\framed . Table 7.3 is for instance defined as:

\bTABLE[frame=off,meta:hash:linewidth=.4pt,align=middle,offset=2ex]
\bTR
\bTD[background={meta:hash:left,meta:hash:right},
meta:hash:linecolor=darkyellow]
left \par \& \par right \eTD
\bTD[background={meta:hash:horizontal,meta:hash:vertical},
meta:hash:linecolor=darkred]
horizontal \par \& \par vertical \eTD
\eTR
\eTABLE

The long names are somewhat cumbersome, but in that way we can prevent name clashes. Also,
since the METAPOST interface is english, the variables are also english.

TTT TT
T T
TTT TT
T T
T T

| Z{

&

t
wrvm
.

s
s
T
s

Table 7.3 A double hashed table.

Is'and buttons Preliminary Version October 27, 2000

7.5

Symbol collections

In CONTEXT, a symbol can de defined without much coding. The advantage of using symbols is
that you can redefine them depending on the situation. So,

\definesymbol [yes] \em Yes!]

creates a symbol, that lets \symbol[yes] expand into Yes! Since nearly anything can be a sym-
bol, we can also say:

\definesymbol [yes] [\mathematics{\star}]

or even the already defined symbol , by saying:
\definesymbol [yes] [{\symbol[star]}]

It may be clear that we can use a graphic as well:
\defimetabuttonsymbol#1{\unigueMPgraphic{meta:button}{type=#1}}

\definesymbol[menu:left] [\metabuttonsymbol{101}]
\definesymbol[menu:right] [\metabuttonsymbol{102}]
\definesymbol[menu:list] [\metabuttonsymbol{103}]
\definesymbol[menu:index] [\metabuttonsymbol{104}]
\definesymbol[menu:person][\metabuttonsymbol{105}]
\definesymbol[menu:stop] [\metabuttonsymbol{106}]
\definesymbol[menu:info] [\metabuttonsymbol{107}]
\definesymbol[menu:down] [\metabuttonsymbol{108}]
\definesymbol[menu:up] [\metabuttonsymbol{109}]
\definesymbol[menu:print] [\metabuttonsymbol{110}]

Since we have collected some nice buttons in a METAPOST file already, we can use a rather simple
definition:

\startuniqueMPgraphic{meta:button}{type,size,linecolorfillcolor}
input mp-butt ;
some_button (\MPvar{type},
\MPvar{size},
\MPvar{linecolor},
\MPvarf{fillcolor}) ;
\stopuniqueMPgraphic

This leaves a few settings:

\setupMPvariables

[meta:button]

[type=1,
size=2\bodyfontsize,
fillcolor=gray,
linecolor=darkred]

These symbols are collected in table 7.4, and are called up with the CONTEXT commands like
\symbol[menu:left] . If needed, we can collect these button symbols in a so called symbol
set, which permits us to instantly switch between sets with similar symbols.

143

Preliminary Version October 27, 2000 Shapes, symbolsand buttons

<

>

Fy

left

18

|

right

list

index person

X

v] [V] [A] [B

stop

info down up print

Table 7.4 A collection of button symbols.

Preliminary Version October 27, 2000

Special effects

8.1

Sometimes we want to go beyond METAPOST’s native features. An example of such an extension
is shading. Although features like this should be used with care, sometimes the documents look
and feel can profit from it.

If you don’t want the whole graphic, but only a part of it, clipping comes into play. In addition
to the standard clipping features, we can use METAPOST to provide a decent clipping path. In this
chapter we will uncover the details.

Shading

In this section we introduce different kind of shadings. Since METAPOST does not support this
feature directly, we have to fall back on a few tricks. For the moment shading is only supported
in PDF. In the following examples, we will use the next three colors:

\definecolor[a][darkyellow]
\definecolor[b][s=.8]
\definecolor[c][darkred]

A shade is a fill with a stepwise change in color. In POSTSCRIPT (level 2), the way this color changes
can be circular, linear, or according to a user defined function. Circular and linear shades look
like this:

1

As you can see, the shade lays behind the text, as background overlay. These overlays are unique
METAPOST graphics, so they will adapt themselves to the dimensions of the foreground.

\defineoverlay|[circular shade][\uniqueMPgraphic{CircularShade}]
\defineoverlay[linear shade] [\uniqueMPgraphic{LinearShade}]

The two framed texts are defined as:

\framed
[background=circular shade,frame=0ff]
{\bf \white Hi there, I'm Circular'}

and:

\framed
[background=linear shade,frame=off]
{\bf \white Whow, this is Linear!}

We still have to define the graphics. Here we use a macro that takes four arguments: a path, a
number identifying the center of shading, and the colors to start and end with.

Preliminary Version October 27, 2000

@l

\startuniqueMPgraphic{CircularShade}
path p ;
p := unitsquare xscaled \overlaywidth yscaled \overlayheight ;
circular_shade(p,0,\MPcolor{a},\MPcolor{b}) ;
\stopuniqueMPgraphic

\startuniqueMPgraphic{LinearShade}
path p ;
p := unitsquare xscaled \overlaywidth yscaled \overlayheight ;
linear_shade(p,0,\MPcolor{a},\MPcolor{b});
\stopuniqueMPgraphic

The METAPOST macros, circular_shade and linear_shade , add information to the METAPOST
output file, which is interpreted by the converter built in CONTEXT. Shading comes down to inter-
polation between two or more points or user supplied ranges. A poor mans way of doing this, is
to build the graphics piecewise with slightly changing colors. But, instead of ‘manually’ stepping
through the color values, we can use the more efficient and generalized POSTSCRIPT level 2 and
PDF level 1.3 shading feature.

circular 0 circular 1 circular 2 circular 3 circular 4

linear 0 linear 1 linear 2 linear 3

Because shading support is not built in MeTAPOST, it has to be implemented using so called spe-
cials, directives that end up in the output file. Unfortunately these are not coupled to the specific
path, which means that we have to do a significant amount of internal bookkeeping. Also, in
PDF we have to make sure that the graphics and their resources (being the shading functions) are
packaged together.

Because of this implementation, shading may behave somewhat unexpected at times. A rather
normal case is the next one, where we place 5 shaded circles in a row.

path p ; p := fullcircle scaled 1lcm ;
for i=0 step 2cm until 8cm :

circular_shade(p shifted (i,0),0,\MPcolor{a},\MPcolor{b}) ;
endfor ;

=.1.5ﬂgrrrml Prelimi Version October 27, 2000
pecial effects - reliminary Version October 27,

At first sight, in the next situation, we would expect something similar, because we simply copy
the same circle 5 times. However, due to the way we have implemented shading in CONTEXT, we
do indeed copy the circles, but the shade definition is frozen and the same one is used for all
5 circles. This means that the center of the shading stays at the first circle.

circular_shade(fullcircle scaled 1cm,0,\MPcolor{a},\MPcolor{b}) ;
picture s ; s := currentpicture ; currentpicture := nullpicture ;
for i=0 step 2cm until 8cm :

addto currentpicture also s shifted (i,0) ;
endfor ;

Unlike TpX, METAPOST does not keep its specials attached to the current path, and flushes them
before the graphic data. Since we use these specials to register shading information, it is rather
hard to tightly connect a specific shade with a certain fill, especially if an already performed fill is
not accessible, which is the case when we copy a picture.

This may seem a disadvantage, but fortunately it also has its positive side. In the next example
we don’t copy, but reuse an already defined shade. By storing the reference to this shade, and
referring to it by using withshade , we can use a shade that operates on multiple shapes.

sh := define_circular_shade
(origin,origin,0,8cm,\MPcolor{a},\MPcolor{b}) ;
for i=0 step 2cm until 8cm :
fill fullcircle scaled 1cm shifted (i,0) withshade sh ;
endfor ;

The low level macro define_circular_shade is fed with two pairs (points), two radius, and
two colors. The shade is distributed between the colors according to the radius.

Shading can hardly be called an easy issue. The macros that we provide here are in fact sim-
plifications, which means that at a lower level, one can do more advanced things. Here we limit
ourselves to the more common cases. In the previous examples, we used an arrow to indicate the
direction and magnitude of the shade. The next macro demonstrates the principles in a different

way.

def test shade (expr a, b, ra, rb) =
pickup pencircle scaled 1mm ;

color ca ; ca := \MPcolor{a} ;
color cb ; cb := \MPcolor{b} ;
color cc ; cc := \MPcolor{c} ;

fullcircle scaled 2ra shifted a ;
fullcircle scaled 2rb shifted b ;

path pa ; pa :
path pb ; pb :

sh := define_circular_shade(a,b,ra,rb,ca,cb) ;

Preliminary Version October 27, 2000

147

Special effects

fill pb withshade sh ;

draw pb withcolor cc ;

draw pa withcolor cc ;
enddef ;

The shade is distributed between two circles, each with a radius and center point. All four can be
set, but as the next calls demonstrate, we can normally do with less, which is why we provided
the macro with less parameters.

test_shade(origin, origin, Ocm, 1cm) ;
test_shade(origin, origin, .25cm, 1cm) ;

test_shade(origin, origin, .50cm, 1cm) ;

test_shade(origin, origin shifted (.25cm,0), Ocm, 1cm) ;
test_shade(origin, origin shifted (.25cm,0), .25cm, 1cm) ;

test_shade(origin, origin shifted (.25cm,0), .50cm, 1cm) ;

COO®

test_shade(origin shifted (.25cm,0), origin, Ocm, 1cm) ;
test_shade(origin shifted (.25cm,0), origin, .25cm, 1cm) ;

test_shade(origin shifted (.25cm,0), origin, .50cm, 1cm) ;

OICIC

In a similar fashion, we can define linear shaded. This time we only pass two points and two
colors.

def test shade (expr a, b) =
pickup pencircle scaled 1mm ;

Preliminary Version October 27, 2000

8.2

color ca ; ca := \MPcolor{a} ;
color cb ; cb := \MPcolor{b} ;
color cc ; cc := \MPcolor{c} ;

sh := define_linear_shade(a,b,ca,cb) ;

fill fullsquare scaled 2cm withshade sh ;
draw a withcolor cc ;
draw b withcolor cc ;

enddef ;

Although one can control shading to a large extend, in practice only a few cases really make sense.
test_shade(origin, origin shifted (1cm,0)) ;
test_shade(origin shifted (-1cm,0), origin shifted (1cm,0)) ;

test_shade(origin shifted (-1cm,-1cm), origin shifted (1cm,lcm)) ;

EER

Clipping

In this chapter we will use the graphic representation (although simplified) of a Dutch cow to
demonstrate clipping.

Figure 8.1 A cow.

Since this cow is defined as a METRPOST graphic, we use the suffix mpsinstead of eps or a number,
although CONTEXT will recognize each as being METAPOST output. The placement of the cow is
defined as:

\placefigure
{A cow.}
{\externalfigure[cow.mps][width=4cm]}

Clipping is combined with a matrix, as in figure 8.2. The content to be clipped is divided in nx by
ny rectangles. For instance, nx=5 and ny=8 will produce a 40 cell grid with 5 columns of 8 rows.

Preliminary Version October 27, 2000 E{#

1)

11 3,1

Figure 8.2 A clipped cow.

Here we have divided the cow in six cells, so that we can clip its head and tail. This kind of
clipping enables you to zoom in or focus on a specific part of a graphic.

\setupclipping[nx=3,ny=2]

\startcombination
{\clip[x=1,y=1}\externalfigure[cow.mps][width=4cm]}} {1,1}
{\clip[x=3,y=1]{\externalfigure[cow.mps][width=4cm]}} {3,1}

\stopcombination

Alternatively, we can specify a width , height , hoffset and voffset , as demonstrated in
figure 8.3.

n

Figure 8.3 Another clipped cow.

\placefigure
[here][fig:clipped cow 2]
{Another clipped cow.}
{\clip
[width=2cm,height=2cm, hoffset=0cm,voffset=0cm]
{\externalfigure[cow.mps][width=4cm]}}

Because METAPOST supports clipping, it will be no surprise that both techniques can be combined.
In the next example we will zoom in on the head of the cow. We also use this opportunity to
demonstrate how you can package a clip in a figure definition.

\startMPclip{head clip}

w := \width ; h := \height ;

clip currentpicture to
((0,h)--(w,h){down}. {left}(0,0)--cycle) ;

\stopMPclip

\placefigure
[here][fig:circular clipped cowhead]
{A quarter circle applied to a cows head.}
{\ruledhbox
{\clip
[nx=2,ny=2,x=1,y=1,mp=head clip]
{\externalfigure[cow.mps][width=4cm]}}}

fe

Preliminary Version October 27, 2000

A more advanced clip is demonstrated in figure 8.4. We added \ruledhbox to demonstrate the
dimensions of the resulting graphic. Putting something in such a ruled box is often a quick way

to test spacing.

Figure 8.4 A quarter circle applied to a cows head.

Although a clip path definition can contain any METAPOST command, even graphics, it must con-
tain at least one clipping path. The first one encountered in the resulting graphic is used. In the
example we used a path that is built out of three subpaths.

(0,h)--(w,h){down}. .{left}(0,0)--cycle

We start in the top left corner and draw a straight line. Next we draw a curve to the origin.
Directives like down and right force the curve in a certain direction. With cycle we close the
path. Because we use this path as a clipping path, we use clip instead of draw or fill

Clipping as such is not limited to graphics. Take for instance the text buffer:

\startbuffer[sample]
\framed
[align=middle,width=4cm,background=screen,frame=0ff]
{A \METAPOST\ clip is not the same as a video clip,
although we can use \METAPOST\ to produce a video clip.}
\stopbuffer

We can call up such a buffer as if it were an external figure. Figure 8.5 shows the result. This time
we use a different clip path:

\startMPclip{text clip}
clip currentpicture to fullcircle shifted (.5,.5)
xscaled \width yscaled \height ;
\stopMPclip

To load a buffer, we have to specify its name and type, as in:

\placefigure
[here][fig:clipped text 1]
{A clipped buffer (text).}
{\clip
[nx=1,ny=1,mp=text clip]
{\externalfigure[sample][type=Dbuffer,width=4cm]}}

Preliminary Version October 27, 2000

Pd

fe

METAPOST clip is 1.
the same as a video
clip, although we
can use METAPOST to
‘nduce a video ¢V

Figure 8.5 A clipped buffer (text).

The next few lines demonstrate that we can combine techniques like backgrounds and clip-
ping.

\startuseMPgraphic{clip outline}

draw fullcircle
xscaled \overlaywidth yscaled \overlayheight
withpen pencircle scaled 4mm
withcolor .625red ;

\stopuseMPgraphic

\defineoverlay[clip outline]\useMPgraphic{clip outline}]

\placefigure
[here][fig:clipped text 2]
{A clipped buffer (text).}
{\framed
[background=clip outline,offset=overlay,frame=0ff]
{\clip
[nx=1,ny=1,mp=text clip]
{\externalfigure[sample][type=buffer,width=4cm]}}}

We could have avoided the \framed here, by using the clip outline overlay as a background
of the sample. In that case, the resulting linewidth would have been 2.5 mm instead of 5 mm,
since the clipping path goes through the center of the line.

METAPOST clip 1S
the same as a video
clip, although we
can use METAPOST to
oduce a video cla

Figure 8.6 A clipped buffer (text).

In most cases, the clip path will be a rather simple path and defining such a path every time you
need it, can be annoying. Figure 8.7 shows a collection of predefined clipping paths. These are
available after loading the MeTRPOST clipping library.

\useMPlibrary[clp]

We already saw how the circular clipping path was defined. The diamond is defined in a similar
way, using the predefined path diamond :

Preliminary Version October 27, 2000

\startMPclip{diamond}
clip currentpicture to unitdiamond
xscaled \width yscaled \height ;
\stopMPclip

The definition of the negated ellipse (negellipse) uses the primary peepholed . This primary
is defined in one of the METAPOST modules that come with CONTEXT.

\startMPclip{negellipse}
clip currentpicture to (unitcircle peepholed unitsquare)
xscaled \width yscaled \height ;
\stopMPclip

The definition of peepholed is rather dirty and using peepholed is restricted to well defined
situations (like here). It’s called a primary because it acts as an operator at the same level as * and

scaled .
Ihhauuiprel
urellipse ulellipse llellipse Irellipse ellipse :gellipj
av >
tellipse bellipse lellipse rellipse
h A4 U9 €12
urtriangle ultriangle lltriangle Irtriangle diamond negdiaﬁ

Figure 8.7 A collection of predefined clipping paths.

8.3 Patterns

Like shades, patterns can be implemented using specials. Before I discuss this, I first have to sort
out how this can be implemented in a comfortable way.

8.4 Fonts

This section will demonstrate how we can manipulate fonts in MeTAPOST. Don’t expect too much
from this section.

Preliminary Version October 27, 2000

Pg

fe

Preliminary Version October 27, 2000

Typesetting in METAPOST

91

You can add text to MeTAPOST graphics, and you can choose whether or not to have it typeset by
TgX. Let’s take a closer look at how this —in itself a rather tricky feature— is implemented.

The process

9.2

You can let METAPOST process text that is typeset by Tgx. Such text is first embedded in the METAPOST
file in the following way:

btex Some text to be typeset by \TEX etex

This returns a picture, but only after METAPOST has made sure that TgX has converted it into some-
thing useful. This process of conversion is slightly system dependent and even a bit obscure.
First MeTAPOST calls a program that filters the btex —etex commands, next it calls TgX by passing
the output routine, in order to make sure that each piece of text ends up on its own page, and
afterwards it again calls a program that converts the DVI pages into METAPOST pictures.

In CONTEXT, when using WEB2C, you can generate the graphics at run—time. This takes more
time than processing the graphics afterwards, but has the advantage that TeX knows immediately
what graphic it is dealing with. When enabled, CONTEXT will call either MeETAPOST, o1, when the
graphic contains btex —etex commands, call TeXEXEC, which in turn makes sure that the right
auxiliary programs are executed.

v

v

v

TEXEXEC CONTEXT TEXEXEC CONTEXT

v v

METAPOST METAPOST

Figure 9.1 How TiX and METAPOST work together.

Environments

In case you want to pass code that is shared by all btex —etex pictures, METRPOST provides:
verbatimtex \DefineSomeCommands etex ;

However, in CONTEXT one has a better mechanism available. The advantage of using that method
is that otherwise all graphics let METAPOST (or TEXEXEC) invoke TgX, even if no TgX pictures are
constructed. The best way to pass environments is the following. As an example we switch to the
15 basic POSTSCRIPT fonts.

\startMPenvironment
\setupbodyfont[pos]
\stopMPenvironment

Preliminary Version October 27, 2000 ypesetti

This means that in code like the following, a Times Roman will be used.

\startMPcode

draw btex Meta is a female lion! etex
xysized (\thel\textwidth,\the\textheight) ;

\stopMPcode

We have included the graphic on the next page in a slightly different look. You may consider
coloring the dots to be an exercise in clipping.

An environment can be reset with \resetMPenvironment or by passing reset as key to
\startMPenvironment

\startMPenvironment[reset]
\setupbodyfont[pos]
\stopMPenvironment

Labels

In METAPOST you can use the label macro to position text at certain points.
label("x", origin) ;

The font and scale are determined by two variables, defaultfont and defaultscale , the
former expecting the name of a font in the form of a string, the latter expecting a numeric to
be used in the scaling of the font. Should you choose not to set these yourself, they default to
"cmrl0" and 1.0 , respectively. However, you can change the defaults as follows:

"tir"
1.2 ;

defaultfont
defaultscale

These settings select Adobe Times at about 12pt. You can also set these variables to CONTEXT
related values. For CONTEXT graphics they are set to:

defaultfont := "\truefontname{Regular}" ;
defaultscale \the\bodyfontsize/10 ;

This means that they will adapt themselves to the current body font (in this document uplr8t) and
the current size of the bodyfont (here 10.0pt/10).

TEX text

In the next example we will use a special mechanism for building graphics step by step. The ad-
vantage of this method is that we can do intermediate calculations in TzX. Our objective is to write
a macro that draws text along a circular path. While doing so we want to achieve the following;:

e the text should be properly kerned, i.e. the spacing between characters should be optimal,
e the position on the circle should vary, and
e the radius of the circle should vary.

-+

2]

ETAPOST Preliminary Version October 27, 2000

This implementation is not the most straightforward one, but by doing it step by step, at least we
see what is involved. Later, we will see a better method. If you run these examples yourself, you
must make sure that the TgX environment of your document matches the one used by METAPOST.
Here we used:

\startMPenvironment
\setupbodyfont[loc,mt,ppl,pcr,10pt]
\definefont[RotFont][RegularBold]

\stopMPenvironment

We let the bodyfont match the font used in this document, and define RotFont to be the regular
typeface, the one you are reading right now, but bold.

Since METAPOST is unaware of kerning, we have to use TiX to keep track of the positions. We
will split the text into tokens (often characters) and store the result in an array of pictures (pic).
We will also store the accumulated width in an array (len). The number of characters is stored
in n. In a few paragraphs we will see why the other arrays are needed.

While defining the graphic, we need TgX to do some calculations. Therefore, we will use
\startMPdrawing to stepwise construct the definition. The basic pattern we will follow is:

\resetMPdrawing
\startMPdrawing
metapost code
\stopMPdrawing
tex code
\startMPdrawing
metapost code
\stopMPdrawing
\MPdrawingdonetrue
\getMPdrawing

In the process, we will use a few variables. We will store the individual characters of the text in
the variable pic , it’s width in wid and the length of the string so far in len . Later we will use
the pos array to store the position where a character ends up. The variable n holds the number of
tokens.

\resetMPdrawing
\startMPdrawing

picture pic[] ;

numeric wid[], len[], pos[], n ;

wid[0] := len[0] := pos[0] := n := 0 ;
\stopMPdrawing

We also started fresh by resetting the drawing. From now on, each start command will add some
more to this graphic. The next macro is responsible for collecting the data. Each element is passed
on to TgX, using the btex construct. So, MeTAPOST itself will call Tx!

\def\whatever#1%
{\appendtoks#1\to\MPtoks
\setbox\MPbox=\hbox{\bfd\the\MPtoks}%

1ng

ETAPOST Preliminary Version October 27, 2000

159

\startMPdrawing

n:=n+1; len[n] := \the\wd\MPbox ;
\stopMPdrawing
\startMPdrawing]-]

pic[n] := btex \bfd#1 etex ;
\stopMPdrawing}

\handletokens MetaPost is Fun'\with\whatever

We use the low level CONTEXT macro \appendtoks to extend the token list \MPtoks . The
\handletokens macro passes each token (character) of MetaPost is Fun! to the macro
\whatever . The tokens are appended to the token register \MPtoks (already defined). Then
we typeset the content of \MPtoks in \MPbox (also already defined). The width of the box is
passed to METAPOST and stored in len .

By default the content of the drawing is expanded, which means that the macro is replaced
by its current meaning, so the current width ends up in the MeTAPosT file. The next part of the
drawing, starting with btex , puts the token in a picture. This time we don’t expand the drawing,
since we want to pass font information. Here, the [-] suppresses expansion of btex \bfd #1
etex . The process is iterated by \handletokens for each character of the text MetaPost is
Fun! .

Before we typeset the text, now available in pieces in pic , in a circle, we will first demonstrate
what they look like. You may like to take a look at the file mpgraph.mp to see what is passed to
METAPOST.

\startMPdrawing
pair len ; len := origin ;
for i=1 upto n :
draw pic[i] shifted len ;
draw boundingbox pic[i] shifted len
withpen pencircle scaled .25pt withcolor red ;

len := len+(xpart Ircorner pic[i]-xpart llcorner picJi],0) ;
endfor ;
\stopMPdrawing

We can call up this drawing with \getMPdrawing , but first we inform the compiler that our
METAPOST drawing is completed.

\MPdrawingdonetrue\getMPdrawing

This results in:

MetaPost is Fun!

Compare this text with the text as typeset by Tx:

MetaPost is Fun!

and you will see that the text produced by METAPOST is not properly kerned. When putting charac-
ters after each other, TgX uses the information available in the font, to optimize the spacing between
characters, while METAPOST looks at characters as separate entities. But, since we have stored the

Preliminary Version October 27, 2000 Typesettingin METAPOST

160

optimal spacing in len , we can let METAPOST do a better job. Let’s first calculate the correction
needed.

\startMPdrawing
for i=1 upto n :
wid[i] := abs(xpart Ircorner pic[i] - xpart llcorner pic[i]) ;
pos[i] := len[i]-wid[i] ;
endfor ;
\stopMPdrawing

This compares well to the text as typeset by Tgx:

MetaPost is Fun!

We can now use the values in pos to position the pictures according to what TgX considered to be
the best (relative) position.

\startMPdrawing
for i=1 upto n :
draw pic]i] shifted (pos[i],0) ;
draw boundingbox pic[i] shifted (posi],0)
withpen pencircle scaled .25pt withcolor red ;
endfor ;
\stopMPdrawing

That this correction is adequate, is demonstrated in the next graphic. If you look closely, you will
see that for instance the ‘0’ is moved to the left, under the capital 'P’.

When we want to position the pictures along a circle, we need to apply some rotations, espe-
cially because we want to go clockwise. Since we don’t want to use ‘complicated” math or more
advanced MeTAPOST code yet, we will do it in steps.

\startMPdrawing
for i=1 upto n:
pic[i] := pic]i] rotatedaround(origin,-270) ;
endfor ;
\stopMPdrawing

P O B L.

We will now center the pictures around the baseline. Centering comes down to shifting over half
the height of the picture. This can be expressed by:

ypart -.5[ulcorner pic[i],llcorner pic[i]]

but different ways of calculating the distance are possible too.

Typesetting in METAPOST, Preliminary Version October 27, 2000

\startMPdrawing
for i=1 upto n :
pic[i] := pic[i]
shifted (0,ypart -.5[ulcorner picJi],llcorner picl[i]]) ;
endfor ;
\stopMPdrawing

So, now we have:

S et o HLS o

When we typeset on a (half) circle, we should map the actual length onto a partial circle. We
denote the radius with an r and shift the pictures to the left.

\startMPdrawing
r .= len[n]/Pi ;
for i=1 upto n :
pic[i] := pic][i] shifted (-r,0) ;
endfor ;
\stopMPdrawing

You can now use the following code to test the current state of the pictures. Of course this code
should not end up in the final definitions.

\startMPdrawing
draw origin
withpen pencircle scaled 5pt withcolor red ;
for i=1 upto n :
draw picli] ;
draw boundingbox picJi]
withpen pencircle scaled .25pt withcolor red ;
endfor ;
\stopMPdrawing

I
Later we will write a compact, efficient macro to take care of rotation. However, for the moment,

so as not to overwhelm you with complicated code, we will rotate each individual picture with
the following code fragment.

\startMPdrawing
numeric delta, extra, radius, rot[] ;

delta := extra := radius := 0 ;

for i=1 upto n :
rot[i] := extra+delta-((pos[i]+.5wid[i])/len[n])*(180+2delta) ;
endfor ;
\stopMPdrawing

=
=

Preliminary Version October 27, 2000 Vpese

Here we introduce a few variables that we can use later to tune the result a bit. With delta , the
space between the characters can be increased, while extra rotates the whole string around the
origin. The radius variable can be used to increase the distance to the origin. Without these
variables, the assignment would have been:

rot[i] := ((pos]i]+.5wid[i])/len[n])*180 ;
Placing the pictures is now rather easy:

\startMPdrawing
for i=1 upto n :
draw picl[i] shifted (-radius,0) rotatedaround(origin,rot[i]) ;
endfor ;
\stopMPdrawing

The pictures are now positioned on half a circle, properly kerned.

This was defined as follows. The path variable tcycle is predefined to the top half of a fullcircle.

\startMPdrawing
def moved(expr i) =
shifted (-radius,0) rotatedaround(origin,rotfi])
enddef ;
pickup pencircle scaled .5pt ;
for i=1 upto n :
draw pic[i] moved(i) ;
draw boundingbox pic[i] moved(i) withcolor red ;
draw origin -- center pic[i] moved(i) withcolor green ;
endfor ;
draw tcircle scaled 2r withcolor blue ;
\stopMPdrawing

We will now package all of this into a nice, efficient macro, using, of course, the predefined scratch
registers \MPtoks and \MPbox . First we define the token processor. Note again the expansion
inhibition switch [-]

/)
=+

ETAPOST Preliminary Version October 27, 2000

163

\def\processrotationtoken#1%

{\appendtoks#1\to\MPtoks
\setbox\MPbox=\hbox{\RotFont\the\MPtoks}%
\startMPdrawing

n:=n+ 1; len[n] = \the\wd\MPbox ;
\stopMPdrawing
\startMPdrawing[-]

pic[n] := btex \RotFont#l etex ;
\stopMPdrawing}

The main macro is a bit more complicated but by using a few scratch numerics, we can keep it
readable.

\def\rotatetokens#1#2#3#4% delta extra radius tokens
{\vbox\bgroup
\MPtoks\emptytoks
\resetMPdrawing
\startMPdrawing
picture pic[] ;
numeric wid, len[], rot ;
numeric delta, extra, radius, n, r ;
len[0] = n =0 ;
delta := #1 ; extra := #2 ; radius = #3 ;
\stopMPdrawing
\handletokens#4\with\processrotationtoken
\startMPdrawing
r := len[n)/Pi ;
for i=1 upto n :
wid := abs(xpart Ircorner pic[i] -
xpart llcorner pic[i]) ;
rot := extra + delta -
((len[i]-.5wid)/len[n]) * (180+2delta) ;
draw picfi]
rotatedaround (origin,-270) shifted (-r-radius,
ypart -.5[ulcorner pic[i], llcorner picli]])
rotatedaround (origin,rot) ;
endfor ;
\stopMPdrawing
\MPdrawingdonetrue
\getMPdrawing
\resetMPdrawing
\egroup}

We can use this macro as follows:

\startcombination[3*1]
{\rotatetokens {0} {OH{OHKDoes it work ok?}} {A}
{\rotatetokens{20} {OHOKXDoes it work ok?}} {B}

Preliminary Version October 27, 2000 Typesetting inMETAPOST,

164

{\rotatetokens{20{301{0}Does it work ok?}} {C}
\stopcombination

qork Qf

]

Wo
“¢

o
~
~N

Qo0es i,

A B C

The previous macro is not really an example of generalization, but we used it for demonstrating
how to build graphics in a stepwise way. If you put the steps in buffers, you can even combine
steps and replace them at will. This is how we made the previous step by step examples: We put
each sub—graphic in a buffer and then called the ones we wanted.

We now present a more general approach to typesetting along a given path. This method is
not only more robust and general, it is also a more compact definition, especially if we omit the
tracing and testing code. We use a familiar auxiliary definition. The \setstrut and \strut
commands ensure that the lines have the proper depth and height.

\def\processfollowingtoken#1%
{\appendtoks#1\to\MPtoks
\setbox\MPbox=\hbox{\RotFont\setstrut\strut\the\MPtoks}%

\startMPdrawing
n:=n+1; lenn] := \the\wd\MPbox ;
\stopMPdrawing
\startMPdrawing[-]
pic[n] := btex \RotFont\setstrut\strut#1 etex ;
\stopMPdrawing}
The definition of \followtokens is as follows. Keep in mind that \RotFont is defined in
the METAPOST environment. You may notice that we have added a directive to include the META-
PosT graphic called followtokens . Storing the path in a graphic container instead of using

\startMPdrawing is less sensitive for interference with other drawing processes.

\def\followtokens#1%
{\wbox\bgroup
\MPtoks\emptytoks
\resetMPdrawing
\startMPdrawing
\includeMPgraphic{followtokens}
picture pic[] ; numeric len[], n ; n == 0 ;
\stopMPdrawing
\handletokens#1\with\processfollowingtoken
\startMPdrawing
numeric al, pl, at, wid, pos ; pair ap, ad ;
al := arclength RotPath ;
pl := (al-len[n])/(n-1) ;
for i=1 upto n :
wid := abs(xpart Ircorner pic[i] - xpart llcorner pic[i]) ;
pos := len[i]-wid/2 + (i-1)*pl ;

Typesetting in METAPOST, Preliminary Version October 27, 2000

at := arctime pos of RotPath ;
ap := point at of RotPath ;
ad := direction at of RotPath ;
draw pic[i]
shifted (-wid/2,0) rotated (angle(ad)) shifted ap ;
endfor ;

\stopMPdrawing

\MPdrawingdonetrue

\getMPdrawing

\resetMPdrawing

\egroup}

So, how does this compare to earlier results? The original, full text as typeset by TgX, looks like:
We now follow some arbitrary path ...
In the examples, the text is typeset along the path with:

\followtokens{We now follow some arbitrary path ...}
We now follow some arbitrary path ...

Since we did not set a path, a dummy path is used. We can provide a path by (re)defining the
graphic followtokens

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := fullcircle ;
\stopuseMPgraphic

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := reverse fullcircle ;
\stopuseMPgraphic

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,-1cm)--(0,1cm)--(3cm,-1cm) ;
\stopuseMPgraphic

Preliminary Version October 27, 2000 Vpesetting 1Fn

9.5

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,0)--(3cm,1cm) ;
\stopuseMPgraphic

SNe]\()W () W Kblt[a[y pa h .o

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,0)..(-1cm,1cm)..(3cm,0) ;
\stopuseMPgraphic

o foneY some arbity,,

Q&

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,0)..(-1cm,1cm)..(Ocm,-2cm)..(3cm,0) ;
\stopuseMPgraphic

W
PR P

7]

=

MO\\

When turned on, tracing will produce bouding boxes as well as draw the path. Tracing can be
turned on by saying:

\startMPinclusions
boolean TraceRot ; TraceRot := true ;
\stopMPinclusions

Talking to TEX

Sometimes, others may say oftentimes, we are in need for some fancy typesetting. If we want
to typeset a paragraph of text in a non standard shape, like a circle, we have to fall back on

ETAPOST Preliminary Version October 27, 2000

\parshape . Unfortunately, TgX is not that strong in providing the specifications of more compli-
cated shapes, unless you are willing to do some complicated arithmetic Tgx. Given that METAPOST
knows how to deal with shapes, the question is: “Can METAPOST be of help?”

In the process of finding out how to deal with this, we first define a simple path. Because
we are going to replace pieces of code, we will compose the graphic from components. First, we
create the path.

\startuseMPgraphic{text path}
path p ; p = ((0,1)..(-1,0)..(1,0)--cycle) scaled 65pt ;
\stopuseMPgraphic

This shape is not that beautiful, but it has a few characteristics that will help us to identify bor-
dercases.

\startuseMPgraphic{text draw}
drawarrow p withpen pencircle scaled 1pt withcolor red ;
\stopuseMPgraphic

Now we use CONTEXT’s \includeMPgraphics command to build our graphic from the previ-
ously defined components.

\startuseMPgraphic{text}
\includeMPgraphic{text path}
\includeMPgraphic{text draw}

\stopuseMPgraphic

When called with \useMPgraphic{text} , we get:

For the moment we start the path at (x = 0, y > 0), but later using more complicated macros, we
will see that we can use arbitrary paths.

We are going to split the path in two, and will use the point that make up the bounding box
as calcutated by mMeTAPOST. The next graphic shows one of these points, the lower left corner,
available as point llcorner p

\startuseMPgraphic{text draw}
draw p withpen pencircle scaled 3pt withcolor red ;
draw boundingbox p withpen pencircle scaled 1pt ;
draw licorner p withpen pencircle scaled 5pt ;
\stopuseMPgraphic

Preliminary Version October 27, 2000 ypese

u
—~
=

dq

B

The five points that METRPOST can report for each path or picture are:

llcorner lower left corner

Ircorner lower right corner

urcorner upper right corner

ulcorner upper left corner

center intersection of the diagonals

If we want to typeset text inside this circle, we need to know where a line starts and ends. Given
that lines are horizontal and straight, we therefore need to calculate the intersection points of the
lines and the path. As a first step, we calculate the top and bottom of the path and after that we
split off the left and right path.

\startuseMPgraphic{text split}
pair t, b ; path |, r ;

t := (ulcorner p -- urcorner p) intersectionpoint p ;
b := (llcorner p -- Ircorner p) intersectionpoint p ;

| := p cutbefore t ; | := | cutafter b ;
r := p cutbefore b ; r := r cutafter t ;
\stopuseMPgraphic

The intersectionpoint macro returns the point where two paths cross. If the paths don't
cross, an error is reported, when the paths cross more times, just one point is returned. The
cutafter and cutbefore commands do as their names say and return a path.

In the text split code fragment, t and b are the top points of the main path, while | and
I become the left and right half of path p.

We now draw the original path using a thick pen and both halves with a thinner pen on top of
the original. The arrows show the direction.

\startuseMPgraphic{text draw}
draw p withpen pencircle scaled 3pt withcolor red ;
drawarrow | withpen pencircle scaled 1pt withcolor green ;
drawarrow r withpen pencircle scaled 1pt withcolor blue ;
\stopuseMPgraphic

We use \includeMPgraphic to assemble the components:

ETAPOST Preliminary Version October 27, 2000

\startuseMPgraphic{text}
\includeMPgraphic{text path}
\includeMPgraphic{text split}
\includeMPgraphic{text draw}

\stopuseMPgraphic

This graphic is typeset with \useMPgraphic{text}

Before we are going to use them, we define some variables that specify the text. We use a baseline
distance of 8 points. The part of the line above the baseline is 7.2 points, while the (maximum)
depth is 2.8 points. These ratios are the ones we use in CONTEXT. Because we don’t want the text to

touch the circle so we also define an offset too.

\startuseMPgraphic{text vars}
baselineskip := 8pt ;
strutheight := (7.2/10) * baselineskip ;

strutdepth ;= (2.8/10) * baselineskip ;
offset = baselineskip/2 ;
topskip := strutheight ;

\stopuseMPgraphic

We more of less achieve the offset by scaling the path. In doing so, we use the width and height,
which we call hsize and vsize , thereby conforming to TzX naming scheme.

First we calculate both dimensions from the bounding box of the path. Next we down scale
the path to compensate for the offset. When done, we recalculate the dimensions.

\startuseMPgraphic{text move}
pair t, b ; path g, I, r ;

hsize := xpart Ircorner p - xpart licorner p ;
vsize := ypart urcorner p - ypart Ircorner p ;

g := p xscaled ((hsize-2offset)/hsize)
yscaled ((vsize-2offset)/vsize) ;

hsize := xpart Ircorner q - xpart licorner q ;
vsize := ypart urcorner g - ypart Ircorner q ;
\stopuseMPgraphic

We adapt the text split code to use the reduced path instead of the original.

Preliminary Version October 27, 2000

\startuseMPgraphic{text split}
t := (ulcorner g -- urcorner () intersectionpoint q ;
b := (llcorner q -- Ircorner q) intersectionpoint q ;

| := g cutbefore t ; | := | cutafter b ;
r ;= g cutbefore b ; r ;= r cutafter t ;
\stopuseMPgraphic

In order to test what we have reached so far, we draw the original path, the left and right part of
the reduced path, and both the top and bottom point.

\startuseMPgraphic{text draw}
drawarrow p withpen pencircle scaled 1pt withcolor red ;
draw t withpen pencircle scaled 2pt ;
draw b withpen pencircle scaled 2pt ;
drawarrow | withpen pencircle scaled 1pt withcolor green ;
drawarrow r withpen pencircle scaled 1pt withcolor blue ;
\stopuseMPgraphic

Again we use \includeMPgraphic to combine the components into a graphic.

\startuseMPgraphic{text}
\includeMPgraphic{text path} \includeMPgraphic{text vars}
\includeMPgraphic{text move} \includeMPgraphic{text split}
\includeMPgraphic{text draw}

\stopuseMPgraphic

Then we use \useMPgraphic{text} to call up the picture.

The offset is not optimal. Note the funny gap at the top. We could try to fix this, but there is a
better way to optimize both paths.

We lower the top edge of q’s bounding box by topskip , then cut any part of the left and right
pieces of q that lie above it. Similarly, we raise the bottom edge and cut off the pieces that fall
below this line.

\startuseMPgraphic{text cutoff}
path tt, bb ;

tt := (ulcorner q -- urcorner q) shifted (0,-topskip) ;
bb := (llcorner g -- Ircorner q) shifted (0,strutdepth) ;

1Fn ETAPOST Preliminary Version October 27, 2000

| cutbefore (I intersectionpoint tt) ;

| cutafter (I intersectionpoint bb) ;

r cutbefore (r intersectionpoint bb) ;
r ;= r cutafter (r intersectionpoint tt) ;

\stopuseMPgraphic

[
| :
r

Because we use \includeMPgraphic to construct the graphic, we can redefine text draw to
show the result of this effort.

\startuseMPgraphic{text draw}
drawarrow p withpen pencircle scaled 1pt withcolor red ;
drawarrow | withpen pencircle scaled 1pt withcolor green ;
drawarrow r withpen pencircle scaled 1pt withcolor blue ;
\stopuseMPgraphic

The text graphic now becomes:

\startuseMPgraphic{text}
\includeMPgraphic{text path} \includeMPgraphic{text vars}
\includeMPgraphic{text move} \includeMPgraphic{text split}
\includeMPgraphic{text cutoff} \includeMPgraphic{text draw}
\stopuseMPgraphic

Or, as graphic:

We are now ready for an attempt to calculate the shape of the text. For each line, we have to
calculate the left and right intersection points, and since a line has a height and depth, we have to
determine which part touches first.

\startuseMPgraphic{text calc}
vardef found_point (expr lin, pat, sig) =
pair a, b ;
a := pat intersection_point (lin shifted (O,strutheight)) ;
if intersection_found :
a := a shifted (0,-strutheight) ;
else :
a := pat intersection_point lin ;
fi ;

b := pat intersection_point (lin shifted (0,-strutdepth)) ;

Preliminary Version October 27, 2000

172

if intersection_found :
if sig :
if xpart b > xpart a : a
else :
if xpart b < xpart a : a
fi ;
fi;
a
enddef ;
\stopuseMPgraphic

b shifted (O,strutdepth) fi ;

b shifted (O,strutdepth) fi ;

Instead of using METAPOST's intersectionpoint macro, we use one that comes with CONTEXT.
That way we don't get an error message when no point is found, and can use a boolean flag to
take further action. Since we use a vardef , all calculations are hidden and the a at the end is
returned, so that we can use this macro in an assignment. The sig variable is used to distinguish
between the beginning and end of a line (the left and right subpath).

\startuseMPgraphic{text step}
path line; pair I, rrr ;

for i=topskip step baselineskip until vsize :
line := (ulcorner q -- urcorner q) shifted (0,-) ;

lll := found_point(line,l,true) ;
rrr = found_point(line,r,false) ;

\stopuseMPgraphic
Here we divide the available space in lines. The first line starts strutheight from the top.

We can now finish our graphic by visualizing the lines. Both the height and depth of the lines
are shown.

\startuseMPgraphic{text line}
fill (--rrr--rrr shifted (0,strutheight)--IlI
shifted (0,strutheight)--cycle) withcolor .Swhite ;
fill (l--rrr--rrr shifted (0,-strutdepth)--IlI
shifted (0,-strutdepth)--cycle) withcolor .7white ;
draw Il withpen pencircle scaled 2pt ;
draw rrr withpen pencircle scaled 2pt ;
draw (lll--rrr) withpen pencircle scaled .5pt ;
\stopuseMPgraphic

\startuseMPgraphic{text done}
endfor ;
\stopuseMPgraphic

The result is still a bit disappointing.

\startuseMPgraphic{text}
\includeMPgraphic{text path} \includeMPgraphic{text vars}
\includeMPgraphic{text move} \includeMPgraphic{text split}

Typesetting in METAPOST, Preliminary Version October 27, 2000

\includeMPgraphic{text cutoff} \includeMPgraphic{text draw}

\includeMPgraphic{text calc} \includeMPgraphic{text step}

\includeMPgraphic{text line} \includeMPgraphic{text done}
\stopuseMPgraphic

————

In order to catch the overflow at the bottom, we need to change the for —loop a bit, so that the
number of lines does not exceed the available space. The test that surrounds the assignment of
vvsize makes sure that we get better results when we (on purpose) take a smaller height.

\startuseMPgraphic{text step}
path line; pair lll, rrr ; numeric vvsize ;

if (strutheight+strutdepth<baselineskip) :
vvsize = vsize ;
else :
vvsize := (vsize div baselineskip) * baselineskip ;
fi ;
for i=topskip step baselineskip until vvsize :
line := (ulcorner q -- urcorner q) shifted (0,-i) ;

Il := found_point(line,l,true) ;
rrr := found_point(line,r.false) ;
\stopuseMPgraphic

We can manipulate the heigth and depth of the line to give different (and maybe better) results.

\startuseMPgraphic{text vars}
baselineskip := 8pt ;

[]
Preliminary Version October 27, 2000 Mt il 1WE'

strutheight := 4pt ;

strutdepth = 2pt
offset = dpt ;
topskip = 3pt ;

\stopuseMPgraphic

This kind of graphic trickery in itself is not enough to get TX into typesetting within the bounds
of a closed curve. Since METAPOST can write information to a file, and TgX can read such a file, a
natural way to handle this is to let MeTARPOST write a \parshape specification.

\startuseMPgraphic{text macro}
def provide_parshape (expr p, offset, baselineskip,

strutheight, strutdepth,

\includeMPgraphic{text
\includeMPgraphic{text
\includeMPgraphic{text
\includeMPgraphic{text
\includeMPgraphic{text
\includeMPgraphic{text
\includeMPgraphic{text

enddef ;
\stopuseMPgraphic

topskip) =

move}
split}
cutoff}
draw}
calc}

loop}
save}

We have to adapt the for-loop to register the information about the lines. After the loop we write
those values to a file using another loop.

\startuseMPgraphic{text loop}
path line; pair lll, rrr ; numeric vvsize, n ; n = 0 ;

if (strutheight+strutdepth<baselineskip) :

vvsize = vsize ;
else :

vvsize = (vsize div baselineskip) * baselineskip ;

fi ;

for i=topskip step baselineskip until vvsize :

line := (ulcorner q -- urcorner q) shifted (0,-i) ;

-+

2]

Preliminary Version October 27, 2000

ll := found_point(line,l,true) ;
rrr = found_point(line,r false) ;

n:=n+1,;

indent[n] := abs(xpart Ill - xpart licorner q) ;

width[n] := abs(xpart rrr - xpart lll) ;
endfor ;

\stopuseMPgraphic

\startuseMPgraphic{text save}
write "\parshape " & decimal n to data_file ;
for i=1 upto n:
write decimal indent[i]&"bp " &
decimal width[i]&"bp " to data_file ;
endfor ;
\stopuseMPgraphic

We can call this macro using the part we used in the previous examples.

\startuseMPgraphic{text}
\includeMPgraphic{text macro}

path p ; p := ((0,1)..(-1,0)..(1,0)--cycle) scaled 65pt ;

provide_parshape

(p, % shape path
.5*\baselinedistance, % offset
\baselinedistance, % distance between lines
\strutheight, % height of a line
\strutdepth, % depth of a line
\strutheight) ; % height of first line
\stopuseMPgraphic
After we called \useMPgraphic{text} , the resulting file looks as follows. You can call up this
file by its anonymous name \MPdatafile , since this macro gets the value of the graphic at hand.

\parshape 8
20.52388bp 47.26309bp
16.02335bp 55.46606bp
5.80312bp 78.9083bp
1.01128bp 96.9222bp
2.63644bp 108.51901bp
8.43073bp 101.52484bp
19.31705bp 79.75218bp
19.31705bp 79.75218bp

So, reading in this file at the start of a paragraph will setup TX to follow this shape.
The final implementation is a bit more complicated since it takes care of paths that are not
centered around the origin and don't start at the top point. We achieve this by moving the path to

the center:

Preliminary Version October 27, 2000

175

Typesetting in METAPOST

cp = center p ; q = p shifted - cp ;

The arbitrary starting point is taken care of by a slightly more complicated path cutter. First we
make sure that the path runs counterclockwise.

if xpart directionpoint t of q < 0 : q := reverse q fi ;
Knowing this, we can split the path in two, using a slightly different splitter:

I g cutbefore t ;

I | if xpart point 0 of q < 0 : & q fi cutafter b ;
r ;= q cutbefore b ;

r = r if xpart point 0 of g > 0 : & q fi cutafter t ;

As always, when implementing a feature like this, some effort goes into a proper user interface. In
doing so, we need some TX trickery that goes beyond this text, like collecting text and splitting of
the part needed. Also, we want to be able to handle multiple shapes at once, like the next example
demonstrates.

The macro is included in one of the MeTAPOST libraries, so we first have to say:

\useMPlibrary][txt]

We define four shapes. They are not really beautiful, but they demonstrate what happens in
border cases. For instance, too small first lines are ignored. First we define a circle. Watch how
the dimensions are set in the graphic. The arguments passed to build_parshape are: path, an
offset, an additional horizontal and vertical displacement, the baseline distance, the height and
depth of the line, and the height of the first line (topskip in TgX terminology). The height and
depth of a line are often called strut height and depth, with a strut being an invisible character
with maximum dimensions.

\startuseMPgraphic{test 1}
path p ; p := fullcircle scaled 6¢cm ;

build_parshape(p,6pt,0,0,\baselinedistance,
\strutheight,\strutdepth \strutheight) ;

draw p withpen pencircle scaled 1pt ;
\stopuseMPgraphic

The second shape is a diamond. This is a rather useless shape, unless the text suits the small lines
at the top and bottom.

\startuseMPgraphic{test 2}
path p ; p := fullsquare rotated 45 scaled 5cm ;

build_parshape(p,6pt,0,0,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

draw p withpen pencircle scaled 1pt ;
\stopuseMPgraphic

The third and fourth shape demonstrate that providing a suitable offset is not always trivial.

ETAPOST Preliminary Version October 27, 2000

177

\startuseMPgraphic{test 3}
numeric w, h ; w = h := 6cm ;
path p ; p := (.5w,h) -- (0,h) -- (0,0) -- (w,0) &
(w,0) .. (.75w,.5n) .. (w,h) & (w,h) -- cycle ;

build_parshape(p,6pt,0,0,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

draw p withpen pencircle scaled 1pt ;
\stopuseMPgraphic

Contrary to the first third shapes, here we use a different path for the calculations and the draw-
ing. Watch carefully! If, instead of an offset, we pass a path, METAPOST is able to calculate the right
dimensions and offsets. This is needed, since we need these later on.

\startuseMPgraphic{test 4}
numeric w, h, o ;

def shape = (0,0) -- (w-0,0) & (w-0,0) .. (.75w-0,.5h) ..
(w-20,h-0) & (w-20,h-0) -- (0,h-0) -- cycle
enddef ;

w = h = 6cm ; 0 6pt ; path p ; p := shape ;
w = h := 6cm ; o := Opt ; path q ; g := shape ;

build_parshape(p,q,6pt,6pt,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

draw g withpen pencircle scaled 1pt ;
\stopuseMPgraphic

Since we also want these graphics as backgrounds, we define them as overlays. If you don't want
to show the graphic, you may omit this step.

\defineoverlay[test 1][\useMPgraphic{test 1}]
\defineoverlay[test 2][\useMPgraphic{test 2}]
\defineoverlay[test 3][\useMPgraphic{test 3}]
\defineoverlay[test 4][\useMPgraphic{test 4}]

As text, we use a quote from Douglas R. Hofstadter’s book “Metamagical Themas, Questing for
the Essence of Mind and Pattern”. Watch how we pass a list of shapes.

\startshapetext[test 1,test 2,test 3,test 4]
\input douglas % Douglas R. Hofstadter
\stopshapetext

Finally we combine text and shapes. Since we also want a background, we use \framed . The
macros \parwidth and \parheight are automatically set to the current shape dimensions.
The normal result is shown in figure 9.2.

\startbuffer
\setupframed
[offset=overlay,align=normal,frame=off,

Preliminary Version October 27, 2000 Typesetting in METAPOST,

178

width=\parwidth,height=\parheight]
\startcombination[2*2]
{\framed[background=test 1]{\getshapetext}} {test 1}
{\framed[background=test 2]{\getshapetext}} {test 2}
{\framed[background=test 3]{\getshapetext}} {test 3}
{\framed[background=test 4]{\getshapetext}} {test 4}
\stopcombination
\stopbuffer

By using a buffer we keep \placefigure readable.

\placefigure
[here][fig:shapes]
{A continuous text, typeset in a non||standard shape,
spread over four areas, and right alligned.}
{\getbuffer}

The traced alternative is shown in figure 9.3. This one is defined as:

\placefigure

[here][fig:traced shapes]
{A continuous text, typeset in a non||standard shape,
spread over four areas (tracing on).}
{\startMPinclusions

boolean trace_parshape ; trace_ parshape := true ;
\stopMPinclusions
\getbuffer}

This mechanism is still somewhat experimental and will be optimized and extended with
name spaces and more.

We can combine all those tricks, although the input is somewhat fuzzy. First we define a quote
typeset in a circular paragraph shape.

\startuseMPgraphic{center}
build_parshape(fullcircle scaled 8cm,0,0,0,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;
\stopuseMPgraphic

\startshapetext[center]
\input douglas
\stopshapetext

\defineoverlay[center][\useMPgraphic{center}]

We will surround this text with a circular line, that we define as follows. By using a buffer we
keep things organized.

\startbuffer[circle]
\startuseMPgraphic{followtokens}
path RotPath ; RotPath := reverse fullcircle

Typesetting in METAPOST, Preliminary Version October 27, 2000

Donald Knuth has
spent the past several years

thor had anything remote-
ly like this power to
con-

test 1

working on a system allow-
ing him to control many aspects
of the design of his forthcoming
books—from the typesetting and
layout down to the very shapes of
the letters! Seldom has an au-

able in many countries around the

trol
the final ap-
pearance of his
or her work. Knuth’s
TX typesetting system has
become well-known and avail-

world. By contrast, his MeTA-
FONT system for design-
ing families of type-
faces has not
become
as

test 2

well known or available.

In his article “The Concept
of a Meta-Font”, Knuth sets
forth for the first time the
underlying philosophy of
METAFONT, as well as some
of its products. Not on-
ly is the concept exiting
and clearly well executed,
but in my opinion the arti-
cle is charmingly written as
well. However, despite my over-

all enthusiasm for Knuth’s idea
and article, there are some
points in it that I feel might
be taken wrongly by many
readers, and since they are

points that touch close to

my deepest interests in ar-

tificial intelligence and es-
thetic theory, I felt com-
pelled to make some com-
ments to clarify certain impor-
tant issues raised by “The Con-

test 3

test 4

Figure 9.2 A continuous text, typeset in a non-standard shape, spread over four areas, and right

alligned.

rotatedaround(origin,90)

xscaled \overlaywidth yscaled \overlayheight ;

drawoptions (withcolor .625red) ;

\stopuseMPgraphic

\followtokens

{This is just a dummy text, kerned by T{\kern
-.1667em\lower .S5ex\hbox {E}}{\kern -.125emX} and typeset
in a circle using {\setMFPfont MK\setMFPfont
EX{\setMFPfont TH{\setMFPfont A}{\setMFPfont
PH\setMFPfont O}\setMFPfont SH{\setMFPfont T}.\quad}

\stopbuffer

Preliminary Version October 27, 2000

—+

test 1 test 2

test 3 test 4

Figure 9.3 A continuous text, typeset in a non-standard shape, spread over four areas (tracing
on).

\defineoverlay[edge][{\getbuffer[circle]}]
The text and graphics come together in a framed text:

\startbuffer[quote]

\framed
[offset=6pt,background=edge,frame=off]
{\getshapetext}

\stopbuffer

\placefigure
{One more time Hofstadter's quotation.}
{\getbuffer[quote]}

Preliminary Version October 27, 2000

oS T. Thig |
° L
<© 7
< Donald Knuth has @
N spent the past several years work- T
4 ingon asystem allowing him to control ¢
_~'° many aspects of the design of his forthcom- ¢.
» ing books—from the typesetting and layout ¢
¥ down to the very shapes of the letters! Seldom 2
v has an author had anything remotely like this pow- 2
er to control the final appearance of his or her work. <
Knuth's TgX typesetting system has become well- ~
known and available in many countries around ®
the world. By contrast, his METARFONT system :
for designing families of typefaces has not
¢ become as well known or available. A
< In his article “The Concept of 4
a& a Meta-Font”, Knuth sets S

circl

<

?
) forth for the A

7, , Y
p ue X 3 3»
Figure 9.4 One more time Hofstadter’s quotation.

Here also, I will rewrite things a bit so that we can avoid \startMPdrawing outside the
macro, and thereby avoid problems. I can also add the maps cdrom cover as example.

Preliminary Version October 27, 2000 A

Preliminary Version October 27, 2000

Debugging

Those familiar with CONTEXT will know that it has quite some visual debugging features build in.
So, what may you expect of the meTAPOST macros that come with CONTEXT? In this chapter we will
introduce a few commands that show some insight in what METAPOST is doing to your paths.

Since the outcome of METRPOST code is in many respects more predictable than that of Tgx code,
we don’t need that advanced visual debugging features. Nevertheless we provide a few, that are
all based on visualizing paths.

This visualization is achieved by using dedicated drawing commands:

path p ; p := fullcircle scaled 4cm ;
drawpath p ; drawpoints p ; drawpointlabels p ;

Since control points play an important role in defining the shape, visualizing them may shed some
insight in what METAPOST is doing.

path p ; p := fullcircle xscaled 4cm yscaled 3cm ;
drawpath p ; drawcontrollines p ;
drawpoints p ; drawcontrolpoints p ; drawpointlabels p ;

The pre and post control points show up as small dots and are connected to their parent point
with thin lines.

L e]

PR
{4 8{0
N

You can deduce the direction of a path from the way the points are numbered, but using an arrow
to indicate the direction is more clear.

path p ; p := fullcircle xscaled 4cm yscaled 3cm ;
drawarrowpath p ; drawcontrollines p ;
drawpoints p ; drawcontrolpoints p ; drawpointlabels p ;

Preliminary Version October 27, 2000 ebugging

The drawarrowpath is responsible for the arrow. Especially when you are in the process of
defining macros that have to calculate intersections or take subpaths, knowing the direction may
be of help.

L e]

TN
{4 8{0
N

The next table summarizes the special drawing commands:

drawpath the path

drawarrowpath the direction of the path
drawcontrollines the lines to the control points
drawpoints the points that make up the path
drawcontrolpoints the control points of the points
drawpointlabels the numbers of the points

You can set the characteristics of these like you set drawoptions . The default settings are as
follows:

drawpathoptions (withpen pencircle scaled 5 withcolor .8white) ;
drawpointoptions (withpen pencircle scaled 4 withcolor black) ;
drawcontroloptions(withpen pencircle scaled 2.5 withcolor black) ;

drawlineoptions (withpen pencircle scaled 1 withcolor .Swhite) ;
drawlabeloptions () ;

Two more options are draworiginoptions and drawboundoptions ~ which are used when
visualizing the bounding box and origin.

swappointlabels := true ;

path p ; p := fullcircle xscaled 4cm yscaled 3cm ;
drawarrowpath p ; drawcontrollines p ;

drawpoints p ; drawcontrolpoints p ; drawpointlabels p ;
drawboundingbox p ; draworigin ;

In this example we have set swappointlabels to change the place of the labels. You can set the
variable originlength to tune the appearance of the origin.

Preliminary Version October 27, 2000

You can pass options directly, like you do with draw and fill . Those options override the
defaults.

Here we used the options:

path p ; p := fullcircle xscaled 6cm yscaled 3cm rotated 15 ;

drawarrowpath p;
drawcontrollines p withcolor .625red ;
drawpoints p withcolor .625yellow ;

drawcontrolpoints p withcolor .625yellow ;
drawpointlabels p withcolor .625yellow ;
drawboundingbox p ;

draworigin withcolor .625red ;

Sometimes it makes sense to draw a simple coordinate system, and for that purpose we have three
more macros. They draw axis and tickmarks.

drawticks unitsquare xscaled 4cm yscaled 3cm shifted (-l1cm,-1cm) ;

The system drawn is based on the bounding box specification of the path passed to the macro.
You can also draw one axis, using drawxticks or drawyticks . Here we show the previous
command.

By default, the ticks are placed at .5cm distance, but you can change this by setting tickstep ~ to
a different value.

tickstep := 1cm ; ticklength := 2mm ;

drawticks fullsquare xscaled 4cm yscaled 3cm ;
tickstep := tickstep/2 ; ticklength := ticklength/2 ;
drawticks fullsquare xscaled 4cm yscaled 3cm ;

The ticklength variable specifies the length of a tick. Here we manipulated both the variables
to get a more advanced system.

Preliminary Version October 27, 2000 ebugging

If visualizing a path would mean that we would have to key in al those draw—commands, you
could hardly call it a comfortable tool. Therefore, we can say:

drawwholepath fullsquare scaled 3cm rotated 30 randomized 5mm ;

The drawwholepath command shows everything except the axis.

N\
(+)
N

0

If even this is too much labour, you may say:
visualizepaths ;
This redefines the draw and fill command in such a way that they also show all the information.

visualizepaths ;
draw fullsquare scaled 3cm rotated 30 randomized 2mm ;

You may compare this feature to the \showmakeup command available in CONTXT, that redefines
the Tgx primitives that deal with boxes, glues, penalties, and alike.

Preliminary Version October 27, 2000

Of course you may want to take a look at the METAPOST manual for its built in (more verbose)
tracing options. One command that may prove to be useful is show, that you can apply to any
variable. This command reports the current value (if known) to the terminal and log file.

The previous picture shows what is typeset when we also say \showmakeup . This command
visualizes TgX’s boxes, skips, kerns and penalties. As you can see, there are some boxes involved,
which is due to the conversion of METAPOST output to PDF.

\startlinecorrection[blank]
. the graphic ...
\stoplinecorrection

The small bar is a kern and the small rectangles are penalties. More details on this debugger can
be found in the CONTEXT manuals and the documentation of the modules involved.

Preliminary Version October 27, 2000

188

Preliminary Version October 27, 2000

11

Deftining styles

111

A document style can gain a lot by using a few graphics. In this chapter we will introduce some
style elements and their usage.

Adaptive buttons

W

So far we have seen a lot of graphic ingredients that you can use to make your documents more
attractive. In this chapter we will define a simple document style. This style was written for the
PDFTgX presentations at the TUG 2000 conference in Oxford (UK).

This style exploits a few tricks, like graphics calculated using positional information. It also
demonstrates how you can make menu buttons that dynamically adapt their shapes to the rest of
the page layout.

)
T

11

]

I
J

page 1 page 2 page 3 page 4 page 5

Later we will see an instance with some more randomness in the graphics. While writing this
style, the random alternative made me think of those organic building with non equal windows
—we have a few of those in The Netherlands—, so I decided to label this style as pre-organic

If you use CONTEXT, you can load this style with

\usemodule[pre-organic]

At the end of this file, there is a small test file, so when you process the file s-pre-19.tex ° with
TEXEXEC and the options --mode=demo and --pdf , you will get a demo document.

We use one of the standard screen “paper’ sizes, and map it onto the same size, so that we get
a nicely cropped page. Other screen sizes are S4 and S5.

\setuppapersize[S6][S6]

Like in this Met aFun manual, we use the Palatino as main bodyfont. This font is quite readable
on even low resolution screens, although I admit that this style is developed using an 1400x 1050
pixel LCD screen, so the author may be a little biased.

\setupbodyfont[ppl]

The layout specification sets up a text area and a right edge area where the menus will go (see
chapter 6 for a more in depth discussion on the layout areas). Watch how we use a rather large
edge distance. By setting the header and footer dimensions to zero, we automatically get rid of
page body ornaments, like the page number.

This style is the 19™" presentation style. Those numbered styles are internally mapped onto more meaningful names like
in this case pre-organic

11

es

Preliminary Version October 27, 2000

A

\setuplayout

[topspace=48pt,
backspace=48pt,
cutspace=12pt,
width=400pt,
margin=0cm,
rightedge=88pt,
rightedgedistance=48pt,
header=0cm,
footer=0cm,
height=middle]

We use a moderate, about a line height, inter-paragraph white space.
\setupwhitespace[big]
Of course we use colors, since on computer displays they come for free.

\setupcolors[state=start]

\definecolor [red] [r=.75]
\definecolor [yellow] [r=.75,9=.75]
\definecolor [gray] [s=.50]
\definecolor [white] [s=.85]

Because it is an interactive document, we have to enable hyperlinks and alike. However, in this
style, we disable the viewer’s ‘highlight a hyperlink when it’s clicked on’ feature. We will use a
menu, so we enable menus. Later we will see the contract color —hyperlinks gets that color when
we are already on the location— in action.

\setupinteraction
[state=start,
click=off,
color=red,
contrastcolor=gray,
menu=on]

The menu itself is set up as follows. Because we will calculate menu buttons based on their
position on the page, we have to keep track of the positions. Therefore, we set the position
variable to yes .

\setupinteractionmenu

[right]

[frame=off,
position=yes,
align=middle,
topoffset=-.75cm,
bottomoffset=-.75cm,
color=gray,
contrastcolor=gray,

11]

y €

i

Preliminary Version October 27, 2000

191

style=bold,
before=,
after=]

The menu content is rather sober: just a list of topics and a close button. Later we will define
the command that generates topic entries. The alternative right lets the topic list inherit its
characteristics from the menu.

\startinteractionmenul[right]
\placelist[Topic][alternative=right]
\vfill
\but [CloseDocument] close \\

\stopinteractionmenu

We have now arrived at the more interesting part of the style definition: the graphic that goes in
the page background. Because this graphic will change, we define a useable METRPOST graphic.
Page backgrounds are recalculated each page, opposite to the other backgrounds that are calcu-
lated when a new background is defined, or when repetitive calculation is turned on.

\setupbackgrounds [page] [background=page]
\defineoverlay [page] [\useMPgraphic{page}]
\setupMPvariables [page] [alternative=3]

We will implement three alternative backgrounds. First we demonstrate the relatively simple
super ellipsed one. The main complication is that we want the button shapes to follow the right
edge of the curve that surrounds the text. We don’t know in advance how many lines of text there
will be in a button, and we also don’t know at what height it will end up. Therefore, we need
to calculate each button shape independently and for that purpose we need to know its position
(see chapter 5). In figure 11.1 you can see what auxiliary lines we need in order to be calculate the
button shapes.

We separate the calculation of the button shape from the rest by embedding it in its own usable
graphic container. The StartPage -StopPage pair takes care of proper placement of the whole
graphic.

\startuseMPgraphic{page}
\includeMPgraphic{rightsuperbutton}
StartPage ;
path p, q ; pickup pencircle scaled 3pt ;
p := Field[Text][Text] enlarged 36pt superellipsed .90 ;

fill Page withcolor \MPcolor{yellow} ;
fill p withcolor \MPcolor{white} ;
draw p withcolor \MPcolor{red} ;

p := Field[Text][Text] enlarged 48pt superellipsed .90 ;

def right_menu_button (expr nn, rr, pp, XX, yy, ww, hh, dd) =
if (pp>0) and (rr>0) :
g := rightsuperbutton(p,xx,yy,RightEdgeWidth,hh) ;

Preliminary Version October 27, 2000 Defining styles

Rudolf D.

Hofstadter

E. Knuth
R. Tufte
Hermann

Hans Hagen, August 2000

A Simple Style Demo

Figure 11.1 The auxiliary lines used to calculate the button shapes.

Preliminary Version October 27, 2000

fill g withcolor \MPcolor{white} ;
draw g withcolor if rr=2 : \MPcolor{gray}
else : \MPcolor{red} fi ;
fi;
enddef ;
\MPmenubuttons{right}

StopPage ;
\stopuseMPgraphic

The X macro \MPmenubuttons expands into a list of (in this case four) calls to the METAPOST
macro right_menu_button . This list is generated by CONTEXT when it generates the menu.
Because the page background is applied last, this list is available at that moment.

... (expr nn, rr, pp, XX, yy, ww, hh, dd) ...

This rather long list of arguments represents the following variables: number, referred page, cur-
rent page, x coordinate, y coordinate, width, height and depth. The last six variables originate in
the positioning mechanism. Because the variables are only available after a second Tgx pass, we
only draw a button shape when the test for the page numbers succeeds.

\startuseMPgraphic{rightsuperbutton}
vardef rightsuperbutton (expr pat, xpos, ypos, wid, hei) =

save p, ptop, pbot, t, b, edge, shift, width, height ;
path p, ptop, pbot ; pair t, b ;
numeric edge, shift, width, height ;

edge := xpos + wid ; shift ;= ypos + hei ;
p := rightpath pat ;

ptop := ((-infinity,shift)--(edge,shift)) ;
pbot := ((-infinity,shift-hei)--(edge,shift-hei)) ;

t := p intersectionpoint ptop ;
b := p intersectionpoint pbot ;
p := subpath(O,xpart (p intersectiontimes ptop)) of p ;
p := subpath(xpart (p intersectiontimes pbot),length(p)) of p ;
(p -- t -- point 1 of ptop &
point 1 of ptop -- point 1 of pbot &
point 1 of pbot -- b
-- cycle)
enddef ;
\stopuseMPgraphic

193

The calculation of the button itself comes down to a combining segments of the main shape and
auxiliary lines. The rightpath ~ macro returns the right half of the path provided. This half is

shown as non dashed line.

Preliminary Version October 27, 2000

Detfining styles

Topics are identified with \Topic , which is an instance of chapter headings. The number is
made invisible. Since it still is a numbered section header, CONTEXT will write the header to the
table of contents.

\definehead [Topic] [chapter]
\setuphead [Topic] [number=no]

We will use a bold font in the table of contents. We also force a complete list.

\setuplist
[Topic]
[criterium=all,

style=bold,
before=,
after=]

The \TitlePage = macro looks horrible, because we want to keep the interface simple: a list of
small sentences, separated by \\ .

\def\TitlePage#1%
{\startstandardmakeup
\switchtobodyfont[big]
\def\{\Vfil\bfb\let\=\par}
\bfd\setupinterlinespace\gray
\vskip.5cm#1\\\skip.5cm % \\ is really needed -)
\stopstandardmakeup}

An presentation that uses this style, may look like the one below. You can choose among three
alternatives.

\useenvironment[pre-organic] \setupoutput[pdftex]
\setupMPvariables[page][alternative=1]
\starttext

\TitlePage
{A Few Nice Quotes\\
A Simple Style Demo\\
Hans Hagen, August 2000}

\Topic {Rudolf D. Hofstadter} \input douglas \page

\Topic {Donald E. Knuth} \input knuth \page
\Topic {Edward R. Tufte} \input tufte \page
\Topic {Hermann Zapf} \input zapf \page
\stoptext

We will not implement the two other alternative shapes: squeezed and randomized.

ining styl Preliminary Version October 27, 2000

Rudolf D, Hofstadter

LTI

|

page 1 page 2 page 3 page 4 page 5

A Few Nice Quotes

1ane
TEan

|
[

page 1 page 2 page 3 page 4 page 5

We combine all alternatives into one page graphic. The alternative is chosen by setting the
alternative variable, as we demonstrated in the example.

\startuseMPgraphic{page}
\includeMPgraphic{rightsuperbutton}
StartPage ;

numeric alternative, seed, superness, squeezeness, randomness ;
path p, q ; transform t ;

This is one of those cases where a transform variable is useful. We need to store the random seed
value because we want the larger path that is used in the calculations to have the same shape.

alternative := \MPvar{alternative} ;
seed = uniformdeviate 100 ;

if alternative > 10 :
superness = .85 + ((\realfolio-1)\lastpage) * .25 ;

squeezeness = 12pt - ((\realfolio-1)\lastpage) * 10pt ;
else :

superness = .90 ;

squeezeness = 12pt ;

fi ;
randomness = squeezeness ;

alternative := alternative mod 10 ;

If you read closely, you will notice that when we add 10 to the alternative, we get a page dependant
graphic. So, in fact we have five alternatives. We use CONTEXT macros to fetch the (real) page
number and the number of the last page. In further calculations we use the lower alternative
numbers, which is why we apply a mod

The rest of the code is not so much different from the previous definition. The hard coded
point sizes match the page dimensions (600pt by 450pt) quite well.

t := identity if alternative=3: shifted (9pt,-9pt) fi ;

117

es

Preliminary Version October 27, 2000

1y

randomseed := seed ;

p := Field[Text][Text] enlarged if

alternative = 1 : 36pt superellipsed superness elseif
alternative = 2 : 36pt squeezed squeezeness elseif
alternative = 3 : 36pt randomized randomness else

: 36pt fi ;

pickup pencircle scaled 3pt ;

fill Page withcolor \MPcolor{yellow} ;
fill p withcolor \MPcolor{white} ;
draw p withcolor \MPcolor{red} ;

randomseed := seed ;

p = (Field[Text][Text] enlarged if

alternative = 1 : 48pt superellipsed superness elseif
alternative = 2 : 48pt squeezed squeezeness elseif
alternative = 3 : 36pt randomized randomness else

: 48pt fi) transformed t ;

def right_menu_button (expr nn, rr, pp, XX, yy, ww, hh, dd) =
if (pp>0) and (rr>0) :
g := rightsuperbutton(p,xx,yy,RightEdgeWidth,hh) ;
fill g withcolor \MPcolor{white} ;
draw g withcolor if rr=2 : \MPcolor{gray}
else . \MPcolor{red} fi ;
fi ;
enddef ;
\MPmenubuttons{right}

StopPage ;
\stopuseMPgraphic

When we choose the alternatives 21 and 22 we get this result:

Hermann Zapf

A Few Nice Quotes.

A Few Nice Quotes Hermann Zapf

m Preliminary Version October 27, 2000

12

Functions

METAPOST provides a wide range of functions, like sind and floor . We will discuss most of
them here and define a few more. We will use some of the Calculator Demo graphics to make this
chapter more readable.

Preliminary Version October 27, 2000

Preliminary Version October 27, 2000

13

A few applications

13.1

For those who need to be inspired, we will demonstrate how MeTAPOST can be used to enhance
your document with simple graphics. In these examples we will try to be not too clever, simply
because we lack the experience to be that clever. The real tricks can be found in the files that come
with METAPOST.

Simple drawings

In the words of John Hobby, the creator of METAPOST, “METAPOST is particularly well-suited for
generating figures for technical documents where some aspects of a picture may be controlled
by mathematical or geometrical constraints that are best expressed symbolically. In other words,
METAPOST is not meant to take the place of a freehand drawing tool or even an interactive graphics
editor”.

An example of such a picture is the following one, which is dedicated to David Arnold, who
asked me once how to draw a spring. So, imagine that we want to draw a schematic view of a
system of four springs.

A rather natural way to define such a system is:

z1 (+2cm,0) ; z2 = (0,+2cm) ;
z3 = (-2cm,0) ; z4 = (0,-2cm) ;

pickup pencircle scaled 1.5pt ;
drawoptions (withcolor .625red) ;

draw spring (z1, z2, .75cm, 2, 10) ; draw z1 -- 1.5 z1 ;
draw spring (z2, z3, .75cm, 2, 9) ; draw z2 -- 1.1 z2 ;
draw spring (z3, z4, .75cm, 2, 8) ; draw z3 -- 1.5 z3 ;
draw spring (z4, z1, .75cm, 2, 7) ; draw z4 -- 1.1 z4 ;

Here, the macro spring takes 5 arguments: two points, the width of the winding, the length of
the connecting pieces, and the number of elements (half windings). The definition of spring is
less complicated than readable.

Preliminary Version October 27, 2000 A ﬂrew

def spring (expr a, b, w, h, n) =
((00 -- ©h) -
for i=1 upto n-1: (if odd(i) : - fi w/2,i+h) -- endfor
(0,n+h) -- (0,n+2h))
yscaled ((xpart (b-a) ++ ypart (b-a))/(n+2h))
rotatedaround(origin,-90+angle(b-a))
shifted a)
enddef ;

First we build a path starting in the origin, going left or right depending on the counter being an
odd number.

pat := (0,0) ;
for i=1 upto n-1:
if odd(i) :
pat := pat -- (-w/2,i) ;
else :
pat := pat -- (+w/2,i) ;
fi ;
endfor ;

pat := pat -- (O,n) ;

Once you are accustomed to the way METAPOST interprets (specialists may say expand) the source
code, you will start using if and for statements in assignments. The previous code can be
converted in a one liner, using the pattern:

pat := for i=1 upto n-1: (x,y)-- endfor (O,n) ;

The loop splits out a series of (X,y)-- but the last point is added outside the loop. Otherwise
pat would have ended with a dangling -- . Of course we need to replace (x,y) by something
meaningful, so we get:

pat := for i=1 upto n-1: (if odd(i):-fi w/2,i)--endfor (O,n) ;

We scale this path to the length needed. The expression b — a calculates a vector, starting at
and ending at b. In METARPOST, the expression a++b is identical to v a? + b2. Thus, the expression
xpart (b-a) ++ ypart (b-a) calculates the length of the vector b — a. Because the un-
scaled spring has length n 4 2, scaling by the expression ((xpart (b-a) ++ ypart (b-a))

[(n+2h)) gives the spring the same length as the vector b — a.

Because we have drawn our spring in the vertical position, we first rotate it 90 degrees clock-
wise to a horizontal position, and then rotate it through an angle equal to the angle in which the
vector b — a is pointing. After that, we shift it to the first point. The main complications are that
we also want to draw connecting lines at the beginning and end, as well as support springs that
connect arbitrary points. Since no check is done on the parameters, you should be careful in using
this macro.

When we want to improve the readability, we have to use intermediate variables. Since the
macro is expected to return a path, we must make sure that the content matches this expectation.

10NS Preliminary Version October 27, 2000

vardef spring (expr a, b, w, h, n) =
pair vec ; path pat ; numeric len ; numeric ang ;
vec = (b-a) ;
pat := for i=1 upto n-1:. (if odd(i):-fi w/2,i)--endfor (O,n) ;
pat := (0,0)--(0,h)-- pat shifted (0,h)--(0,n+h)--(0,n+2h) ;
len = (xpart vec ++ ypart vec)/(n+2h) ;

ang := -90+angle(vec) ;
(pat yscaled len rotatedaround(origin,ang) shifted a)
enddef ;

If you use vardef , then the last statement is the return value. Here, when p := spring (z1,

z2, .75cm, 2, 10) is being parsed, the macro is expanded, the variables are kept invisible for
the assignment, and the path at the end is considered to be the return value. In a def the whole
body of the macro is “pasted’ in the text, while in a vardef only the last line is visible. We will
demonstrate this with a simple example.

def one = (n,n) ; n := n+l ; enddef ;
def two n:=n+1; (nn) enddef ;

~

Now, when we say:
pair a, b ; numeric n ; n= 10 ; a := one ; b := two ;

we definitely get an error message. This is because, when macro two is expanded, METRPOST sees
something:

b=n:=n+1;
By changing the second definition in
vardef two = n ;= n + 1 ; (n,n) enddef ;

the increment is expanded out of sight for b := and the pair (n,n) is returned.
We can draw a slightly better looking spring by drawing twice with a different pen. The
following commands use the spring macro implemented by the vardef .

path p ; p :=
(0,0)--spring((.5cm,0),(2.5cm,0),.5cm,0,10)--(3cm,0) ;

draw p withpen pencircle scaled 2pt ;
draw p withpen pencircle scaled 1pt withcolor .8white;

This time we get:

—~WW—

Since the spring macro returns a path, you can do whatever is possible with a path, like drawing
an arrow:

AW

Preliminary Version October 27, 2000 A ﬂ(ew

13.2

Or even (watch how we use the neutral unit u to specify the dimensions):

\\ \ o /N
v / >

This was keyed in as:

drawarrow
(0,0)--spring((.5cm,0),(2.5cm,0),.5cm,0,10)--(3cm,0)
withpen pencircle scaled 2pt withcolor .625red ;

and:

numeric u ; u = 1mm ; pickup pencircle scaled (u/2) ;
drawoptions (withcolor .625red) ;

draw (0,0)--spring((5u,0),(25u,0),5u,0,10)--(30u,0) ;
drawoptions (dashed evenly withcolor .5white) ;

draw (0,0)--spring((5u,0),(35u,0),(25/35)*5u,0,10)--(40u,0) ;

Free labels

The MeTAPOST label macro enables you to position text at certain points. This macro is kind of
special, since it also enables you to influence the positioning. For that purpose it uses a special
kind of syntax which we will not discuss here in detail.

pickup pencircle scaled 1mm ;
path p ; p := fullcircle scaled 3cm ;
draw p withcolor .625yellow ;

dotlabel.rt ("right" , point 0 of p) ;
dotlabel.urt ("upper right" , point 1 of p) ;
dotlabel.top ("top" , point 2 of p) ;
dotlabel.ulft ("upper left* , point 3 of p) ;
dotlabel.lft ("left" , point 4 of p) ;
dotlabel llft ("lower left" , point 5 of p) ;
dotlabel.bot ("bottom" , point 6 of p) ;

dotlabel.lrt ("lower right" , point 7 of p) ;

The label command just typesets a text, while dotlabel also draws a dot at the position of the
label. The thelabel =~ command returns a picture.

top
upper left upper right
left right
lower left lower right
bottom
ions Preliminary Version October 27, 2000

There is a numeric constant labeloffset that can be set to influence the distance between the
point given and the content of the label. When we set the offset to zero, we get the following
output.

to
upper left upper right

This kind of positioning works well as long as we know where we want the label to be placed.
However, when we place labels automatically, for instance in a macro, we have to apply a few
clever tricks. There are fore sure many ways to accomplish this goal, but here we will follow the
mathless method.

The previous graphic visualizes the bounding box of the labels. This bounding box is rather tight
and therefore the placement of labels will always be suboptimal. Compare the alignment of the
left- and rightmost labels. The btex —etex method is better, since then we can add struts, like:

btex \strut right etex

to force labels with uniform depths and heights. The next graphic demonstrates that this looks
better indeed. Spending some time on such details pays back in better graphics.

ower left

Now, what happens when we want to place labels in other positions? In the worst case, given
that we place the labels manually, we end up in vague arguments in favour for one or the other
placement.

Preliminary Version October 27, 2000 A %ew

Epper left

;

ower righ

Although any automatic mechanism will be sub—optimal, we can give it a try to write a macro
that deals with arbitrary locations. This macro will accept three arguments and returns a picture.

thefreelabel("some string or picture”,a position,the origin)

Our testcase is just a simple for loop that places a series of labels. The freedotlabel macro is
derived from thefreelabel

pickup pencircle scaled 1mm ;
path p ; p := fullcircle scaled 3cm ;
draw p withcolor .625yellow ;
for i=0 step .5 until 7.5 :
freedotlabel ("text" , point i of p, center p) ;
endfor ;

As a first step we will simply place the labels without any correction. We also visualize the bound-
ing box.

vardef thefreelabel (expr str, loc, ori) =
save s ; picture s ; s := thelabel(str,loc) ;
draw boundingbox s withpen pencircle scaled .5pt ;
S

enddef ;

To make our lives more easy, we also define a macro that draws the dot as well as a macro that
draws the label.

vardef freedotlabel (expr str, loc, ori) =
drawdot loc ; freelabel(str,loc,ori) ;
enddef ;

vardef freelabel (expr str, loc, ori) =
drawdot loc ; draw thefreelabel(str,loc,ori) ;
enddef ;

Now we get:

ions Preliminary Version October 27, 2000

The original label macros permit us to align the label at positions, 4 corners and 4 points halfway
the sides. It happens that circles are also composed of 8 points. Because in most cases the label is
to be positioned in the direction of the center of a curve and the point at hand, it makes sense to
take circles as the starting points for positioning the labels.

To help us in positioning, we define a special square path, freesquare . This path is con-
structed out of 8 points that match the positions that are used to align labels.

path freesquare ;

freesquare = ((-1,0)--(-1,-1)--(0,-1)--(+1,-1)--
(+1,0)--(+1,+1)--(0,+1)--(-1,+1)--cycle) scaled .5 ;

We now show this free path together with a circle, using the following definitions:

drawpath fullcircle scaled 3cm ;
drawpoints fullcircle scaled 3cm ;
drawpointlabels fullcircle scaled 3cm ;
currentpicture := currentpicture shifted (5c¢m,0) ;
drawpath freesquare scaled 3cm ;
drawpoints freesquare scaled 3cm ;
drawpointlabels freesquare scaled 3cm ;

We use two drawing macros that are part of the suite of visual debugging macros.

° ° ° °
3 1
0 e38 4 e ° 4 8§ o0
5 7
1 2 3 ° 6)
° ° ° °

As you can see, point 1 is the corner point that suits best for alignment when a label is put at
point 1 of the circle. We will now rewrite thefreelabel in such a way that the appropriate
point of the associated freesquare is found.

vardef thefreelabel (expr str, loc, ori) =
save s, p, q, | ; picture s ; path p, q ; pair | ;

s = thelabel(str,loc) ;
p := fullcircle scaled (2*length(loc-ori)) shifted ori ;
:= freesquare xyscaled (urcorner s - licorner s) ;

q
| := point (xpart (p intersectiontimes (ori--loc))) of q ;

Preliminary Version October 27, 2000 A ﬂrew

draw q shifted loc withpen pencircle scaled .5pt ;
draw | shifted loc withcolor .625yellow ;
draw loc withcolor .625red ;
S
enddef ;

The macro xyscaled is part of Met aFun and scales in two directions at once. The METAPOST prim-
itive intersectiontimes returns a pair of time values of the point where two paths intersect.
The first part of the pair concerns the first path.

We are now a small step from the exact placement. If we change the last line of the macro into:
(s shifted -I)

we get the displacement we want. Although the final look and feel is also determined by the text
itself, the average result is quite acceptable.

Because we also want to pass pictures, and add a bit of offset too, the final implementation is
slightly more complicated. The picture is handled with an additional condition, and the offset
with the Met aFun macro enlarged

numeric freelabeloffset ; freelabeloffset := 3pt ;

vardef thefreelabel (expr str, loc, ori) =

save s, p, g, | ; picture s ; path p, q ; pair | ;
interim labeloffset := freelabeloffset ;
s = if string str : thelabel(str,loc)
else . str shifted -center str shifted loc fi ;

setbounds s to boundingbox s enlarged freelabeloffset ;
p := fullcircle scaled (2*length(loc-ori)) shifted ori ;
g := freesquare xyscaled (urcorner s - licorner s) ;
| := point (xpart (p intersectiontimes (ori--loc))) of q ;
(s shifted -I)

enddef ;

ioNs Preliminary Version October 27, 2000

13.3

We will now test this macro on a slightly rotated circle, using labels typeset by Tgx. The reverse
is there purely for cosmetic reasons, to suit the label texts.

funny macros.
defining Can’t we?
m We can
and on go on

pickup pencircle scaled 1mm ;
path p ; p := reverse fullcircle rotated -25 scaled 3cm ;
draw p withcolor .625yellow ; pair cp ; cp := center p ;

draw freedotlabel (btex \strut We can etex, point 0 of p, cp) ;
draw freedotlabel (btex \strut go on etex, point 1 of p, cp) ;
draw freedotlabel (btex \strut and on etex, point 2 of p, cp) ;
draw freedotlabel (btex \strut in etex, point 3 of p, cp) ;
draw freedotlabel (btex \strut defining etex, point 4 of p, cp) ;

draw freedotlabel (btex \strut funny etex, point 5 of p, cp) ;

draw freedotlabel (btex \strut macros. etex, point 6 of p, cp) ;
draw freedotlabel (btex \strut Can't we? etex, point 7 of p, cp) ;

Marking angles

A convenient METAPOST macro is unitvector . When we draw a line segment from the origin to
the point returned by this macro, the segment has a length of 1 base point. This macro has a wide
range of applications, but some basic knowlegde of vector algebra is handy. The following lines
of METAPOST code demonstrate the basics behind unitvectors.

pair uv ; pickup pencircle scaled 1mm ; autoarrows := true ;
draw fullcircle scaled 2cm withcolor .625red ;
for i=(10,35), (-40,-20), (85,-15) :

draw origin--i dashed evenly withcolor .625white ;

drawarrow origin--unitvector(i) scaled lcm withcolor .625yellow ;
endfor ;
draw origin withcolor .625red ;

The circle has a radius of lcm, and the three line segments are drawn from the origin in the
direction of the points that are passed as arguments. Because the vector has length of 1, we scale
it to the radius to let it touch the circle. By setting autoarrows we make sure that the arrowheads
are scaled proportionally to the linewidth of 1 mm.

Preliminary Version October 27, 2000 A ﬂrew

An application of this macro is drawing the angle between two lines. In the METRPOST manual you
can find two macros for drawing angles: mark_angle and mark_rt_angle . You may want to
take a look at their definitions before we start developing our own alternatives.

!

The previous graphic demonstrates what we want to accomplish: a circular curve indicating the
angle between two straight lines. The lines and curve are drawn with the code:

pair a, b ; a := (2cm,-1cm) ; b := (3cm,1cm) ;
drawarrow origin--a ; drawarrow origin--b ;
drawarrow anglebetween(a,b) scaled 1cm withcolor .625red ;

where anglebetween is defined as:

def anglebetween (expr a, b) =
(unitvector(a){a rotated 90} .. unitvector(b))
enddef ;

Both unitvectors return just a point on the line positioned 1 unit (later scaled to 1cm) from the
origin. We connect these points by a curve that starts in the direction [...] on the first point. If we
omit the a rotated 90 direction specifier, we get:

t

These definitions of anglebetween are far from perfect. If we don’t start in the origin, we get the
curve in the wrong place and when we swap both points, we get the wrong curve.

The solution for the displacement is given in the MeTARPOST manual and looks like this (we
package the macro a bit different):

def anglebetween (expr endofa, endofb, common, length) =
(unitvector (endofa-common){(endofa-common) rotated 90} ..
unitvector (endofb-common)) scaled length shifted common
enddef ;

As you can see, we compensate for the origin of both vectors. This macro is called with a few
more parameters. We need to pass the length, since we want to add the shift to the macro and the
shift takes place after the scaling.

1C

10NS Preliminary Version October 27, 2000

pair a, b, ¢ ; a := (2cm,-1cm) ; b := (3cm,lcm) ; ¢ := (-1cm,.5cm) ;
drawarrow c--a ; drawarrow c--b ;
drawarrow anglebetween(a,b,c,1cm) withcolor .625red ;

That the results are indeed correct, is demonstrated by the output of following example:

’

However, when we swap the points, we get:

This means that instead of rotating over 90 degrees, we have to rotate over —90 or 270 degrees.
That way the arrow will also point in the other direction. There are undoubtly more ways to
determine the direction, but the following method also demonstrates the use of turningnumber
which reports the direction of a path. For this purpose we compose a dummy cyclic path.

vardef anglebetween (expr endofa, endofb, common, length) =
save tn ; tn := turningnumber(common--endofa--endofb--cycle) ;
show tn ;
(unitvector (endofa-common){(endofa-common) rotated (tn*90)} ..
unitvector (endofb-common)) scaled length shifted common
enddef ;

Because we use an intermediate variable, just to keep things readable, we have to use vardef to
hide the assignment for the outside world. We demonstrate this macro using the following code:

pair uv ; pickup pencircle scaled 1mm ; autoarrows := true ;
draw fullcircle scaled 2cm withcolor .625red ;
for i=(10,35), (-40,-20), (85,-15) :

draw origin--i dashed evenly withcolor .625white ;

drawarrow origin--unitvector(i) scaled lcm withcolor .625yellow ;
endfor ;
draw origin withcolor .625red ;

Watch how both arrows point in the direction of the line that is determined by the second point.

)

Preliminary Version October 27, 2000 A ﬂ(e‘

210

We now have the framework of an angle drawing macro ready and can start working placing the
label.

vardef anglebetween (expr endofa, endofb, common, length, str) =
save curve, where ; path curve ; numeric where ;
where := turningnumber (common--endofa--endofb--cycle) ;
curve := (unitvector (endofa-common){(endofa-common) rotated (where*90)} ..
unitvector (endofb-common)) scaled length shifted common ;
draw thefreelabel(str,point .5 of curve,common) withcolor black ;
curve
enddef ;

The macro thefreelabel is part of Met aFun and is explained in detail in section 13.2. This
macro tries to place the label as good as possible without user interference.

pair a ; a = (2cm,-1cm) ; drawarrow origin--a ;
pair b ; b := (3cm, 1cm) ; drawarrow origin--b ;
drawarrow
anglebetween(a,b,origin,1cm,btex α etex)
withcolor .625red ;

Instead of a picture we may also pass a string, but using TgX by means of btex —etex often leads
to better results.

)

Because in most cases we want the length to be consistent between figures and because passing
two paths is more convenient than passing three points, the final definition looks slightly differ-
ent.

numeric anglelength ; anglelength := 20pt ;

vardef anglebetween (expr a, b, str) = % path path string
save endofa, endofb, common, curve, where ;
pair endofa, endofb, common ; path curve ; numeric where ;
endofa point length(a) of a ;
endofb := point length(b) of b ;
if round point 0 of a = round point O of b :
common := point 0 of a ;
else :
common := a intersectionpoint b ;
fi ;
where := turningnumber (common--endofa--endofb--cycle) ;
curve := (unitvector (endofa-common){(endofa-common) rotated (where*90)} ..
unitvector (endofb-common)) scaled anglelength shifted common ;
draw thefreelabel(str,point .5 of curve,common) withcolor black ;

A fewlapplications Preliminary Version October 27, 2000

curve

enddef ;

This macro has a few more if ’s than its predecessor. First we test if the label is a string, and if so,
we calculate the picture ourselves, otherwise we leave this to the user.

path a, b, c, d, e, f;

a := origin--(2cm, 1cm) ; b := origin--(1lcm, 2cm) ;

¢ := origin--(-2cm, 2cm) ; d := origin--(-2cm,-1cm) ;

e := origin--(-1cm,-2cm) ; f := origin--(1cm,-2cm) ;

for i=a, b, ¢, d, e, f : drawarrow i ; endfor ;

anglelength := 1.0cm ; drawoptions(withcolor .625red) ;
drawarrow anglebetween(a,b,btex $\alpha $ etex) ;
drawarrow anglebetween(c,d,btex $\gamma $ etex) ;
drawarrow anglebetween(e,f,btex ϵ etex) ;
anglelength := 1.5cm ; drawoptions(withcolor .625yellow) ;
drawdblarrow anglebetween(b,c,btex $\beta $ etex) ;
drawarrow reverse anglebetween(d,e,btex $\delta $ etex) ;
drawarrow anglebetween(a,f,btex $\zeta $ etex) ;

Because anglebetween returns a path, you can apply transformations to it, like reversing. Close
reading of the previous code learns that the macro handles both directions.

B

o

%

\q
8

Multiples of 90 degrees are often identified by a rectangular symbol. We will now extend the
previously defined macro in such a way that more types can be drawn.

numeric anglelength ; anglelength := 20pt ;
numeric anglemethod ; anglemethod := 1;

vardef anglebetween (expr a, b, str) = % path path string

Preliminary Version October 27, 2000 A ﬂfx&a{m

save pointa, pointb, common, middle, curve, where ;

pair pointa, pointb, common, middle;

path curve, bounds ; numeric where ;

if round point 0 of a = round point 0 of b :
common := point 0 of a ;

else :
common := a intersectionpoint b ;

fi ;

pointa := point anglelength on a ;

(101N

pointb := point anglelength on b ;

where := turningnumber (common--pointa--pointb--cycle) ;

if anglemethod = 1 :
curve := pointa{pointa rotated (where*90)} .. pointb ;
middle := point .5 along curve ;

elseif anglemethod = 2 :
middle := common rotatedaround(.5[pointa,pointb],180) ;
curve := pointa--middle--pointb ;

elseif anglemethod = 3 :
middle := ((common--pointa) rotatedaround (pointa,-where*90))

intersectionpoint
((common--pointb) rotatedaround (pointb, where*90)) ;

curve := pointa--middle--pointb ;

fi ;

draw thefreelabel(str,middle,common) withcolor black ;

curve
enddef ;
'3 A o A
4 7 :
w y -
4 4
¢ 3 ¢
) € 5 €
€
8
method 1 method 2 method 3
Figure 13.1 Three ways of marking angles.
Figure 13.1 shows the three alternative methods implemented here. Instead of using

unitvectors , we now calculate the points using the arctime and arclength primitives. In-
stead of complicated expressions, we use the Met aFun operators along and on. The following
expressions are equivalent.

pointa := point anglelength on a ;
middle := point .5 along curve ;

pointa := point (arctime anglelength of a) of a ;
middle := arctime (.5(arclength curve)) of curve) of curve ;

The third method can be implemented in different, more math intensive ways, but the current
implementation suits rather well and is understood by the author.

applidations Preliminary Version October 27, 2000

213

13.4 Color circles

In chapter 3 we showed a few color circles. Drawing such a graphic can be done in several ways,
and here we will show a few methods. First we will demonstrate how you can apply cutafter
and curbefore , next we will show how the MeTAPOST macro buildpath ~ can be used, and finally
we will present a clean solution using subpath . We will assume that the circle is called with the
macro:

colorcircle (4cm, red, green, blue) ;

We need to calculate seven paths. The first implementation does all the handywork itself and
thereby is rather long, complicated and unreadable. It does not really use the strenghth of META-
POST yet.

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, rr, gg, bb, cc, mm, yy ;
save b r, b g, gr gb;
save radius ;

path r, g, b, rr, bb, gg, cc, mm, yy ;
pair b r, b g, gr gb;

numeric radius ; radius := 3cm ;
pickup pencircle scaled (radius/20) ;

r ;= g := b := fullcircle scaled radius shifted (0,radius/4);

r := r rotatedaround(origin, 15) ; % drawarrow r withcolor red ;

g = g rotatedaround(origin,135) ; % drawarrow g withcolor green ;
b := b rotatedaround(origin,255) ; % drawarrow b withcolor blue ;
br:= b intersectionpoint r ; % draw b_r ;

bg:= b intersectionpoint g ; % draw b_g ;

g_r = reverse g intersectionpoint r ; % draw g_r ;

g_b := reverse g intersectionpoint b ; % draw g b ;

bb := b cutafter b_r ; bb := bb cutbefore b_g ; % drawarrow bb ;
gg := g cutbefore b_g ; gg := gg cutafter g r ; % drawarrow gg ;
rr := r cutbefore g_r & r cutafter b_r ; % drawarrow rr ;

cc := b cutbefore b r ; cc cc cutafter g b ; % drawarrow br ;
g cutbefore g_r ; yy = yy cutafter g b ; % drawarrow rg ;
mm = r cutbefore g r & r cutafter b r ; % drawarrow gb ;

3
i

bb := gg -- rr -- reverse bb -- cycle ;
g9 := bb rotatedaround(origin,120) ;
rr := bb rotatedaround(origin,240) ;

CC = mm -- cc -- reverse yy -- cycle ;
yy := cc rotatedaround(origin,120) ;
mm := cc rotatedaround(origin,240) ;

fill fullcircle scaled radius withcolor white ;

Preliminary Version October 27, 2000 Attew applications

fill rr withcolor red ; fill cc withcolor white-red ;
fill gg withcolor green ; fill mm withcolor white-green ;
fill bb withcolor blue ; fill yy withcolor white-blue

for i = rr,gg,bb,cc,mm,yy : draw i withcolor .5white ; endfor ;

currentpicture := currentpicture xsized size ;
enddef ;

In determining the right intersection points, you need to know where the path starts and in what
direction it moves. In case of doubt, drawing the path as an arrow helps. If you want to see the
small paths used, you need to comment the lines with the fill ‘s and uncomment the lines with
draw ’s. Due to the symmetry and the fact that we keep the figure centered around the origin, we
only need to calculate two paths since we can rotate them.

There are for sure more (efficient) ways to draw such a figure, but this one demonstrates a
few new tricks, like grouping. We use grouping here because we want to use mmto indicate the
magenta path, and mmormally means millimeter. Within a group, you can save variables. These
get their old values when the group is left.

With for we process multiple paths after each other. In this case it hardly saves tokens, but it
looks more clever.

One of the more efficient methods is using the buildcycle ~ macro. This macro takes two or
more paths and calculates the combined path. Although this is a rather clever macro, you should
be prepared to help it a bit when paths have multiple intersection points. Again, we could follow
a more secure mathematical method, but the next one took only a few minutes of trial and error.
To save some memory, we redefine the colors graphic.

When we call this macro as:

colorcircle(4cm, red, green, blue) ;

we get:

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, rr, gg, bb, cc, mm, yy ; save radius ;
path r, g, b, rr, bb, gg, cc, mm, yy ; numeric radius ;

radius := 5cm ; pickup pencircle scaled (radius/25) ;

r ;= g := b := fullcircle scaled radius shifted (0,radius/4) ;

r := r rotatedaround (origin, 15) ;
g := g rotatedaround (origin,135) ;
b := b rotatedaround (origin,255) ;
1ONS Preliminary Version October 27, 2000

r := r rotatedaround(center r,-90) ;
g := g rotatedaround(center g, 90) ;

gg := buildcycle(buildcycle(reverse r,b),q) ;
cc := buildcycle(buildcycle(b,reverse g),r) ;

rr := gg rotatedaround(origin,120) ;
bb := gg rotatedaround(origin,240) ;

yy := cc rotatedaround(origin,120) ;
mm := cc rotatedaround(origin,240) ;

fill fullcircle scaled radius withcolor white ;

fill rr withcolor red ; fill cc withcolor white-red ;
fill gg withcolor green ; fill mm withcolor white-green ;
fill bb withcolor blue ; fill yy withcolor white-blue ;

for i = rr,gg,bb,cc,mm,yy : draw i withcolor .5white ; endfor ;

currentpicture := currentpicture xsized size ;
enddef ;

Since we don’t want to duplicate a graphic, this time we show the dark alternatives.
colorcircle(4cm, .5red, .5green, .5blue) ;

This kind of unsafe path calculations are very sensitive to breaking. Changing the radius/4 into
something else demonstrates this but we will not challenge this macro that much. Therefore, the
50% color circle shows up as:

This command is part of Met aFun and can be used to determine nice color combinations by also
looking at their complementary colors.

colorcircle (4cm, .7red, .5green, .3blue) ;

Preliminary Version October 27, 2000 A ﬂ(@

The next circle that we draw shows the three main colors used in this document. This circle is not

that beautiful.

colorcircle(4cm,.625red,.625yellow,.625white) ;

This definition can be cleaned up a bit by using transform

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, rr, gg, bb, cc, mm, yy ; save radi

but the fuzzy buildcycle ‘s remain.

us ;

path r, g, b, rr, bb, gg, cc, mm, yy ; numeric radius ;

radius := 5cm ; pickup pencircle scaled (radius/2
transform t ; t := identity rotatedaround(origin,120

r := fullcircle scaled radius
shifted (0O,radius/4) rotatedaround(origin,15) ;

g r transformed t ; b := g transformed t ;

r := r rotatedaround(center r,-90) ;
g g rotatedaround(center g, 90) ;

gg := buildcycle(buildcycle(reverse r,b),q) ;
cc := buildcycle(buildcycle(b,reverse g).r) ;

rr := gg transformed t ; bb := rr transformed t ;
yy := cc transformed t ; mm := yy transformed

fill fullcircle scaled radius withcolor white ;

fill rr withcolor red ; fill cc withcolor white-red

5) ;
)

[

fill gg withcolor green ; fill mm withcolor white-green ;
fill bb withcolor blue ; fill yy withcolor white-blue ;

Preliminary Version October 27, 2000

for i = rr,gg,bb,cc,mm,yy : draw i withcolor .5white ; endfor ;

currentpicture := currentpicture xsized size ;
enddef ;

This rather nice circle is defined as:
colorcircle(4cm,(.4,.6,.8),(.8,.4,.6),(.6,.8,.4));
The final implementation, which is part of Met aFun, is slightly more efficient.

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, ¢, m, y, w ; save radius ;
path r, g, b, ¢, m, y, w ; numeric radius ;

radius := 5cm ; pickup pencircle scaled (radius/25) ;
transform t ; t := identity rotatedaround(origin,120) ;

r := fullcircle rotated 90 scaled radius
shifted (0O,radius/4) rotatedaround(origin,135) ;

b := r transformed t ; g := b transformed t ;

¢ = buildcycle(subpath(1,7) of g, subpath(1,7) of b) ;
y = c transformed t ; m := y transformed t ;
w

:= buildcycle(subpath(3,5) of r,
subpath(3,5) of g, subpath(3,5) of b) ;

pushcurrentpicture ;

fill r withcolor red ;
fill g withcolor green ;
fill b withcolor blue ;
fill ¢ withcolor white-red ;
fill m withcolor white-green ;
fill y withcolor white-blue ;
fill w withcolor white ;

for i = r,g,b,c,m,y : draw i withcolor .5white ; endfor ;

currentpicture = currentpicture xsized size ;

Preliminary Version October 27, 2000

popcurrentpicture ;
enddef ;

Here, we first fill the primary circles, next we fill the secondary ones, which also cover the center,
which is why finally we fill the center with white.

The circle uses the following colors:

colorcircle(4cm,(.2,.5,.8),(.8,.2,.5),(.5,.8,.2));

The next graphic demonstrates how the subpaths look that build the shapes.

oQ o

8 9 o

13.5

We did not mention what the push and pop commands are responsible for. Scaling the current
picture is well defined as long as we deal with one graphic. However, if the current picture already
has some content, this content is also scaled. The push and pop commands let us add content to
the current picture as well as manipulating the picture as a whole without any side effects. The
final result is put on top of the already drawn content.

Fool yourself

When doing a literature search on the human perception of black-white edges, I ran into several
articles with graphics that I remember having seen before in books on psychology, physiology

10NS Preliminary Version October 27, 2000

ica
T

[

and/or ergonomics. One of the articles was by Edward H. Adelson of MIT and we will use a
few of his example graphics in our exploration to what extend METAPOST can be of help in those
disciplines. Since such graphic normally occur in typeset documents, we will define them in the
document source.

Figure 13.2 White’s illusion.

Unless you belong to the happy few whose visual capabilities are not distorted by neural opti-
mizations, in figure 13.2 the gray rectangles at the left look lighter than those on the right. Alas,
you can fool yourself, but METRPOST does not cheat. This graphic, referred to as White’s illusion,
is defined as follows.

\startbuffer
interim linecap := butt ; numeric u ; u = 1lcm ;
pickup pencircle scaled .5u ;
for i=1u step u until 5u :
draw (0,i) -- (5u,i) ;

endfor ;
for i=2u step u until 4u :
draw (u,i) -- (2u,i) withcolor .5white ;
draw ((3u,i) -- (4u,)) shifted (0,-.5u) withcolor .Swhite ;
endfor ;
\stopbuffer

Watch how we include the code directly. We have packaged this graphic in a buffer which we
include as a floating figure.

\placefigure
[here][fig:tricked 1]
{White’s illusion.}
{\processMPbuffer}

When passed to METAPOST, this code is encapsulated in its beginfig and endfig macros and
thereby grouped. But any change to a variable that is not explicitly saved, migrates to the outer
level. In order to prevent all successive graphics to have butt’d linecaps, we have to change this
line characteristic locally. Because linecap is defined as an internal variable, we have to use
interim to overload its value. Because u is a rather commonly used scratch variable, we don't
save its value.

Preliminary Version October 27, 2000 A ﬂ(e‘

Watch how we use u as the loop step. In spite of what you eyes tell you, this graphic only
has two explicit color directives, both being 50% black. In the next example we will use some real
colors.

Figure 13.3 The simultaneous contrast effect.

In figure 13.3 the small squares in the center of each colored pair of big squares have the same
shade, but the way we perceive them is influenced by their surroundings. Both set of squares are
defined using “usable’ graphics. The top squares are defined as:

\startuseMPgraphic{second}
\includeMPgraphic{first}
fill fullsquare scaled size withcolor topshade ;
fill fullsquare scaled delta withcolor centershade ;
\stopuseMPgraphic

and the bottom squares are coded as:

\startuseMPgraphic{third}
\includeMPgraphicffirst}
fill fullsquare scaled size withcolor bottomshade ;
fill fullsquare scaled delta withcolor centershade ;
\stopuseMPgraphic

Because both graphics share code, we have defined that code as a separate graphic, that we in-
clude. The only point of interest in this definition is the fact that we let METAPOST interpolate
between the two colors (5[1).

\startuseMPgraphic{first}
numeric size, delta ;
size = 2.5cm ; delta := size/3 ;
color mainshade, topshade, bottomshade, centershade ;
mainshade := \MPcolor{funcolor} ;

topshade := .9mainshade ; bottomshade := .Smainshade ;
centershade := .5[topshade,bottomshade] ;
\stopuseMPgraphic

i0Ns Preliminary Version October 27, 2000

The color funcolor is provided by CONTEXT, and since we want to use this graphic with dif-
ferent colors, this kind of mapping is quite convenient. The bunch of graphics is packaged in a
combination with empty captions. Note how we set the color before we include the graphic.

\startcombination[5*2]
{\definecolor[funcolor][red] = \useMPgraphic{second}} {}
{\definecolor[funcolor][green] \useMPgraphic{second}} {}
{\definecolor[funcolor][blue] \useMPgraphic{second}} {}
{\definecolor[funcolor][yellow]\useMPgraphic{second}} {}
{\definecolor[funcolor][white] \useMPgraphic{second}} {}
{\definecolor[funcolor][red] \useMPgraphic{third}} {}
{\definecolor[funcolor][green] \useMPgraphic{third}} {}
{\definecolor[funcolor][blue] \useMPgraphic{third}} {}
{\definecolor[funcolor][yellow\useMPgraphic{third}} {}
{\definecolor[funcolor][white] \useMPgraphic{third}} {}

\stopcombination

We use a similar arrangement for the following graphic, where we have replaced the definitions
of first ,second and third by new definitions.

Figure 13.4 Koffka’s examples of manipulating contrast by changing the spatial configuration.

The definition of the first row of figure 13.4 is used in the second and third and therefore is the
most complicated. We use quite some scratch variables to reach a high level of abstraction. The
xyscaled operator is a Met aFun macro.

\startuseMPgraphic{first}
numeric height, width, radius, gap ; gap := 1mm ;
height = 2.5cm ; width := height/2 ; radius := height/2.5 ;

Preliminary Version October 27, 2000

01

13.6

color mainshade, leftshade, rightshade, centershade ;

mainshade := \MPcolor{funcolor} ;

leftshade := .9mainshade ; rightshade := .Smainshade ;

centershade := .5[leftshade,rightshade] ;

fill unitsquare xyscaled (width,height) withcolor leftshade ;

fill unitsquare xyscaled (-width,height) withcolor rightshade ;

draw (fullcircle scaled radius) shifted (0,height/2)

withpen pencircle scaled (radius/2) withcolor centershade ;

\stopuseMPgraphic

The graphics of the second row extend those of the first by drawing a white line through the
middle. In this example setting the linecap is not really needed, because rounded top and bottoms
in white are invisible and the part that extends beyond the points does not count in calculating
the bounding box.

\startuseMPgraphic{second}
\includeMPgraphic{first}
interim linecap := butt ; pickup pencircle scaled gap ;
draw (0,0) -- (0,height) withcolor white ;
\stopuseMPgraphic

The third row graphics again extend the first graphic. First we copy the picture constructed so far.
Wath the double assignment. Next we clip the pictures in half, and shift the right half down over
the width of the circle.

\startuseMPgraphic{third}
\includeMPgraphic{first}
picture p, q ; p = q := currentpicture ;
clip p to unitsquare xscaled width yscaled height ;
clip g to unitsquare xscaled -width yscaled height ;
currentpicture = p ;
addto currentpicture also g shifted (O,radius/2) ;
\stopuseMPgraphic

Puzzles

13.7

Maybe.

Flow charts

13.8

Instead of starting anew every time, you can use predefined macros, like those in the flow chart
module. Let’s see how we can influence the MeTAPOST code. Maybe not here.

Chemistry

METAPOST can do it’s work unseen, as in the chemistry module that comes with CONTEXT. There,
METAPOST is used as one of the graphical plug-ins. It demonstrates that we can put METAPOST to
work without seeing any code.

10NS Preliminary Version October 27, 2000

13.9

Growing graphics

Although METAPOST is not really suited an a simulation engine, it is possible to build graphics that
are built and displayed incrementally with a sequence of mouse clicks. The following example is
the result of an email discussion David Arnold and the author had while Met aFun evolved.

Instead of defining the graphics in a separate METAPOST file, we will incorporate them in the
document source in which they are used. We can use several methods.

1. Define macros and figures in a separate file and include the graphics as external graphics.

2. Define everything in the document source as usable graphics and include the graphics using
\useMPgraphic

3. Package the graphic components in buffers and paste those together as graphics that can be
processed at run time.

The first method is the most independent one, which has its advantages if we want to use the
graphics in other applications too. The second method works well in graphics where parts of the
definitions change between invocations of the graphic. This method follows the template:

\startuseMPgraphic{whatever}

\stopuseMPgraphic

\startuseMPgraphic{result}
\includeMPgraphic{whatever}

\stopuseMPgraphic
\useMPgraphic{result}

The disadvantage of this method is that it cannot be combined with btex —etex since it is near-
ly impossible to determine when, how, and to what extent the content of a graphic should be
expanded before writing it to the temporary meTAPOST file.

Therefore, we will demonstrate how buffers can be used. This third method closely parallels
the first way of defining graphics. A nice side effect is that we can easily typeset these buffers
verbatim, which we did to typeset this document.

We are going to do a classic compass and straightedge construction, the bisection of a line
segment joining two arbitrary points. We will construct 5 graphics, where each one displays one
step of the construction. We will embed each graphic in a start-stop command. Later we will see
the advantage of this strategy.

\startbuffer[a]

def start_everything = enddef ;
def stop_everything = enddef ;
\stopbuffer

We are going to draw a few dots, and to force consistency we first define a macro draw_dot . The
current step will be highlighted in red using stand_out

Preliminary Version October 27, 2000 A ﬂrew

\startbuffer[b]
numeric u, w ; u = .5cm ; w = 1pt ;

pickup pencircle scaled w ;

def draw_dot expr p =
draw p withpen pencircle scaled 3w ;
enddef ;

def stand_out =
drawoptions(withcolor .625red) ;

enddef ;

\stopbuffer

First, we construct the macro that will plot two points A and B and connect them with a line
segment.

\startbuffer[c]
def draw_basics =
pair pointA, pointB ; path lineAB ;
pointA := origin ; pointB := pointA shifted (5u,0) ;
lineAB := pointA -- pointB ;
draw lineAB ;
draw_dot pointA ; labellft(btex A etex, pointA) ;
draw_dot pointB ; label.rt (btex B etex, pointB) ;
enddef ;
\stopbuffer

The code in this buffer executes the preceding macros. The ..._everything commands are still
undefined, but later we can use these hooks for special purposes.

\startbuffer[1]
start_everything ;

stand_out ; draw_basics ;
stop_everything ;
\stopbuffer

This graphic can now be embedded by the CONTEXT command \processMPbuffer . This com-
mand, like the ordinary buffer inclusion commands, accepts a list of buffers.

\startlinecorrection[blank]
\ruledhbox{\processMPbuffer[a,b,c,1]}
\stoplinecorrection

We use \ruledhbox to show the tight bounding box of the graphic. The line correction takes
care of proper spacing around non textual content, like graphics.* This is only needed when the
graphic is part of the text flow!

A B

% These spacing commands try to get the spacing around the content visually compatible, and take the height and depth of

the preceding and following text into account.

i0ns Preliminary Version October 27, 2000

Next, we draw two circles of equal radius, one centered at point A, the other at point B.

\startbuffer[d]

def draw_circles =
path circleA, circleB ; numeric radius, distance ;
distance := (xpart pointB) - (xpart pointA) ;
radius := 2/3 * distance ;
circleA := fullcircle scaled (2*radius) ;
circleB := circleA shifted pointB ;
draw circleA ;
draw circleB ;

enddef ;

\stopbuffer

As you can see, we move down the stand_out macro so that only the additions are colored red.

\startbuffer[2]
start_everything ;
draw_basics ; stand_out ; draw_circles ;
stop_everything ;
\stopbuffer

We now use \processMPbuffer[a,b,c,d,2] to include the latest step.

s
N

The next step in the construction of the perpendicular bisector requires that we find and label the
points of intersection of the two circles centered at points A and B. The intersection points are
calculated as follows. Watch the reverse operation, which makes sure that we get the second
intersection point.

\startbuffer[e]
def draw_intersection =
pair pointC, pointD ;
pointC := circleA intersectionpoint circleB ;
pointD := (reverse circleA) intersectionpoint (reverse circleB) ;
draw_dot pointC ; label.lft(btex C etex, pointC shifted (-2w,0)) ;
draw_dot pointD ; label.lft(btex D etex, pointD shifted (-2w,0)) ;
enddef ;
\stopbuffer

In placing the label, we must make sure that the text runs free of the lines and curves. Again, move
the stand_out macro just prior to draw_intersection macro, so that this step is highlighted
in the drawing color, while prior steps are drawn in the default color (in this case black).

Preliminary Version October 27, 2000 A ﬂ(e‘

\startbuffer[3]
start_everything ;
draw_basics ; draw_circles ; stand_out ; draw_intersection ;
stop_everything ;
\stopbuffer

N
NI

The line drawn through points C and D will be the perpendicular bisector of the line segment
connecting points A and B. In the next step we will draw a line using the plain METAPOST
drawdblarrow macro that draws arrowheads at each end of a path.

\startbuffer([f]

def draw_bisector =
path lineCD ;
lineCD := origin -- origin shifted (2*distance,0) ;
lineCD lineCD rotated 90 shifted 0.5[pointA,pointB] ;
lineCD lineCD shifted (0,-distance) ;
drawdblarrow lineCD ;

enddef ;

\stopbuffer

\startbuffer[4]

start_everything ;
draw_basics ; draw _circles ; draw_intersection ; stand out ;
draw_bisector ;

stop_everything ;

\stopbuffer

y

The following code draws the intersection of line C — D and line segment A — B, which can be
shown to be the midpoint of segment A — B.

=

ms. Preliminary Version October 27, 2000

\startbuffer[g]
def draw_midpoint =
pair pointM ;
pointM := lineCD intersectionpoint lineAB ;
draw_dot pointM ; label.llft(btex M etex, pointM) ;
enddef ;
\stopbuffer

\startbuffer[5]

start_everything ;
draw_basics ; draw_circles ; draw_intersection ; draw_bisector ;
stand_out ; draw_midpoint ;

stop_everything ;

\stopbuffer

v

As long as we place the graphics as individual insertions in our document, everything is fine.
However, if we wish to place them all at once, or as we shall see later, place them on top of one
another in a fieldstack, it makes sense to give them all the same bounding box. We can do this by
completing the start_everything and stop_everything commands.

\startbuffer[a]
def start_everything =
path bb ;
draw_basics ;
draw_circles ;
draw_intersection ;
draw_bisector ;
draw_midpoint ;
bb := boundingbox currentpicture ;
currentpicture := nullpicture ;
enddef ;

def stop_everything =

setbounds currentpicture to bb ;
enddef ;
\stopbuffer

Preliminary Version October 27, 2000 A ﬂ(e‘

In figure 13.5 we demonstrate the effect of this redefinition. For this purpose we scale down the
graphic to a comformatble 40%, of course by using an additional buffer. We also visualize the
bounding box.

\startbuffer[h]

def stop_everything =
setbounds currentpicture to bb ;
draw bb withpen pencircle scaled .5pt withcolor .625yellow ;
currentpicture := currentpicture scaled .4 ;

enddef ;

\stopbuffer

The graphic itself is defined as follows. Watch how we use the default buffer to keep the defini-
tions readable.

\startbuffer

\startcombination[5*1]
{\processMPbuffer[a,b,c,h,d,e,f,g,1]} {step 1}
{\processMPbuffer[a,b,c,h,d,e,f,g,2]} {step 2}
{\processMPbulffer[a,b,c,h,d,e,f,g,3]} {step 3}
{\processMPbuffer[a,b,c,h,d,e,f,g,4]} {step 4}
{\processMPbuffer[a,b,c,h,d,e,f,g,5]} {step 5}

\stopcombination

\stopbuffer

\placefigure
[here][fig:1 till 5]
{The five graphics, each with the same bounding box.}
{\getbuffer}

GDEEA

step 1 step 2 step 3 step 4 step 5

A

Figure 13.5 The five graphics, each with the same bounding box.

As the original purpose of these graphics was not to show them side by side, but to present them
as field stack in a document to be viewed at the computer screen. For this purpose we have to
define the graphics as symbols.

\definesymbol[step 1][{\processMPbuffer[a,b,c,d,e,f,g,1]}]
\definesymbol[step 2][{\processMPbuffer[a,b,c,d,e,f,g,2]}]
\definesymbol[step 3][{\processMPbuffer[a,b,c,d,e,f,g,3]}]
\definesymbol[step 4][{\processMPbuffer[a,b,c,d,e,f,g,4]}]
\definesymbol[step 5][{\processMPbuffer[a,b,c,d,e,f,g,5]}]

A field stack is a sequence of overlayed graphics. We will arrange to manually cycle, with clicks of
the mouse, through the sequence of graphs depicting the construction of the midpoint of segment

tFe applications Preliminary Version October 27, 2000

A — B. So, in fact we are dealing with a manual simulation. The definition of such a stack is as
follows:

\definefieldstack
[midpoint construction]
[step 1, step 2, step 3, step 4, step 5]
[frame=o0n,offset=3pt,framecolor=darkyellow,rulethickness=1pt]

The first argument is to be a unique identifier, the second argument takes a list of symbols, while
the third argument accepts settings. More on this command can be found in the CONTEXT manuals.

The stack is shown as figure 13.6. Its caption provides a button, which enables the reader to
cycle though the stack. We call this a stack because the graphics are positioned on top of each
other. Only one of them is visible at any time.

\placefigure

[here][fig:steps]

{Bisecting a line segment with compass and straightedge? Just
click \goto {here} [JS(Walk Field{midpoint construction})] to
walk through the construction! (This stack is only visible
in a \PDF\ viewer that supports widgets.)}

{\fieldstack[midpoint construction]}

Figure 13.6 Bisecting a line segment with
compass and straightedge? Just click here to
walk through the construction! (This stack is
only visible in a PDF viewer that supports wid-
gets.)

At the start of this section, we mentioned three methods. When we use the first method of putting
all the graphics in an external MeTAPOST file, the following framework suits. We assume that the
file is called step.mp and that it is kept by the user along with his document source. We start
with the definitions of the graphic steps. These are the same as the ones shown previously.

def draw_basics = ... enddef ;
def draw_circles = ... enddef ;
def draw_intersection = ... enddef ;

def draw_bisector = ... enddef ;

Preliminary Version October 27, 2000 A ﬁ(e‘

def draw_midpoint = ... enddef ;

def stand_out = ... enddef ;
We can safe some code by letting the ..._everything take care of the beginfig and endfig
macros.

def start_everything (expr n) = beginfig(n) ; ... enddef ;

def stop_everything = ... ; endfig ; enddef ;

The five graphics now become:

start_everything (1) ;
stand_out ; draw_basics ;
stop_everything ;

start_everything (2) ;
draw_basics ; stand_out ; draw_circles ;
stop_everything ;

start_everything (3) ;
draw_basics ; draw_circles ; stand_out ; draw_intersection ;
stop_everything ;

start_everything (4) ;
draw_basics ; draw_circles ; draw_intersection ; stand_out ;
draw_bisector ;

stop_everything ;

start_everything (5) ;
draw_basics ; draw_circles ; draw_intersection ; draw_bisector ;
stand_out ; draw_midpoint ;

stop_everything ;

The definitions of the symbols now refer to an external figure.

\definesymbol[step 1][{\externalfigure[step.1]}]
\definesymbol[step 2][{\externalfigure[step.2]}]
\definesymbol[step 3][{\externalfigure[step.3]}]
\definesymbol[step 4][{\externalfigure[step.4]}]
\definesymbol[step 5][{\externalfigure[step.5]}]

Which method is used, depends on the way the graphics are used. In this example we wanted to

change the definition of ..._everything , 50 here the third method was quite useful.
1310 Simple Logos
Many company logos earn their beauty from their simplicity. One of the logos that most dutch
people have imprinted in their mind is that of the Dutch Railway Company (NS). An interesting
feature of this logo is that, although it is widely known, drawing it on a piece of paper from mind
is a task that many people fail.
ew a 10NS Preliminary Version October 27, 2000

This logo makes a good candidate for demonstrating a few fine points of drawing graphics, like
using linear equations, setting line drawing characteristics, clipping and manipulating bounding
boxes.

The implementation below is quite certainly not according to the official specifications, but it
can nevertheless serve as an example of defining such logos.

As always, we need to determine the dimensions first. Here, both the height and line width
depend on the width of the graphic.

Instead of calculating the blue shape such that it will be a filled outline, we will draw the logo
shape using line segments. This is why we need the line parameter.

numeric width ; width = 3cm ;
numeric height ; height = width/2 ;
numeric line ; line = height/4 ;

We want sharp corners which can be achieved by setting lingjoin ~ to mitered
linejoin := mitered ; pickup pencircle scaled line ;

The colors are rather primary blue and yellow. At the time of writing this manual, Dutch trains
are still painted yellow, so we will use that shade as background color.

color nsblue ; nsblue = (0,0,1) ;
color nsyellow ; nsyellow := (1,1,0) ;

We will now describe the main curves. Although these expressions are not that advanced, they
demonstrate that we can express relationships instead of using assignments.

z1 = (0, height/2) ;

z2 = (width/2-height/4, y1) ;
z3 = (width/2+height/4, y4) ;
z4 = (width, 0) ;

path p ; p := z1--z2--z3--z4 ;

Although it is accepted to consider z to be a variable, it is in fact a vardef macro, that expands
into a pair (X,y) . This means that the previous definitions internally become:

(x1,y1) = (0, height/2) ;

(x2,y2) = (width/2-height/4, y1) ;
(x3,y3) = (width/2+height/4, y4) ;
(x4,y4) = (width, 0) ;

Preliminary Version October 27, 2000 A ﬂrew

These 8 relations can be solved by METAPOST, since all dependencies are known.

x1 =10 .yl = height/2 ;
x2 = width/2-height/4 ; y2 = y1 :
x3 = width/2+height/4 ; y3 = y4 ;
x4 = width cy4 =0 .

Since we express the variables X and y in terms of relations, we cannot reuse them, since that
would mean that inconsistent relations occur. So, the following lines will lead to an error message:

z1 = (10,20) ; z1 = (30,50) ;

For similar reasons, we may not assign a value (using :=) to such a z variable. Within a METAPOST
figure, z variables are automatically saved, which means that they can be reused for each figure.
So far, we have defined the following segment of the logo.

The next expressions are used to define the second segment. The third expression determines z7
to be positioned on the line z5--z6 , where we extend this line by 50%.

z5 = (x4+height/2, y1) ;
26 = (x4, 2yl) ;
z7 = 1.5[z5,z6] ;

path q ; q := z3--z4--z5--z7 ;

3
°
0 1
° ° ° 2
2 3
° °
0 1

However, when we draw them using the right linewidth and color, you will notice that we’re not
yet done:

10NS Preliminary Version October 27, 2000

The second curve is similar to the first one, but rotated over 180 degrees.

addto currentpicture also currentpicture
rotatedaround (.5[z2,z3],180) shifted (height/4,height/2) ;

In order to get the sharp edges, we need to clip off part of the curves and at first sight, we may
consider using a scaled bounding box. However, when we show the natural bounding box, you
will notice that a more complicated bit of calculations is needed.

The right clip path is calculated using the following expressions. Watch how we use rt and top
to correct for the linewidth.

numeric d, Ix, ly, ux, uy ; d = line/2 ;
Ix =-3d -d/i3 ;ly=-d;ux=rtx5+d3; uy = top y6 ;
path r ; r = (Ix,ly)--(ux,ly)--(ux,uy)--(Ix,uy)--cycle;

The clipping path is applied by saying:

clip currentpicture to r ;

The result is quite acceptable:

But, if you watch closely to how this graphic extends into to left margin of this document, you
will see that the bounding box is not yet right.

Preliminary Version October 27, 2000 A %ew

setbounds currentpicture to r ;

We use the same path r to correct the bounding box.

«

There are a few subtle points involved, like setting the linejoin variable. If we had not set it to
mitered , we would have got round corners. We don't set the linecap , since a flat cap would
not extend far enough into the touching curve and would have left a small hole. The next example
shows what happens if we set these variables to the wrong values:

A\

In fact we misuse the fact that both curves overlay each other.

The complete logo definition is a bit more extensive since we also want to add a background.
Because we need to clip the blue foreground graphic, we must temporarily store it when we fill
the background.

numeric width, height, line, delta ;
width = 5cm ; height = width/2 ; line = height/4 ; delta = line ;

linejoin := mitered ; pickup pencircle scaled line ;

color nsblue ; nsblue = (0,0,2) ;
color nsyellow ; nsyellow := (1,1,0) ;
z1 = (0, height/2) ;

z2 = (width/2-height/4, y1) ;

z3 = (width/2+height/4, y4) ;

z4 = (width, 0) ;

z5 = (x4+height/2, y1) ;

26 = (x4, 2yl) ;

z7 = 1.5[z5,z6] ;

path p ; p := z1--z2--z3--z4 ; path q ; q := z3--z4--z5--27 ;
numeric d, Ix, ly, ux, uy ; d = line/2 ;

Ix =-3d -d3 ;ly=-d;ux =rtx5+d3; uy = top y6 ;

=
O
=
2]

Preliminary Version October 27, 2000

13.11

path r ; r = (Ix,ly)--(ux,ly)--(ux,uy)--(Ix,uy)--cycle;

Ix := Ix-delta ; ly := ly-delta ; ux := ux+delta ; uy := uy+delta ;
path s ; s = (Ix,ly)--(ux,ly)--(ux,uy)--(Ix,uy)--cycle;

draw p withcolor nsblue ; draw g withcolor nsblue ;

addto currentpicture also currentpicture
rotatedaround (.5[z2,z3],180) shifted (height/4,height/2) ;

picture savedpicture ; savedpicture := currentpicture ;

clip currentpicture to r ;
setbounds currentpicture to r ;

savedpicture := currentpicture ; currentpicture := nullpicture ;

fill s withcolor nsyellow ;
addto currentpicture also savedpicture ;

For practical use it makes sense to package this definition in a macro to which we pass the dimen-
sions.

Animations

Although MeTAPOST is not that well suited for free hand drawings, you can use it to make stylistics
animations.

Preliminary Version October 27, 2000 A i}ej

Preliminary Version October 27, 2000

14

Met aFun macros

CONTEXT comes with a series of MeTAPosT modules. In this chapter we will summarize the most
important TgX and MeTAPOST macros. More information can be found in the documentation of the
modules.

Unless you want to write low level CONTEXT code yourself, there is no real reason to look into the
modules that deal with METAPOST support.

supp-mps.tex low level inclusion macros and housekeeping
supp-mpe.tex experimental extensions (like specials)
supp-pdf.tex METAPOST to PDF conversion

meta-ini.tex high level inclusion macros and interfacing
meta-***.tex subsystems and handy macros

The last category will certainly grow. Some of these modules are preloaded, others can be loaded
using the command \useMPlibrary , like

\useMPlibrary[clp,txt]

for loading the predefined clipping paths and text tricks.

The MeTAPOST code is organized in files named mp-****mp . The core file is mp-tool.mp
and this file can comfortably be used in stand—alone graphics. The collection of METAPOST code
files will grow in due time, but as long as you use the Met aFun format, you don’t have to keep
track of the organization of files. Most files relate to subsystems and are loaded automatically, like
the files that implement page layout support and flow charts.

I'will also add some information on how to generate documented sources.

Preliminary Version October 27, 2000 M

Preliminary Version October 27, 2000

15

Example graphics

In this chapter we will show some of the graphics that we made the last few years using METAPOST.

They give an impression of what kind of non-mathematical drawings can be made.

Preliminary Version October 27, 2000

0
il

Preliminary Version October 27, 2000

Programs

Al

After a graphics is defined in the MeTAPOST language, you have to compile it into a POSTSCRIPT
graphic using MeTAPOST the program. An additional next step is conversion into PDF. In this chap-
ter we will discuss the programs involved in this process.

METAPOST

A2

A3

Of course we use METAPOST. This program can be found in most TgX distributions and the binary
is called mpost . It uses a few auxiliary programs to prepare files that are passed on to TzX, and
if you can locate the METAPOST binary, you may assume that its companion programs are around
somewhere too.

When you use the macros that come with CONTEXT, you may wish to package them in a mem-
ory dump file that can be loaded fast. You can do that by the following command.

mpost --ini metafun

You have to move the resulting memfile to the location where METAPOST expects to find it. If you
want to be sure that everything is done correctly, you may try:

texexec --make --alone metafun

Depending on how you want to process your graphic, in the file cont-sys.tex ~ , which you can
put in a place where CONTEXT can find it, you may set one or more of the following switches:

\runMPgraphicstrue process graphics at run—time

\runMPTEXgraphicstrue at run—time, process graphics that contain text that is to be typeset
by TiX by calling TeXEXEC

\recycleMPslotstrue use a less temporary files as possible

\useMETAFUNformattrue use a Met aFun format file instead of loading all modules separate-

ly

It makes much sense to process the graphics directly, because then TgX will know the right dimen-
sions at once. if you process the graphics afterwards, TgX will run much faster, but additional runs
may be needed.

TEX
The installation of TgX is not trivial. Fortunately, the Tgx user groups distribute Tgx in such a way

that installation is nearly automatic. There are well written manuals available for installing TgX. If
you are free to choose what TgX you use, we advise to use PDF-¢-TgX.

ConTgXt

The installation of CONTEXT is described in the manual that is included in the distribution. If you
want to update to a more recent version, you can fetch a new archive from one of the sites that

Preliminary Version October 27, 2000

A4

host CONTEXT. You need to unzip this zipped archive in the root of the texmf or texmf-local
tree. After that, you need to generate a format file by saying

texexec --make

TEXExec

A5

Unfortunately, TeX lacks a real command line interface. This means that when we want to process
a file under a different regime, we need to adapt the document source. For this reason we wrote
the PERL script TeXEXEC. This script is meant to make using TgX a bit more user friendly, and it will
be no surprise that METAPOST is supported as well.

Unless you have enabled runtime generation of graphics, after each run you have to process
the files mpgraph.mp and mprun.mp . However, when you use TEXEXEC, the files will be processed
automatically. You can disable this feature with the switch --nomprun . This can be handy when
debugging files, since by default, CONTEXT will run METAPOST in batch mode.

texexec --nomprun myfile

When you run TeXEXEC this way, you must not forget to process the two files mentioned, especially
if their content has changed.

It is possible to run TgX and MeTAPOST in so called batch mode. If you pass TeXEXEC the switch
--batch , both programs will not send messages to the screen.

texexec --batch myfile

Stand-alone graphics that have btex —etex directives embedded, can be processed by TXEXEC
by saying:

texexec --mptex myfile.mp

To what extend this feature works well, depends on the Tgx implementation you use. You can
set up some METAPOST specific variables in the initialization file texexec.ini . By default, these
variables are set up as follows:

set MpExecutable to mpost
set MpToTeXExecutable to mpto
set DviToMpExecutable to dvitomp

Also, when using the WEB2C implementation, you can set the following variables in the file
texmf.cnf

MPXCOMMAND = texexec --mptex
TEX = texexec --once --batch --nomp

MPtoPDF

The small suite of TgXx macros in the file mptopdf provides a quick way to convert MeTRPOST files
to PDF using a slightly stripped down plain TzX, PDFIEX, and a few CONTEXT modules. Although

Preliminary Version October 27, 2000

A6

CONTEXT can handle MeTaposT files directly, this conversion is seldom needed. However, it can be
handy to convert the file to be able to preview it.
Before we can apply this conversion, we have to generate a format, which in WEB2C looks like:

pdftex --ini mptopdf

Since this conversion only works with PDFIEX or its e-TgX alternative. the session is aborted when
another TgX is used. When finished, the resulting fmt file should be moved to the right location.

When TEXEXEC is properly set up, you can also use this PERL script to handle the generation of
the format and move.

texexec --make --alone --tex=pdftex --format=mptopdf
The conversion itself is accomplished by:
pdftex &mptopdf \relax filename.number

The \relax is needed since we don’t want to process the file directly. Instead we pick up the
filename using \everypar . Because this file is still the first one we load, although delayed, the
jobname is as we expect. So, at least in WEB2C, the result of the conversion comes available in the
file filename.pdf . This conversion process is roughly compatible with:

texexec --pdf --fig=c --result=filename filename.number

This uses CONTXT, and is therefore slower, but fortunately, there is a small PERL script that does
a faster job, using the minimal format. Given that the previously mentioned format is generated,
you can say:

mptopdf somefile
mptopdf somefile.123
mptopdf mp*.*

The results are copied into files named somefile-number . This mechanism will also be avail-
able in a next release of TRXUTIL, a TgX file manipulation script that comes with CONTEXT.

Since ACROBAT has troubles with figures smaller than 1 inch, we issue a warning. When em-
bedding graphics in documents, a size less that 1 inch does not harm. In order to overload runtime
directives in the PDFIEX configuration file, we set the offsets and output method in the macro.

The resulting PDF file is about as efficient as such a self contained file can be. However, if
needed, this PDF file can be converted to EPS using for instance the pdftops program (in WEB2C)
or GHOSTSCRIPT.

Test case

If you want to test of your installation is working properly, you may construct a file called
test.tex that contains the following lines.

\starttext
\setupcolors[state=start]
\startMPpage
colorcircle(10cm,red,green,blue) ;

Preliminary Version October 27, 2000 g rIPsf

\stopMPpage
\stoptext

Given that you have PDFTEX, TEXEXEC and CONTEXT installed, you can now say:

texexec --pdf test

When processing is finished, there should be a file test.pdf
the color circles defined in a previous chapter.

that contains a graphic that shows

Preliminary Version October 27, 2000

METAPOST syntax

B.1

In the meTaFonT book as well as the METAPOST manual, you can find the exact specification of
the language. Below you find the full meTAPOST syntax, to which we add the basic Met aFun
extensions. If this page looks too cryptic, you can safely skip to the next chapter.

Syntax diagrams

The following syntax diagrams are derived from the diagrams in the METAPOST manual. The —
represents ‘means’ and the | symbol stands for ‘or’.

The diagrams describe the hard coded METAPOST syntax as well as most of the macros and
variables defined in the plain METAPOST format that belong to the core of the system. They also
include some of the more fundamental Met aFun commands.

(atom)
— (variable) (argument)
(number or fraction)
(internal variable)

(expression))

|
|
I (
| begingroup (statement list) (expression) endgroup
| (nullary op)

| btex (typesetting command) etex

|

(pseudo function)

(primary)

— (atom)

| ((numeric expression) , (numeric expression))

| ((numeric expression) , (numeric expression) , (numeric expression))
| (of operator) (expression) of (primary)
| (of operator) (expression) along (primary)
| (of operator) (expression) on (primary)
| (unary op) (primary)
| str (suffix)
| z (suffix)
| (numeric atom) [(expression) , (expression)]

| (scalar multiplication op) (primary)

(secondary)
— (primary)
| (secondary) (primary binop) (primary)

| (secondary) (transformer)

(tertiary)
— (secondary)
| (tertiary) (secondary binop) (secondary)

Preliminary Version October 27, 2000

(subexpression)
— (tertiary)

| (path expression) (path join) (path knot)

(expression)
— (subexpression)
| (expression) (tertiary binop) (tertiary)
| (path subexpression) (direction specifier)
| (path subexpression) (path join) cycle

(path knot)

— (tertiary)

(path join)

NG —

| (direction specifier) (basic path join) (direction specifier)

(direction specifier)
— (empty)
| { curl (numeric expression) }
| { (pair expression) }

| { (numeric expression) , (numeric expression) }

(basic path join)

(tension) ..
(tension) ..

(controls) ..

(tension)
— tension (numeric primary)
| tension atleast (numeric primary)

| tension (numeric primary) and (numeric primary)

(controls)
— controls (pair primary)

| controls (pair primaryiandhpair primary)

(argument)

— (symbolic token)

(number or fraction)
— (number) / (number)

| (number not followed by */ (numberi) ")

Preliminary Version October 27, 2000

(scalar multiplication op)
— + | -

| (* (number or fractioni) " not followed by ‘ (add op) (number) ")

(transformer)

— rotated (numeric primary)
| scaled (numeric primary)
| shifted (pair primary)
| slanted (numeric primary)
| transformed (transform primary)
| xscaled (numeric primary)
| yscaled (numeric primary)
| zscaled (pair primary)
| xyscaled (numeric primary)

| reflectedabout (
| rotatedaround (
| enlarged

(pair expression) , (pair expressioni))
(pair expression) , (numeric expression))
(numeric or pair primary)
| randomized (numeric or pair primary)
| sqeezed (numeric or pair primary)

| superellipsed (numeric primary)

| xsized (numeric primary)
| ysized (numeric primary)
| xysized (pair primary)

| randomshifted (numeric or pair primary)

(numeric or pair primary)

— (numeric primary)

| (pair primary)
(nullary op)
— false | normaldeviate | nullpicture | pencircle | true | whatever
(unary op)
— (type)
| abs | angle | arclength | ASCII | bbox | bluepart | bot | bounded | boundingbox
| ceiling | center | char | clipped | cosd | cycle | dashpart | decimal | dir | filled
| floor | fontpart | fontsize | greenpart | hex | innerboundingbox | inverse | known
| length | Ift | llcorner | Ircorner | makepath | makepen | mexp | mlog | not | oct
| odd | outerboundingbox | pathpart | penpart | redpart | reverse | round | rt | sind
| sqrt | stroked | textpart | textual | top | ulcorner | uniformdeviate | unitvector | unknown
| urcorner | xpart | xxpart | xypart | ypart | yxpart | yypart
(type)
— boolean | color | numeric | pair | path
| pen | picture | string | transform
(primary binop)
— * |/ | *™ | and
| dotprod | div | infont | mod
Preliminary Version October 27, 2000 =)

(secondary binop)

— + |- | ++ | +-+ | or
| intersectionpoint | intersectiontimes
(tertiary binop)
> &|<|<=|<>|=]|>]>=
| cutafter | cutbefore

(of operator)

— arctime | direction | directiontime | directionpoint | penoffset | point
| postcontrol | precontrol | subpath | substring
(variable)

— (tag) (suffix)

(suffix)
— (empty)
| (suffix) (subscript)
| (suffix) (tag)
||

suffix parameter)
(subscript)
— (number)

| [(numeric expression)]

(internal variable)

— ahangle | ahlength | bboxmargin | charcode | day | defaultpen | defaultscale | labeloffset
| linecap | lingjoin | miterlimit | month | pausing | prologues | showstopping | time
| tracingoutput | tracingcapsules | tracingchoices | tracingcommands | tracingequations
| tracinglostchars tracingmacros | tracingonline | tracingrestores tracingspecs
| tracingstats | tracingtitles truecorners | warningcheck | year

| (symbolic token defined by newinternal)

(pseudo function)
— min ((expression list))
max ((hexpression list))
incr ((numeric variable))
decr ((numeric variable))
dashpattern ((on/off list))
interpath ((numeric expression) , (path expression) , (path expression))
buildcycle ((path expression list))
thelabel (label suffix) ((expression) , (pair expression))
thefreelabel ((expression) , (pair expression) , (pair expression))
anglebetween ((path expression) , (path expression) , (expression))
pointarrow ((path expression) , (numeric or pair primary) , (numeric expression) , (numeric expression))
leftarrow ((path expression) , (numeric or pair primary) , (numeric expression))
centerarrow ((path expression) , (numeric or pair primary) , (numeric expression))

rightarrow ((path expression) , (numeric or pair primary) , (numeric expression))

paired ((numeric or pair))

Preliminary Version October 27, 2000

(path expression list)
— (path expression)

| (path expression list) , (path expression)

(on/ off list)
— (on/off list) (on/off clause)

| (on/off clause)

(on/off clause)
— on (numeric tertiary)

| off (numeric tertiary)

boolean expression) — (expression)
color expression) — (expression)
numeric atom) — (atom)

numeric expression) — (expression)
numeric primary) — (primary)

numeric tertiary) — (tertiary)

numeric variable) — (variable) | (internal variable)

pair expression) — (expression)

(

(

(

(

(

(

(

(

(pair primary) — (primary)
(path expression) — (expression)

(path subexpression) — (subexpression)
(pen expression) — (expression)
(picture expression) — (expression)
(picture variable) — (variable)

(string expression) — (expression)
(suffix parameter) — (parameter)

(

transform primary) — (primary)

(program)
— (statement list) end

(statement list)
— (empty)

| (statement list) ; (statement)

(statement)

— (empty)
equation)
assignment)

declaration)

compound)

pseudo procedure)

(
(
(
(macro definition)
(
(
(

command)

Preliminary Version October 27, 2000

(compound)
— begingroup (statement list) endgroup
| beginfig ((numeric expression)) ; (statement list) (;) endfig

(equation)
— (expression) = (right-hand side)

(assignment)
— (variable) := (right-hand side)
| (internal variable) := (right-hand side)

(right-and side)
— (expression)
| (equation)

| (assignment)

(declaration)
— (type) (declaration list)

(declaration list)
— (generic variable)

| (declaration list) , (generic variable)

(generic variable)

— (Symbolic token) (generic suffix)

(generic suffix)
— (empty)
| (generic suffix) (tag)
| (generic suffix) []

(macro de nition)

— (macro heading) = (replacement text) enddef

(macro heading)
— def (Symbolic token) (delimited part) (undelimited part)
| vardef (generic variable) (delimited part) (undelimited part)
| vardef (generic variable) @%# (delimited part) (undelimited part)
| (binary def) (parameter) (symbolic token) (parameter)

(delimited part)
— (empty)
| (delimited part) ((parameter type) (parameter tokens))

(parameter type)
— expr
| suffix
| text

Preliminary Version October 27, 2000

(parameter tokens)
— (parameter)

| (parameter tokens) , (parameter)

(parameter)

— (Symbolic token)

(undelimited part)
— (empty)
| (parameter type) (parameter)
| (precedence level) (parameter)

| expr (parameter) of (parameter)

(precedence level)
— primary
| secondary
| tertiary

(binary def)
— (primarydef)
| (secondarydef)
| (tertiarydef)

(pseudo procedure)

— drawoptions ((option list))

| label (label suffix) ((expression) , (pair expression))

| dotlabel (label suffix) ((expression) , (pair expression))

| labels (label suffix) ((point number list))

| dotlabels (label suffix) ((point number list))

| freelabel ((expression) , (pair expression) ,

(pair expression))

| freedotlabel ((expression) , (pair expression) , (pair expression))

(point number list)

— (suffix) | (point number list) , (suffix)

(label suffix)

— (empty)
| Ift | rt |top | bot | ulft | urt | It

Preliminary Version October 27, 2000

| Irt

(command)

— clip (picture variable) to (path expression)
interim (internal variable) := (right-hand side)
let (symbolic token) = (symbolic token)
newinternal (symbolic token list)
pickup (expression)
randomseed = (numeric expression)
save (symbolic token list)
setbounds (picture variable) to (path expression)

|

|

|

|

|

|

|

| shipout (picture expression)
| special (string expression)
| (addto command)

| {drawing command)

| (font metric command)

| (show command)

| (tracing command)

| mpxbreak

|

verbatimtex (typesetting command) etex

(show command)
— show (expression list)
| showvariable (symbolic token list)
| showtoken (symbolic token list)
| showdependencies

(symbolic token list)
— (symbolic token)
| (symbolic token) , (symbolic token list)

(expression list)
— (expression)

| (expression list) , (expression)

(addto command)
— addto (picture variable) also (picture expression) (option list)
| addto (picture variable) contour (path expression) (option list)
| addto (picture variable) doublepath (path expression) (option list)

(option list)

— (empty)
| (drawing option) (option list)

(drawing option)
— witcolor (color expression)
| withpen (pen expression)
| dashed (picture expression)

Preliminary Version October 27, 2000

(drawing command)
— draw (picture expression) (option list)

| (fill type) (path expression) (option list)

(fill type)
— fill

| draw
| filldraw
| drawfill
| unfill
| undraw
| unfilldraw
| drawarrow
| drawdblarrow
| cutdraw

(tracing command)
— tracingall
| loggingall
| tracingnone

(if test)

— if (boolean expression) : (balanced tokens) (alternatives) fi

(alternatives)

— (empty)
| else : (balanced tokens)

| elseif (boolean expression) (:) (balanced tokens) (alternatives)

(loop)
— (loop header) : (loop text) endfor

(loop header)
— for (symbolic token) = (progression)
| for (symbolic token) = (for list)
| for (symbolic token) within (picture expression)
| forsuffixes (symbolic token) = (suffix list)
| forever

(progression)
— (numeric expression) Upto (numeric expression)
| (numeric expression) downto (numeric expression)

| (numeric expression) step (numeric expression) until

(for list)
— (expression)

| (forlist) , (expression)

Preliminary Version October 27, 2000

(numeric expression)

(suffix list)
— (suffix)
| (suffix list) , (suffix)

B.2 List of things

Maybe I'll add an extended version of the commands and variables here.

Preliminary Version October 27, 2000

This document

This document is produced in CONTEXT and can serve as an example of how to integrate METAPOST
graphics into TgX. In this appendix we will discuss some details of producing this document.

We did not use any special tricks, so most of the examples you have seen, were coded just as
shown. We use buffers to ensure that the code used to produce the accompanying graphic is
identical to the typeset code in the document. Here is an example.

\startbuffer[dummy]

draw fullcircle
xscaled 3cm yscaled 2cm
rotatedaround(origin,30)
withcolor .625red ;

\stopbuffer

Instead of using \getbuffer , we used the following command:

\startlinecorrection[blank]
\processMPbuffer[dummy]
\stoplinecorrection

The line correction commands take care of proper spacing around the graphic. If you want to
process more buffers at once, you can pass their names as a comma separated list.
Alternatively, we could have said:

\startuseMPgraphic{dummy}
draw fullcircle
xscaled 3cm yscaled 2cm
rotatedaround(origin,30)
withcolor .625red ;
\stopuseMPgraphic

When including this graphic, we again take care of spacing.

\startlinecorrection[blank]
\useMPgraphic{dummy}
\stoplinecorrection

Here a few layout thingies follow.

Preliminary Version October 27, 2000

n1s

Preliminary Version October 27, 2000

Reference

D.1

In this chapter, we will demonstrate most of the drawing related primitives and macros as present
in plain MeTAPOST and the CONTEXT extensions.

If a path is shown and/or a transformation is applied, we show the original in red and the
transformed path or point in yellow. The small dark gray crosshair is the origin and the black
rectangle the bounding box. In some drawings, in light gray we show the points that makeup the
path.

Thist list is still incomplete and needs to be checked against the formal syntax diagrams.

Paths

pair (1,.5)
metapost concept

+

pair .. pair (0,0)..(.75,0)..(1,.25)..(1,1)

metapost macro

(0,0)..(.75,0)...(1,.25)..(1,1)

metapost macro

pair — pair (0,0)--(.75,0)--(1,.25)--(1,1)

metapost macro

Preliminary Version October 27, 2000

pair — pair

(0,0)..(.75,0)--(1,.25)..(1,1)

pair softjoin pair

metapost macro

(0,0)..(.75,0) softjoin (1,.25)..(1,1)

controls pair

metapost macro

(0,0)..controls (.75,0)..(1,1)

controls pair and pair

metapost primitive

(0,0)..controls (.75,0) and (1,.25)..(1,1)

tension numeric

metapost primitive

(0,0)..(.75,0)..tension 2.5..(1,.25)..(1,1)

metapost primitive

Preliminary Version October 27, 2000

tension numeric and numeric

(0,0)..(.75,0)..tension 2.5 and 1.5..(1,.25)..(1,1)

metapost primitive

(0,0)..(.75,0)..tension atleast 1..(1,.25)..(1,1)

metapost primitive

(0,0)--(1,0)--(1,1)--cycle

curl numeric

metapost primitive

(0,0){curl 1}..(.75,0)..(1,.25)..(1,1)

dir numeric

metapost primitive

(0,0){dir 30}..(1,1)

Preliminary Version October 27, 2000

metapost primitive

left

(0,0)left}..(1,1)

[

right

metapost macro

(0,0){right}...(1,1)

metapost macro

(0,0){up}..(1,2)

AL

down

metapost macro

(0,0){down}..(1,1)

U

metapost macro

Preliminary Version October 27, 2000

path & path

(0,0)..(.75,.25) \& (.75,.25)..(1,1)

metapost primitive

unitvector origin--unitvector(1,1)
metapost variable
fullcircle fullcircle

metapost variable

unitcircle unitcircle
metafun variable

tullsquare fullsquare
metafun variable

unitsquare unitsquare

L

Preliminary Version October 27, 2000

metapost variable

fulldiamond

fulldiamond

O

unitdiamond

metafun variable

unitdiamond

Q

halfcircle

metafun variable

halfcircle

)

quartercircle

metapost variable

quartercircle

[

llcircle

metapost variable

licircle

a

Ircircle

metafun variable

Ircircle

N

urcircle

metafun variable

urcircle

[

metafun variable

Preliminary Version October 27, 2000

ulcircle

ulcircle

i

tcircle

metafun variable

tcircle

D

bcircle

metafun variable

bcircle

(4

Icircle

metafun variable

Icircle

£

rcircle

metafun variable

rcircle

N

lltriangle

metafun variable

litriangle

4

Irtriangle

metafun variable

Irtriangle

Y

Preliminary Version October 27, 2000

metafun variable

urtriangle urtriangle

N metafun variable

ultriangle ultriangle

metafun variable

flex(pair,pair,pair) flex ((0,0),(1,1),(1,0))

j metapost macro

superellipse(pair,pair,pair,pair,numeric)superellipse((L,.5),(.5,1),(0,.5),(:5,0),.75)

U

metapost macro

path superellipsed numeric unitsquare scaled 1.5 superellipsed .75
metafun macro
Q
path randomized numeric/pair unitsquare scaled 1.5 randomized (.2,.2)

metafun macro

[

Preliminary Version October 27, 2000

D.2

path squeezed numeric/pair

unitsquare scaled 1.5 squeezed (.2,.1)

T

Transformations

path scaled numeric

metafun macro

fullcircle scaled .25

SN

O,

path xscaled numeric

metapost primitive

fullcircle xscaled .25

N

path yscaled numeric

metapost primitive

fullcircle yscaled .25

(D

path zscaled pair

metapost primitive

fullcircle zscaled (2,.25)

Preliminary Version October 27, 2000

metapost primitive

path xyscaled numeric

fullcircle xyscaled .25

(&)

metapost primitive

path xyscaled pair fullcircle xyscaled (2,.25)
metapost primitive

— ——

path shifted pair fullcircle shifted (2,.25)

path enlarged numeric

metapost primitive

fullcircle enlarged .25

L

path enlarged pair

metafun macro

fullcircle enlarged (1,.25)

metafun macro

Preliminary Version October 27, 2000

path llenlarged numeric

fullcircle llenlarged .25

O

path Irenlarged numeric

metafun macro

fullcircle Irenlarged .25

C

path urenlarged numeric

metafun macro

fullcircle urenlarged .25

\

/|

=

path ulenlarged numeric

metafun macro

fullcircle ulenlarged .25

O

path llenlarged pair

metafun macro

fullcircle llenlarged (1,.25)

jo

Preliminary Version October 27, 2000

metafun macro

path Irenlarged pair

fullcircle Irenlarged (1,.25)

2

path urenlarged pair

metafun macro

fullcircle urenlarged (1,.25)

S

path ulenlarged pair

metafun macro

fullcircle ulenlarged (1,.25)

¢

path llmoved numeric

metafun macro

fullcircle limoved .25

O

path Irmoved numeric

metafun macro

fullcircle Irmoved .25

O

metafun macro

Preliminary Version October 27, 2000

path urmoved numeric

fullcircle urmoved .25

path ulmoved numeric

metafun macro

fullcircle ulmoved .25

metafun macro

path llmoved pair fullcircle limoved (L,.25)
metafun macro
path Irmoved pair fullcircle Irmoved (1,.25)

path urmoved pair

metafun macro

fullcircle urmoved (1,.25)

Preliminary Version October 27, 2000

metafun macro

path ulmoved pair fullcircle ulmoved (1,.25)

metafun macro

path slanted numeric fullcircle slanted .5

metapost primitive

path rotated numeric fullsquare rotated 45

metapost primitive

path rotatedaround(pair,numeric) fullsquare rotatedaround((.25,.5),45)

metapost macro

path reflectedabout(pair,pair) fullcircle reflectedabout((.25,-1),(.25,+1))

metapost macro

Preliminary Version October 27, 2000

reverse path

reverse fullcircle shifted(.5,0)

—~

|
N/

counterclockwise path

metapost primitive

counterclockwise fullcircle shifted(.5,0)

)

|
N/

tensepath path

metapost macro

tensepath fullcircle

O

subpath (numeric,numeric) of path

metapost macro

subpath (1,5) of fullcircle

7
N/

llcorner path

metapost primitive

licorner fullcircle

7"\
Na/

,_.
=
o)
®)
=
)
€]
=

o
o]
=4
=

metapost primitive

Ircorner fullcircle

7\
Na/

Preliminary Version October 27, 2000

metapost primitive

urcorner path

urcorner fullcircle

7 N\
/|

/|

ulcorner path

metapost primitive

ulcorner fullcircle

7 O\
N/

center path

metapost primitive

center fullcircle

7\
N/

o
®)
=
=
=g

R
B
Q
X

ge)
jo¥}
8
5

metapost macro

boundingbox fullcircle

7\
N/

innerboundingbox path

metafun macro

innerboundingbox fullcircle

O

outerboundingbox path

metafun macro

outerboundingbox fullcircle

O

metafun macro

Preliminary Version October 27, 2000

D.3

path/picture xsized numeric

currentpicture xsized 5cm

path/picture ysized numeric

metafun macro

currentpicture ysized 2cm

path/picture xysized numeric

metafun macro

currentpicture xysized (3cm,2cm)

Points

center path

metafun macro

center fullcircle

N/

top pair

metapost primitive

top center fullcircle

O,

Preliminary Version October 27, 2000

metapost macro

bot pair

bot center fullcircle

metapost macro

Ift center fullcircle

metapost macro

rt center fullcircle

point numeric of path

metapost macro

point 2 of fullcircle

O

point numeric on path

metapost primitive

point .5 on fullcircle

O,

point numeric along path

metafun macro

point 1cm along fullcircle

O,

metafun macro

Preliminary Version October 27, 2000

precontrol numeric of path

precontrol 2 of fullcircle

N
/|

postcontrol numeric of path

metapost primitive

postcontrol 2 of fullcircle

S

directionpoint pair of path

metapost primitive

directionpoint (2,3) of fullcircle

S

numeric[pair,pair]

metapost primitive

.5[(0,0),(1,1)]

|

path intersectionpoint path

metapost concept

fullcircle intersectionpoint fulldiamond

O

D4 Attributes

Preliminary Version October 27, 2000

metapost macro

withcolor color

withcolor (.5,0,0)

metapost primitive

dashed withdots dashed withdots
. metapost primitive
L] ° °
° o
AR
° L]
e . °
dashed evenly dashed evenly
metapost primitive
& -
/ N\
\
=

withpen pencircle transform

withpen pencircle scaled 2mm

-

withpen pensquare transform

metapost macro

withpen pensquare scaled 2mm

2

withpen penrazor transform

metapost macro

withpen penrazor scaled 2mm

|

metapost macro

[l |
. Reference imi i
R .u..-. e Preliminary Version October 27, 2000

withpen penspeck transform

withpen penspeck

metapost macro

draw fullcircle

Qi
|

fill

metapost macro

fill fullcircle

filldraw

metapost macro

filldraw fullcircle

drawfill

metapost macro

drawfill fullcircle

drawdot

metapost macro

drawdot origin

Preliminary Version October 27, 2000

metapost macro

ma
Pl

Q.
S
e
)
=
=
Q
=

drawarrow fullcircle

1

\

metapost macro

undraw fullcircle

metapost macro

unfill fullcircle

. C
-
=m

unfilldraw

metapost macro

unfilldraw fullcircle

undrawfill

metapost macro

undrawfill fullcircle

A
|
A 4

undrawdot

metapost macro

undrawdot origin

4

metapost macro

Preliminary Version October 27, 2000

cutdraw

origin--(1,1)

metapost macro

linecap := butt

rounded

metapost variable

linecap := rounded

squared

metapost variable

linecap := squared

mitered

metapost variable

linejoin := mitered

n

Preliminary Version October 27, 2000

metapost variable

D.5

rounded

linejoin := rounded

beveled

metapost variable

linejoin := beveled

Text

label

metapost variable

label("MetaFun",origin)

etaFun

label.top

metapost macro

label.top("MetaFun",origin)

etalFun
-

label.bot

metapost macro

label.bot("MetaFun",origin)

i
etaFun

label 1ft

metapost macro

label.Ift("MetaFun",origin)

etaun-

label.rt

metapost macro

label.rt("MetaFun",origin)

-MetakFun

metapost macro

Preliminary Version October 27, 2000

label.1lft

label.llft("MetaFun",origin)

etaFun

label.lrt

metapost macro

label.Irt("MetaFun",origin)

MetaFu

label.urt

metapost macro

label.urt("MetaFun",origin)

Metabun

label.ulft

metapost macro

label.ulft("MetaFun",origin)

etalFun

btex text etex

metapost macro

draw btex MetaTeX etex

MetaleX

Preliminary Version October 27, 2000

metapost primitive

Preliminary Version October 27, 2000

There is undoubtly more literature about MeTAPOST and the tools discribed in this document than
is mentioned below. More information on TgX, METAFONT and METAPOST can be found at the internet
sites of the local TgX user groups. There are definitely references missing here, but so far I only

Knuth, D.E. (1986). The METAFONT book. Reading MA: Addison-Wesley.
Hobby, J.D. (1997). A User’s Manual for MeTAPOsT. Murray Hill NJ: AT&T Bell Laboratories.

Knuth, D.E. (1986). The TeXbook. Reading MA: Addison-Wesley.

Otten, A.F. & Hagen, J. (1998). ConTgXt, an Excursion. Hasselt: Pragma ADE.
Hagen, J. (1999). ConTgXt, the Manual. Hasselt: Pragma ADE.

Hagen,]. (1999). ConTgXt up-to-date 3, Flowcharts. Hasselt: Pragma ADE.
Hagen, J. (1997). Puzzling Graphics in MetaPost. Petten: NTG Maps.

Han Thé Thanh & Rahtz, S.P.Q. & Hagen, J. (1998). The pdfTgX manual. Brno, Hasselt, Oxford.
Hagen, J. (1999). TgXexec explained. Hasselt: Pragma ADE.
Hagen,]. (2000). Making Stand-Alone MetaPost graphics. Amsterdam: NTG Maps.

E Literature
read/wrote/saw these.

E1 METAFONT and METAPOST

E.2 TeX

E.3 CONTEXT

E4 Tools

E.5 Distributions

Rahtz, S.P.Q. & Goosens, M. (1999). The TgX Live Guide, 4th edition. The Whole World: TUG's.
Hagen, J. (1999). How to Install ConTgXt. Hasselt: Pragma ADE.
Dol, W. & Frambach, E. (1999). 4TgX for Windows. Amsterdam: NTG.

Preliminary Version October 27, 2000

Preliminary Version October 27, 2000

Index

Concepts

The main index will be prepared when the document is finished.

Commands

The command index will be prepared when the document is finished.

Preliminary Version October 27, 2000

Preliminary Version October 27, 2000

To do

real unfill support

define some variables as internal (breaks compatibility)
attributes to text along a path

attributes to text shapes

more positional things, e.g. funny buttun style

a few styles

better equation explanation

more auxiliary macros

documenting metafun macros

summary of commands

check on completeness in covering commands
text overlayed over mp (hyperlinks and so)

(expr a,b,c) versus (expr a,b) (expr c)

shading etc in ps driver (straight copy to file)

the logic behind grouping and global assignments
() 00 and no () in vardefs

clearxy

mpgraph or mp-graph

miterlimit

dir ,angle

counterclockwise , turningnumber

hide

labeloffset , interim labeloffset := 0

joinup

vardef newpath suffix $ = path $; $ enddef ;
#

Preliminary Version October 27, 2000

Preliminary Version October 27, 2000

	midpoint construction:1: On
	midpoint construction:2: Off
	midpoint construction:3: Off
	midpoint construction:4: Off
	midpoint construction:5: Off

