> M ath into LATE An Introduction to $\angle A T_{E X}$ and $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-L A T_{E}}$

This book is dedicated to those who worked so hard and for so long to bring these important toolsto us.

The LATEX3 team
and in particular
Frank M ittelbach (project leader) and D avid Carlisle

The $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ team
and in particular
M ichael J. D ownes (project leader) and D avid M. Jones

G eorge Grätzer

M ath into LATEX

$$
\begin{aligned}
& \text { BIRKH ÄUSER } \\
& \text { BOSTON • BASEL•BERLINN }
\end{aligned}
$$

George Grätzer
D epartment of M athematics
U niversity of M anitoba
Winnipeg, M anitoba
Canada R 3T 2N 2

Library of C ongress C ataloging-in-Publication D ata

Grätzer, George A.
M ath into LaTeX : an introduction to LaTeX and AM S-LaTeX / George Grätzer
p. cm.

I ncludes index.
ISBN 0-8176-3805-9 (acid-free paper) (pbk. : alk. paper)

1. AM S-LaTeX. 2. M athematics printing-C omputer programs.
2. Computerized typesetting. I. Title.

Z253.4A65G69 1995 95-36881
688.2'2544536-dc20

CIP

Printed on acid-free paper
(C) Birkhäuser Boston 1996

All rights reserved.

Typeset by the Author in LATEX
D esign, layout, and typography by M ery Sawdey, M inneapolis, M N

Short contents

Preface xviii
Introduction xix
I A short course 1
1 Typing your first article 3
II Text and math 59
2 Typing text 61
3 Text environments 111
4 Typing math 140
5 Multiline math displays 180
III D ocument structure 209
6 LATEX documents 211
7 Standard $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ document classes 235
$8 \mathcal{A} \mathcal{M}^{\mathcal{S}}$-LATEX documents 243
IV Customizing 265
9 Customizing LATEX 267
V Long bibliographies and indexes 309
10 BibTeX 311
11 Makel ndex 332
A Math symbol tables 345
B Text symbol tables 356
C The $\mathcal{A}_{\mathcal{M}}{ }^{\mathcal{S}}$ - LATEX sample article 360
D Sample article with user-defined commands 372
E Background 379
F PostScript fonts 387
G G etting it 392
H Conversions 402
I Final word 410
Bibliography 413
Afterword 416
Index 419

Contents

Preface xviii
Introduction xix
Typographical conventions xxvi
I A short course 1
1 Typing your first article 3
1.1 Typing a very short "article" 4
1.1.1 The keyboard 4
1.1.2 Your first note 5
1.1.3 Lines too wide 7
1.1.4 M ore text features 9
1.2 Typing math 10
1.2.1 The keyboard 10
1.2.2 A note with math 10
1.2.3 Building blocks of a formula 14
1.2.4 Building a formula step-by-step 20
1.3 Formula gallery 22
1.4 Typing equations and aligned formulas 29
1.4.1 Equations 29
1.4.2 Aligned formulas 31
1.5 The anatomy of an article 33
1.5.1 The typeset article 38
1.6 Article templates 41
1.7 Your first article 42
1.7.1 E diting the top matter 42
1.7.2 Sectioning 43
1.7.3 Invoking proclamations 44
1.7.4 Inserting references 44
1.8 LATEX error messages 46
1.9 Logical and visual design 48
1.10 A brief overview 51
1.11 U sing LATEX 52
1.11.1 $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX revisited 52
1.11.2 Interactive LATEX 54
1.11.3 Files 54
1.11.4 Versions 55
1.12 What's next? 56
II Text and math 59
2 Typing text 61
2.1 The keyboard 62
2.1.1 The basic keys 62
2.1.2 Special keys 63
2.1.3 Prohibited keys 63
2.2 Words, sentences, and paragraphs 64
2.2.1 The spacing rules 64
2.2.2 The period 66
2.3 Instructing LATEX 67
2.3.1 Commands and environments 67
2.3.2 Scope 70
2.3.3 Types of commands 72
2.4 Symbols not on the keyboard 73
2.4.1 Quotes 73
2.4.2 D ashes 73
2.4.3 Ties or nonbreakable spaces 74
2.4.4 Special characters 74
2.4.5 Ligatures 75
2.4.6 Accents and symbols in text 75
2.4.7 Logos and numbers 76
2.4.8 H yphenation 78
2.5 Commenting out 81
2.6 Changing font characteristics 83
2.6.1 The basic font characteristics 83
2.6.2 The document font families 84
2.6.3 Command pairs 85
2.6.4 Shape commands 85

Contents

2.6.5 Italic correction 86
2.6.6 Two-letter commands 87
2.6.7 Series 88
2.6.8 Size changes 88
2.6.9 Orthogonality 89
2.6.10 Boxed text 89
2.7 Lines, paragraphs, and pages 90
2.7.1 Lines 90
2.7.2 Paragraphs 93
2.7.3 Pages 94
2.7.4 M ulticolumn printing 95
2.8 Spaces 96
2.8.1 H orizontal spaces 96
2.8.2 Vertical spaces 97
2.8.3 Relative spaces 99
2.8.4 Expanding spaces 99
2.9 Boxes 100
2.9.1 Line boxes 100
2.9.2 Paragraph boxes 103
2.9.3 M arginal comments 104
2.9.4 Solid boxes 105
2.9.5 Fine-tuning boxes 106
2.10 Footnotes 107
2.10.1 Fragile commands 107
2.11 Splitting up the file 108
2.11.1 Input and include 108
2.11.2 Combining files 109
3 Text environments 111
3.1 List environments 112
3.1.1 N umbered lists: enumerate 112
3.1.2 Bulleted lists: itemize 112
3.1.3 Captioned lists: description 113
3.1.4 Rule and combinations 114
3.2 Tabbing environment 116
3.3 M iscellaneous displayed text environments 118
3.4 Proclamations (theorem-like structures) 123
3.4.1 The full syntax 127
3.4.2 Proclamations with style 127
3.5 Proof environment 130
3.6 Some general rules for displayed text environments 131
3.7 Tabular environment 132
3.8 Style and size environments 138
4 Typing math 140
4.1 M ath environments 141
4.2 The spacing rules 143
4.3 The equation environment 144
4.4 Basic constructs 146
4.4.1 Arithmetic 146
4.4.2 Subscripts and superscripts 147
4.4.3 Roots 148
4.4.4 Binomial coefficients 149
4.4.5 Integrals 149
4.4.6 Ellipses 150
4.5 Text in math 151
4.6 Delimiters 152
4.6.1 Delimiter tables 153
4.6.2 Delimiters of fixed size 153
4.6.3 Delimiters of variable size 154
4.6.4 Delimiters as binary relations 155
4.7 Operators 155
4.7.1 O perator tables 156
4.7.2 Declaring operators 157
4.7.3 Congruences 158
4.8 Sums and products 159
4.8.1 Large operators 159
4.8.2 M ultiline subscripts and superscripts 160
4.9 M ath accents 161
4.10 H orizontal lines that stretch 162
4.10.1 H orizontal braces 162
4.10.2 O ver and underlines 163
4.10.3 Stretchable arrow math symbols 164
4.11 The spacing of symbols 164
4.12 Building new symbols 166
4.12.1 Stacking symbols 167
4.12.2 Declaring the type 168
4.13 Vertical spacing 169
4.14 M ath alphabets and symbols 170
4.14.1 M ath alphabets 171
4.14.2 M ath alphabets of symbols 172
4.14.3 Bold math symbols 173
4.14.4 Size changes 175
4.14.5 Continued fractions 175
4.15 Tagging and grouping 176
4.16 Generalized fractions 178
4.17 Boxed formulas 179
5 Multiline math displays 180
5.1 Gathering formulas 181
5.2 Splitting a long formula 182
5.3 Some general rules 184
5.3.1 The subformula rule 185
5.3.2 Group numbering 186
5.4 Aligned columns 187
5.4.1 The subformula rule revisited 188
5.4.2 Align variants 189
5.4.3 Intertext 192
5.5 Aligned subsidiary math environments 193
5.5.1 Subsidiary variants of aligned math environments 193
5.5.2 Split 195
5.6 Adjusted columns 198
5.6.1 M atrices 198
5.6.2 Arrays 201
5.6.3 C ases 203
5.7 Commutative diagrams 204
5.8 Pagebreak 205
III D ocument structure 209
6 LATEX documents 211
6.1 The structure of a document 212
6.2 The preamble 213
6.3 Front matter 214
6.3.1 Abstract 214
6.3.2 Table of contents 215
6.4 M ain matter 217
6.4.1 Sectioning 217
6.4.2 Cross-referencing 220
6.4.3 Tables and figures 223
6.5 Back matter 227
6.5.1 Bibliography in an article 227
6.5.2 Index 231
6.6 Page style 232
7 Standard LATEX document classes 235
7.1 The article, report, and book document classes 235
7.1.1 M ore on sectioning 236
7.1.2 Options 237
7.2 The letter document class 239
7.3 The LATEX distribution 240
7.3.1 Tools 241
$8 \mathcal{A} \mathcal{M}^{\mathcal{S}}$-LATEX documents 243
8.1 The three $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ document classes 243
8.1.1 Font size commands 244
8.2 The top matter 244
8.2.1 Article info 245
8.2.2 Author info 246
8.2.3 $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ info 249
8.2.4 M ultiple authors 250
8.2.5 Examples 250
$8.3 \mathcal{A} \mathcal{M S}$ article template 253
8.4 Options 257
8.4.1 M ath options 260
8.5 The $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX packages 261
IV Customizing 265
9 C ustomizing LATEX 267
9.1 U ser-defined commands 268
9.1.1 Commands as shorthand 268
9.1.2 Arguments 271
9.1.3 Redefining commands 274
9.1.4 Optional arguments 275
9.1.5 Redefining names 276
9.1.6 Showing the meaning of commands 276
9.2 U ser-defined environments 279
9.2.1 Short arguments 282
9.3 N umbering and measuring 282
9.3.1 Counters 283
9.3.2 Length commands 287
9.4 Delimited commands 290
9.5 A custom command file 292
9.6 Custom lists 297
9.6.1 Length commands for the list environment 297
9.6.2 The list environment 299
9.6.3 Two complete examples 301
9.6.4 Thetrivlist environment 304
9.7 C ustom formats 304
V Long bibliographies and indexes 309
10 BibTeX 311
10.1 The database 311
10.1.1 Entry types 312
10.1.2 Articles 315
10.1.3 Books 316
10.1.4 C onference proceedings and collections 317
10.1.5 Theses 319
10.1.6 Technical reports 320
10.1.7 M anuscripts 321
10.1.8 O ther entry types 321
10.1.9 Abbreviations 322
10.2 U sing BıBTEX 323
10.2.1 The sample files 323
10.2.2 The setup 325
10.2.3 The four steps of $B_{B} \mathrm{BT}_{E} X$ ing 325
10.2.4 The files of $B ı B T_{E} X$ 327
10.2.5 BıBTEX rules and messages 329
10.2.6 C oncluding comments 331
11 Makel ndex 332
11.1 Preparing the document 332
11.2 Index entries 335
11.3 Processing the index entries 339
11.4 Rules 342
11.5 Glossary 344
A Math symbol tables 345
B Text symbol tables 356
C The $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{\text {-LATEX }}$ sample article 360
D Sample article with user-defined commands 372
E Background 379
E. 1 A short history 379
E.1.1 The first interim solution 381
E.1.2 The second interim solution 382
E. 2 H ow does it work? 382
E.2.1 The layers 382
E.2.2 Typesetting 383
E.2.3 Viewing and printing 384
E.2.4 The files of LATEX 385
F PostScript fonts 387
F. 1 The Times font and M athTıme 387
F. 2 LucidaBright fonts 390
G Getting it 392
G. 1 Getting $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 392
G. 2 Where to get it? 393
G. 3 Getting ready 395
G. 4 Transferring files 396
G. 5 M ore advanced file transfer commands 398
G. 6 The sample files 400
G. $7 \mathcal{A}_{\mathcal{M}} \mathcal{S}$ and the user groups 400
H Conversions 402
H. 1 From Plain $T_{E} X$ 402
H.1.1 $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ 403
H. 2 From LATEX 403
H.2.1 Version 2e 404
H.2.2 Version 2.09 404
H.2.3 The LATEX symbols 405
H. 3 From $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-T E X}$ 405
H. 4 From $\mathcal{A}_{\mathcal{M} \mathcal{S}}$-LATEX version 1.1 406
I Final word 410
I. 1 What was left out? 410
1.1.1 O mitted from $L^{A T} T_{E} X$ 410
I.1.2 O mitted from $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 411
I. 2 Further reading 411
Bibliography 413
Afterword 416
Index 419

List of tables

2.1 Special characters 74
2.2 Font table for Computer M odern typewriter style font 76
2.3 European accents 76
2.4 Extra text symbols 77
2.5 European characters 77
2.6 Font family switching commands 85
3.1 T abular table 133
3.2 Floating table with $\backslash m u l t i c o l u m n$ 136
3.3 Tabular table with \multicolumn and \cline 137
4.1 Standard delimiters 153
4.2 Arrow delimiters 153
4.3 O perators without limits 157
4.4 O perators with limits 157
4.5 Congruences 158
4.6 Large operators 159
4.7 M ath accents 161
4.8 Spacing commands 165
9.1 Table of redefinable names in LATEX 277
9.2 Standard ${ }^{A A} T_{E} X$ counters 283
A. 1 H ebrew letters 345
A. 2 Greek characters 346
A. 3 LATEX binary relations 347
A. $4 \quad \mathcal{A} \mathcal{M S}$ binary relations 348
A. $5 \quad \mathcal{A} \mathcal{M S}$ negated binary relations 349
A. 6 Binary operations 350
A. 7 Arrows 351
A. 8 M iscellaneous symbols 352
A. 9 M ath spacing commands 353
A. 10 D elimiters 353
A. 11 Operators 354
A. 12 M ath accents 355
A. 13 M ath font commands 355
B. 1 Special text characters 356
B. 2 Text accents 357
B. 3 Some European characters 357
B. 4 Extra text symbols 357
B. 5 Text spacing commands 358
B. 6 Text font commands 358
B. 7 Font size changes 359
B. $8 \mathcal{A} \mathcal{M S}$ font size changes 359
F. 1 L ower font table for the Times font 389
F. 2 U pper font table for the Times font 389
G. 1 Some UNIX commands 395
G. 2 Some ftp commands 396
H. 1 TEX commands to avoid in LATEX 404
H. 2 A translation table 405
H. $3 \mathcal{A}_{\mathcal{M}} \mathcal{S}$-TEX style commands dropped in $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX 407
H. $4 \mathcal{A}_{\mathcal{M}} \mathcal{S}^{-T_{E} \mathrm{X}}$ commands to avoid 408

List of figures

1.1 A schematic view of an article 34
1.2 The structure of $\operatorname{LAT}_{E} X$ 51
1.3 U sing LATEX 53
6.1 The structure of a document 212
6.2 Sectioning commands in the article document class 219
6.3 Sectioning commands in the amsart document class 219
6.4 Page layout for the article document class 233
8.1 fleqn and reqno options for equations 258
8.2 Top-or-bottom tags option for split 258
$8.3 \mathcal{A}_{\mathcal{M}} \mathcal{S}^{\text {LAT}} \mathrm{EX}$ package and document class interdependency 263
9.1 The layout of a custom list 298
10.1 U sing BıbTEX, Step 2 326
10.2 U sing BıbTEX, Step 3 326
11.1 A sample index 335
11.2 U sing M akel ndex, Step 1 340
11.3 U sing M akel ndex, Step 2 340

Preface

It is indeed a lucky author who is given the opportunity to completely rewrite a book barely a year after its publication. Writing about software affords such opportunities (especially if the original edition sold out), since the author is shooting at a moving target.
${ }^{L A} T_{E} X$ and $\mathcal{A} \mathcal{M}$ - LATEX improved dramatically with the release of the new standard LATEX (called LATEX 2_{ε}) in June of 1994 and the revision of $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX (version 1.2) in February of 1995. The change in $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{LA} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is profound. ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} 2_{\varepsilon}$ made it possible for $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX to join the ${ }^{L A} T_{E} X$ world. O ne of the main points of the present book is to make this clear. This book introduces $L^{L T} T_{E} X$ as a tool for mathematical typesetting, and treats $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - LAT ${ }^{\mathrm{E}} \mathrm{X}$ as a set of enhancements to the standard $L A T_{E} X$, to be used in conjunction with hundreds of other $L A T_{E} X 2 \varepsilon$ enhancements.

I am not a $T_{E} X$ expert. Learning the mysteries of the system has given megreat respect for those who crafted it: D onald Knuth, Leslie Lamport, Michael Spivak, and others did the original work; David Carlisle, Michael J. Downes, David M. Jones, Frank M ittelbach, Rainer Schöpf, and many others built on the work of these pioneers to create the new $L^{L A} T_{E} X$ and $\mathcal{A}_{\mathcal{M}} \mathcal{S}-L A T_{E} X$.
M any of these experts and a multitude of others helped me while I was writing this book. I would like to express my deepest appreciation and heartfelt thanks to all who gave their time so generously. Their story is told in the Afterword.

Of course, the responsibility is mine for all the mistakes remaining in the book. Please send corrections- and suggestions for improvements- to me at the following address:
D epartment of M athematics
U niversity of M anitoba
Winnipeg MB, R3T 2N 2

```
Canada
e-mail: George_Gratzer@umanitoba.ca
```


Introduction

Isthis book for you?

This book is for the mathematician, engineer, scientist, or technical typist who wants to write and typeset articles containing mathematical formulas but does not want to spend much time learning how to do it.

I assume you are set up to use LATEX, and you know how to use an editor to type a document, such as:

```
\documentclass{article}
\begin{document }
The square root of two: $\sqrt{2}$. I can type math!
\end{document }
```

I also assume you know how to typeset a document, such as this example, with $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ to get the printed version:
Γ
The square root of two: $\sqrt{2}$. I can type math!
and you can view and print the typeset document.
And what do I promise to deliver? I hope to provide you with a solid foundation in $L A T_{E X}$, the $\mathcal{A}_{\mathcal{M} \mathcal{S}}$ enhancements, and some standard ${ }^{L A} T_{E} X$ enhancements, so typing a mathematical document will become second nature to you.

H ow to read thi s book?

Part I gives a short course in LATEX. Read it, work through the examples, and you are ready to type your first paper. Later, at your leisure, read the other parts to become more proficient.

The rest of this section introduces $T_{E X}, L_{A T} X$, and $\mathcal{A} \mathcal{M}$ - LATEX, and then outlines what is in this book. If you already know that you want to use LATEX to typeset math, you may choose to skip it.

$\mathrm{T}_{\mathrm{E}} \mathrm{X}, \operatorname{LAT}_{\mathrm{E}} \mathrm{X}$, and $\mathcal{A}_{\mathcal{M}}{ }^{\mathcal{S}}$-LATEX

$T_{E} X$ is a typesetting language created by D onald E . K nuth; it has extensive capabilities to typeset math. $L^{A} T_{E} X$ is an extension of $T_{E} X$ designed by Leslie Lamport; its major features include

- a strong focus on document structure and the logical markup of text;
- automatic numbering and cross-referencing.
$\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX distillsthe decades-long experience of the American M athematical Society $\left(\mathcal{A}_{\mathcal{M}} \mathcal{S}\right)$ in publishing mathematical journals and books; it addsto ${ }^{\text {AT }}{ }_{E} \mathrm{X}$ a host of features related to mathematical typesetting, especially the typesetting of multiline formulas and the production of finely-tuned printed output.

Articles written in $L^{A} T_{E} X$ (and $\mathcal{A} \mathcal{M} \mathcal{S}$ - $\mathrm{LA} T_{E} \mathrm{X}$) are accepted for publication by an increasing number of journals, including all the journals of the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$.

Look at the typeset sample articles: sampart.tex (in Appendix C, on pages 361-363) and intrart.tex (on pages 39-40). You can begin creating such highquality typeset articles after completing Part I.

What is document markup?

M ost word processing programs are WYSIWYG (what you see is what you get); as you work, the text on the computer monitor is shown, more or less, as it'll look when printed. Different fonts, font sizes, italics, and bold face are all shown.

A different approach is taken by a markup language It works with a text editor, an editing program that shows the text, the sourcefile, on the computer monitor with only one font, in one size and shape. To indicate that you wish to change the font in the printed copy in some way, you must "mark up" the source file. For instance, to typeset the phrase "small Caps" in small caps, you type
\textsc\{Small Caps\}
The \backslash textsc command is a markup command, and the printed output is

Γ

Small Caps
$T_{E} X$ is a markup language; $L_{A} T_{E} X$ is another markup language, an extension of $T_{E X}$. Actually, it's quite easy to learn how to mark up text. For another example, look at the abstract of the sampart.tex sample article (page 364), and the instruction

```
\emph{complete-simple distributive lattices}
```

to emphasize the phrase "complete-simple distributive lattices", which when typeset looks like
Γ
complete-simple distributive lattices

On pages 364-371 we show the source file and the typeset version of the sampart.tex sample article together. The markup in the source file may appear somewhat bewildering at first, especially if you have previously worked on a WYSIWYG word processor. The typeset article is a rather pleasing-to-the-eye polished version of that same marked up material. ${ }^{1}$

TEX

TEX has excellent typesetting capabilities. It deals with mathematical formulas as well as text. To get $\sqrt{a^{2}+b^{2}}$ in a formula, type $\backslash \operatorname{sqrt}\left\{a^{\wedge}\{2\}+b^{\wedge}\{2\}\right\}$. There is no need to worry about how to construct the square root symbol that covers $a^{2}+b^{2}$.

A tremendous appeal of the $T_{E X}$ language is that a source file is plain text, sometimes called an ASCII file. ${ }^{2}$ Therefore articles containing even the most complicated mathematical expressions can be readily transmitted electronically-to colleagues, coauthors, journals, editors, and publishers.
$T_{E} X$ is platform independent. You may type the source file on a M acintosh, and your coauthor may make improvements to the same file on an IBM compatible personal computer; the journal publishing the article may use a D EC minicomputer. The form of $T_{E} X$, a richer version, used to typeset documents is called Plain $T_{E X}$. I'll not try to distinguish between the two.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$, however, is a programming language, meant to be used by programmers.

${ }^{\text {LATEX }}$

LATEX is much easier and safer to work with than $T_{E} X$; it has a number of built-in safety features and a large set of error messages.

LATEX, building on $T_{E} X$, provides the following additional features:

- An article is divided into logical units such as an abstract, sections, theorems, a bibliography, and so on. The logical units are typed separately. After all the

[^0]units have been typed, LATEX organizes the placement and formatting of these elements.
N otice line 4 of the source file of the sampart . tex sample article
\documentclass \{amsart \}
on page 364. Here the general design is specified by the amsart "document class", which is the $\mathcal{A}_{\mathcal{M S}}$ article document class. When submitting your article to a journal that is equipped to handle LATEX articles (and the number of such journals is increasing rapidly), only the name of the document class is replaced by the editor to make the article conform to the design of the journal.

- LATEX relieves you of tedious bookkeeping chores Consider a completed article, with theorems and equations numbered and properly cross-referenced. U pon final reading, some changes must be made-for example, section 4 has to be placed after section 7, and a new theorem has to be inserted somewhere in the middle. Such a minor change used to be a major headache! But with $\operatorname{LAT}_{E} X$, it becomes almost a pleasure to make such changes. $L A T_{E} X$ automatically redoes all the numbering and cross-references.
- Typing the same bibliographic references in article after article is a tedious chore. With $L A T_{E} X$ you may use $B I B T_{E} X$, a program that helps you create and maintain bibliographic databases, so references need not be retyped for each article. $B I B T_{E} X$ will select and format the needed references from the databases.

All the features of $L A T_{E} X$ are made available by the LaTex format, which you should use to typeset the sample documents in this book.

$\mathcal{A M}^{\mathcal{S}}{ }^{-L A T} \mathrm{E}_{\mathrm{E}} \mathrm{X}$

The $\mathcal{A}_{\mathcal{M} \mathcal{S}}$ enhanced the capabilities of $\operatorname{LAT}_{E} \mathrm{X}$ in three different areas. You decide which of these are important to you.

1. M ath enhancements. The first area of improvement is a wide variety of tools for typesetting math. $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX provides

- excellent toolsto deal with multilinemath formulas requiring special alignment. For instance, in the following formula, the equals sign ($=$) is vertically aligned and so are the explanatory comments:

$$
\begin{aligned}
x & =(x+y)(x+z) & & \text { (by distributivity) } \\
& =x+y z & & \text { (by Condition (M)) } \\
& =y z & &
\end{aligned}
$$

- numerous constructs for typesetting math, exemplified by the following formula:

$$
f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \\ \alpha+x, & \text { if } 0 \leq x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
$$

- special spacing rules for dozens of formula types, for example

$$
a \equiv b \quad(\bmod \Theta)
$$

If the above formula is typed inline, it becomes: $a \equiv b(\bmod \Theta)$; the spacing is automatically changed.

- multiline "subscripts" as in

$$
\sum_{\substack{i<n \\ j<m}} \alpha_{i, j}^{2}
$$

- user-defined symbols for typesetting math, such as

$$
\operatorname{Trunc} f(x), \quad \hat{\hat{A}}, \quad \sum^{*}
$$

- formulas numbered in a variety of ways:
- automatically,
- manually (by tagging),
- by groups, with a group number such as (2), and individual numbers such as (2a), (2b), and so on.
- the proof environment and three theorem styles; see the sampart.tex sample article (pages 361-363) for examples.

2. Document classes. $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX provides a number of document classes, including the $\mathcal{A}_{\mathcal{M}}$ 年ticle document class, amsart, which allows the input of the title page information (author, address, e-mail, and so on) as separate entities. As a result, a journal can typeset even the title page of an article according to its own specifications without having to retype it.
M any users prefer the visual design of the amsart document class to the simpler design of the classical $\operatorname{LAT}_{\mathrm{E}} \mathrm{X}$ article document class.
3. Fonts. There are hundreds of binary operations, binary relations, negated binary relations, bold symbols, arrows, extensible arrows, and so on, provided by $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LAT ${ }_{E}$ X, which also makes available additional math alphabets such as Blackboard bold, Euler Fraktur, Euler Script, and math bold italic. Here are just a few examples:

$$
\leftleftarrows, \quad \mathbf{\Delta}, \quad \nexists, \quad \supsetneqq, \quad \mathbb{A}, \quad \mathfrak{p}, \quad \varepsilon
$$

We have barely scratched the surface of this truly powerful set of enhancements.

What isin the book?

Part I (Chapter 1) will help you get started quickly with LATEX; if you read it carefully, you'll certainly be ready to start typing your first article and tackle ${ }^{L A T} T_{E} X$ in more depth.

Part I guides you through:

- marking up text, which is quite easy;
- marking up math, which is not so straightforward (four sections ease you into mathematical typesetting: the first discusses the basic building blocks; the second shows how to build up a complicated formula in simple steps; the third is a formula gallery; and the fourth deals with equations and multiline formulas);
- the anatomy of an article;
- how to set up an article template;
- typing your first article.

Part II introduces the two most basic skills in depth: typing text and typing math.

Chapters 2 and 3 introduce text and displayed text. Chapter 2 is very important; when typing your $\operatorname{LAT} \mathrm{T} X$ document, you spend most of your time typing text. The topics covered include special characters and accents, hyphenation, fonts, and spacing. Chapter 3 covers displayed text including lists and tables, and for the mathematician, proclamations (theorem-like structures) and proofs.

Chapters 4 and 5 discuss math and displayed math. Of course, typing math is the heart of any mathematical typesetting system. Chapter 4 discusses this topic in detail, including basic constructs, operators, delimiters, building new symbols, fonts, and grouping of equations. Chapter 5 presents one of the major contributions of $\mathcal{A} \mathcal{M} \mathcal{S}$ - $\mathrm{LAT} \mathrm{E}_{\mathrm{E}}$: aligned multiline formulas. This chapter also contains other multiline formulas.

Part III discusses the parts of a ${ }^{L A T} T_{E} X$ document. In Chapter 6, you learn about the structure of a LATEX document. The most important topics are sectioning and cross-referencing. In C hapter 7, the standard $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ document classes are presented: article, report, book, and letter, along with a description of the standard LATEX distribution. In C hapter 8, the $\mathcal{A}_{\mathcal{M}}$ S document classes are discussed. In particular, the title page information for the amsart document class and a description of the standard $\mathcal{A} \mathcal{M}$ S-LATEX distribution is presented.

Part IV (Chapter 9) introduces techniques to customize $\operatorname{LAT} T_{E} X$ to speed up typing source files and typesetting of documents. $\operatorname{LA} T_{E} X$ really speeds up with userdefined commands, user-defined environments, and custom formats. You'll learn how parameters that effect the behavior of LATEX are stored in counters and length commands, how to change them, and how to design custom lists.

In Part V (Chapters 10 and 11), we'll discuss two programs: $\mathrm{B} \mid \mathrm{BT} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ and Makel ndex that complement the standard ${ }^{L A T} T_{E} X$ distribution; they give a helping hand in making large bibliographies and indices.

Appendices A and B will probably be needed quite often in your work: they contain math symbol tables and text symbol tables

Appendix C presents the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{LA} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ sample article, sampart.tex, first in typeset form (pages 361-363), then in "mixed" form, showing the source file and the typeset article together (pages 364-371). You can learn a lot about LATEX and $\mathcal{A}_{\mathcal{M} \mathcal{S}}$-LTTEX just by reading the source file a paragraph at a time and see how that paragraph looks typeset. Then Appendix D rewrites this sample article utilizing the user-defined commands collected in lattice.sty of section 9.5.

Appendix \mathbf{E} relates some historical background material on $\operatorname{LAT}_{E} X$: how did it develop and how does it work. Appendix \mathbf{F} is a brief introduction to the use of PostScript fonts in a $L A T_{E} X$ document. Appendix \mathbf{G} shows how you can obtain ${ }^{L A} T_{E} X$ and $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LAT ${ }^{-1}$ X, and how you can keep them up-to-date through the Internet. A work session is reproduced (in part) using "anonymous ftp" (file transfer protocol).

Appendix \mathbf{H} will help those who have worked with (Plain) $T_{E} X, L_{A} T_{E} X$ version 2.09, $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$, or $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX version 1.1, programs from which the new ${ }^{A} T_{E} \mathrm{X}$ and $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - ${ }^{\text {LAT }} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ developed. Some tips are given to smooth the transition to the new $\mathrm{LAT}_{E} X$ and $\mathcal{A}_{\mathcal{M}}{ }^{\mathcal{S}}$-LATEX.

Finally, Appendix I points the way for further study. The most important book for extending and customizing LATEX is The LATEX C ompanion, the work of M ichel Goossens, Frank M ittelbach, and Alexander Samarin [12].

Typographical conventions

To make this book easy to read, I use some very simple conventions on the use of fonts.

Explanatory text is set in the Galliard font, as this text is.
This book is about typesetting math in $L^{A} T_{E} X$. So often you are told to type in some material and shown how it'll look typeset.

I use this font, Courier, to show what you have to type.
All characters have the same width so it's easy to
distinguish it from the other fonts used in this book.
I use the same font for commands (\backslash parbox), environments (align), documents (sampart.tex), document classes (article), directories and folders(work), packages (amsmath), counters (tocdepth), and so on.

When I show you how something looks when typeset, I use this font, Computer Modern roman, which you'll most likely see when you use $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$. This looks sufficiently different from the other two fonts I use so that you should have little difficulty recognizing typeset $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ material. If the typeset material is a separate paragraph (or paragraphs), I make it visually stand out even more by adding the little corner symbols on the margin to offset it.

When I give explanations in the text: "Compare iff with iff, typed as iff and if $\{\mathrm{f}\}$, respectively." I use the same fonts but since they are not visually set off, it may be a little harder to see that iff is in Computer Modern roman and iff is in Courier.

PART I

A short course

CHAPTER

In this chapter, you'll start writing your first article. All you have to do is to type the (electronic) sourcefile; $L A T_{E} X$ does the rest.

In the next few sections, I'll introduce you to the most important commands for typesetting text and math by working through examples. Go to the latter parts of this book for more detail.

The source file is made up of text, math (for instance, $\sqrt{5}$), and instructions to ${ }^{A T} T_{E} X$. This is how you type the last sentence:

The source file is made up of \emph\{text\}, \emph\{math\} (for instance, $\$ \backslash$ sqrt $\{5\} \$)$, and $\backslash e m p h\{i n s t r u c t i o n s\} ~ t o ~ \ L a T e X . ~$

In this sentence,
The source file is made up of \emph\{text\}, \emph\{math\} (for instance,
is text,
\$ \backslash sqrt $\{5\}$ \$
is math, and

$$
\text { \emph }\{\text { text }\}
$$

is an instruction (a command). Commands, as a rule, start with a backslash \backslash and are meant to instruct LATEX; this particular command, \emph, emphasizes text given as its argument (between the braces). Another kind of instruction is called an environment. For instance,
\begin\{flushright \} }
and
\end\{flushright \} }
bracket a flushright environment-what is typed inside this environment comes out right justified (lined up against the right margin) in the printed form.

In practice, text, math, and instructions are intertwined. For example,
\emph\{My first integral\} \$\int \zeta^\{2\}(x)
, dx\$
which produces

```
\Gamma
    My first integral \int \zeta ' (x)dx
L
```

is a mixture of all three. Nevertheless, to some extent I try to introduce the three topics: typing text, typing math, and giving instructions to $\operatorname{LAT}_{E} X$ (commands and environments) as if they were separate topics.

I introduce the basic features of $L A T_{E} X$ by working with a number of sample documents. If you wish to obtain these documents electronically, create a subdirectory (folder) on your computer, say, ftp, and proceed to download all the sample files as described in section G.6. Also create a subdirectory (folder) called work. Whenever you want to use one of these documents, copy it from the ftp subdirectory (folder) to the work subdirectory (folder), so that the original remains unchanged; alternatively, type in the examples as shown in the book. In thi sbook, the ftp directory and the work directory will refer to the directories (folders) you hereby create without further elaboration.

1.1 Typing a very short "artide"

First we discuss how to use the keyboard in ${ }^{A T} T_{E} X$, and then type a very short "article" containing only text.

1.1.1 The keyboard

In LATEX, to type text, use the following keys:

You may also use the punctuation marks
and the spacebar, the tab key, and the return (or enter) key.
There are thirteen special keys (on most keyboards):
\# \$ \% \& ~ - ^ \ \{ \} @ " |
used mostly in LATEX instructions. There are special commands to type most of these special characters (as well as composite characters, such as accented characters) if you need them in text. For instance, $\$$ is typed as $\backslash \$$, _ is typed as $_{-}$, and \% is typed as
% (while ä is typed as \"\{a\}); however, @ is typed as @. See sections 2.4.4 and 2.4.6 and the tables of Appendix B for more detail.

Every other key is prohibited! (U nless there are special steps are taken; more about this in section 2.1.) Do not use the computer's modifier keys, such as Alt, C trl, Command, O ption, to produce special characters. $\left\lfloor A_{E} X\right.$ will either reject or misunderstand them. When trying to typeset a source file that contains a prohibited character, $L A T_{E X}$ will display the error message:

```
! Text line contains an invalid character.
l.222 completely irreducible^^?
    ^^?
```

In this message 1.222 means line 222 of your source file. You must edit this line. The log file (see section 1.11.3) also contains this message.

1.1.2 Your first note

We start our discussion on how to type a note in $\operatorname{LAT}_{E} X$ with a simple example. Suppose you want to use $L^{L T} E X$ to produce the following:

It is of some concern to me that the terminology used in multi-section math courses is not uniform.

In several sections of the course on matrix theory, the term "hamiltonianreduced" is used. I, personally, would rather call these "hyper-simple". I invite others to comment on this problem.

Of special concern to me is the terminology in the course by Prof. Rudi Hochschwabauer. Since his field is new, there is no accepted terminology. It is imperative that we arrive at a satisfactory solution.

Create a new file in the work directory with the name note1.tex and type the following (if you prefer not to type it, copy the file from the ftp directory; see page 4):

```
% Sample file: note1.tex
% Typeset with LaTeX format
\documentclass{article}
\begin{document }
It is of some concern to me that
the terminology used in multi-section
    math courses is not uniform.
In several sections of the course on
matrix theory, the term
    ''hamiltonian-reduced'' is used.
        I, personally, would rather call these ''hyper-simple'r. I
invite others to comment on this problem.
Of special concern to me is the terminology in the course
by Prof.~Rudi Hochschwabauer.
    Since his field is new, there is
    no accepted
terminology. It is imperative
that we arrive at a satisfactory solution.
\end{document}
```

The first two lines start with \%; they are comments ignored by $\operatorname{LAT}_{E X}$. (The \% character is very useful. If, for example, while typing the source file you want to make a comment, but do not want that comment to appear in the typeset version, start the line with \%. The whole line will be ignored during typesetting. You can also comment out a part of a line:
... \% ...
The part of a line past the \%character will be ignored.)
The line after the two comments names the "document class", which specifies how the document will be formatted.

The text of the note is typed within the "document environment", that is, between the two lines
\begin\{document \} }
and
\end\{document \} }

N ow typeset note1.tex; you should get the same typeset document as shown on page 5.

As seen in the previous example, $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ is somewhat different from most word processors. It ignores the way you format the text, and follows only the formatting instructions given by the markup commands. $\mathrm{LA}_{E} \mathrm{X}$ takes note of whether you put a space in the text, but it ignores how many spaces are inserted. In $L A T_{E} X$, one or more blank lines mark the end of a paragraph. Tabs are treated as spaces. N ote that you typed the left double quote as ' ' (two left single quotes) and the right double quote as '' (two right single quotes). The left single quote key is not always easy to find; it usually hides in the upper left or upper right corner of the keyboard. The symbol " is called a "tie" and keeps Prof. and Rudi together.

1.1.3 Linestoo wide

${ }^{L A} T_{E} X$ reads the text in the source file one line at a time and when the end of a paragraph is reached, $L A T_{E} X$ typesets it (see section E. 2 for a more detailed discussion). M ost of the time, there is no need for corrective action. O ccasionally, however, LATEX gets into trouble splitting the paragraph into typeset lines. To illustrate this, modify note1.tex: in the second sentence replace "term" by "strange term", and in the fourth sentence delete "Rudi". Save this modified file with the name notelb.tex in the work directory. (You'll find note1b.tex in the ftp directory-see page 4).

Typesetting note1b. tex, you get:

Γ

It is of some concern to me that the terminology used in multi-section math courses is not uniform.

In several sections of the course on matrix theory, the strange term "hamiltonianreduced" is used. I, personally, would rather call these "hyper-simple". I invite others to comment on this problem.

Of special concern to me is the terminology in the course by Prof. Hochschwabauer. Since his field is new, there is no accepted terminology. It is imperative that we arrive at a satisfactory solution.

The first line of paragraph two is about $1 / 4$ inch too wide. The first line of paragraph three is even wider. On your monitor, $L A T_{E X}$ displays the message:

```
Overfull \hbox (15.38948pt too wide) in paragraph at lines 10--15
[]\OT1/cmr/m/n/10 In sev-eral sec-tions of the course on ma-trix
the-ory, the strange term '`hamiltonian-
    []
Overfull \hbox (23.27834pt too wide) in paragraph at lines 16--22
[]\OT1/cmr/m/n/10 Of spe-cial con-cern to me is the ter-mi-nol-ogy
```

```
in the course by Prof. Hochschwabauer.
    []
```

You'll find the same message in the log file note1b. \log (see section 1.11.3). The reference

```
Overfull \hbox (15.38948pt too wide) in paragraph at lines 10--15
```

is made to paragraph two (lines 10-15); the typeset version has a line (line number unspecified within the typeset paragraph) which is 15.38948 pt too wide. ${ }^{L A T} T_{E} X$ uses points (pt) to measure distances; there are about 72 points to an inch. The next two lines

```
[]\OT1/cmr/m/n/10 In sev-eral sec-tions of the course on ma-trix
the-ory, the strange term '`hamiltonian-
```

identify the source of the problem: LATEX would not hyphenate

```
hamiltonian-reduced,
```

since it only (automatically) hyphenates a hyphenated word only at the hyphen. You may wonder what \backslash OT $1 / \mathrm{cmr} / \mathrm{m} / \mathrm{n} / 10$ signifies. It says that the current font is the C omputer M odern roman font at size 10 points (see section 2.6.1).

The second reference
Overfull \backslash hbox (23.27834pt too wide) in paragraph at lines $16--22$
is made to paragraph three (lines 16-22). The problem is with the word

Hochschwabauer

which the hyphenation routine of LATEX can't handle. (If you use a German hyphenation routine, it'll have no difficulty hyphenating Hochschwabauer.)

If you encounter such a problem, try to reword the sentence or add an optional hyphen $\backslash-$, which encourages $L A T E X$ to hyphenate at this point if necessary. For instance, rewrite Hochschwabauer as

```
Hoch\-schwabauer
```

and the second problem goes away.
Sometimes a small horizontal overflow is difficult to spot. The draft document class option is very useful in this case: it'll paint an ugly slug on the margin to mark an overfull line; see sections 7.1.2 and 8.4 for document class options. You may invoke this option by changing the \backslash documentclass line to
\documentclass[draft]\{article\}
You'll find this version of note1b.tex under the name noteslug.tex in the ftp directory.

1.1.4 Moretext features

Next you'll produce the following note in $L^{A} T_{E} X$:
Γ

September 21, 1995

From the desk of George Grätzer

February 7-21 please use my temporary e-mail address:
George_Gratzer@umanitoba.ca

Type in the following source file, save it as note2.tex in the work directory (you'll also find note2.tex in the ftp directory):

```
% Sample file: note2.tex
% Typeset with LaTeX format
\documentclass{article}
\begin{document }
\begin{flushright}
    \today
\end{flushright}
\textbf{From the desk of George Gr\"{a}tzer}\\[10pt]
February~7--21 \emph{please} use my temporary e-mail address:
\begin{center}
    \texttt{George\_Gratzer@umanitoba.ca}
\end{center}
\end{document }
```

This note introduces several additional features of $\operatorname{LAT}_{E} X$:

- The \today command displays today's date.
- U se environments to right justify or center text. U se the \backslash emph command to emphasize text; the text to be emphasized is surrounded by $\{$ and $\}$. U se \backslash textbf for bold text; the text to be made bold is also surrounded by $\{$ and $\}$. Similarly, use \texttt for typewriter style text. \emph, \textbf, and \texttt are examples of commands with arguments. N ote that command names are case sensitive; do not type \backslash Textbf or \backslash textbe in lieu of \backslash textbe.
- LATEX commands (almost) always start with \backslash followed by the command name, for instance, \textbf. The command name is terminated by the first non-alphabetic character.
- U se double hyphens for number ranges (en-dash): 7--21 prints 7-21; use triple hyphens (---) for the "em-dash" punctuation mark - such as the one in this sentence.
- If you want to create additional space between lines (as in the last note under the line From the desk ...), use the command $\backslash \backslash[10 \mathrm{pt}]$ with an appropriate amount of vertical space. ($\backslash \backslash$ is the newline command- see section 2.7.1; the variant used in the above example is the newline with additional vertical space.) The distance may be given in points, centimeters (cm), or inches (in). (72.27 points make an inch.)
- There are special rules for accented characters and some European characters. For instance, ä is typed as \backslash " $\{$ a\}. Accents are explained in section 2.4.6 (see also the tables in Appendix B).

You'll seldom need to know more than this about typing text. For moredetail, however, see C hapters 2 and 3 . All text symbols are organized into tables in Appendix B.

1.2 Typing math

Now you can start mixing text with math formulas.

1.2.1 The keyboard

In addition to the regular text keys (section 1.1.1), three more keys are needed to type math:

$$
\mid<>
$$

(| is the shifted \backslash key on many keyboards.)

1.2.2 A note with math

You'll begin typesetting math with the following note:

In first year Calculus, we define intervals such as (u, v) and (u, ∞). Such an interval is a neighborhood of a if a is in the interval. Students should realize that ∞ is only a symbol, not a number. This is important since we soon introduce concepts such as $\lim _{x \rightarrow \infty} f(x)$.

When we introduce the derivative

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a},
$$

we assume that the function is defined and continuous in a neighborhood of a.

To create the source file for this mixed math and text note, create a new document with an editor. N ame it math. tex, place it in the work directory, and type in the following source file-or copy math. tex from the ftp directory:

```
% Sample file: math.tex
% Typeset with LaTeX format
\documentclass{article}
\begin{document }
In first year Calculus, we define intervals such as
$(u, v)$ and $(u, \infty)$. Such an interval is a
\emph{neighborhood} of $a$
if $a$ is in the interval. Students should
realize that $\infty$ is only a
symbol, not a number. This is important since
we soon introduce concepts
    such as $\lim_{x \to \infty} f(x)$.
When we introduce the derivative
\ [
    \lim_{x \to a} \frac{f(x) - f(a)}{x - a},
\]
we assume that the function is defined and continuous
in a neighborhood of $a$.
\end{document }
```

This note introduces the basic techniques of typesetting math with $L A T E X$:

- There are two kinds of math formulas and environments: inline and displayed.
- Inline math environments open and close with \$.
- Displayed math environments open with \backslash [and close with \backslash].
- $\operatorname{LAT}_{E} \mathrm{X}$ ignores the spaces you insert in math environments with two exceptions: spaces that delimit commands (see section 2.3.1) and spaces in the argument of commands that temporarily revert into text mode. ($\backslash \mathrm{mbox}$ is such a command; see section 4.5.) Thus spacing in math is important only for the readability of the source file. To summarize:

Rule ■ Spacing in text and math In text mode, many spaces equal one space, while in math mode, the spaces are ignored.

- The same formula may be typeset differently depending on which math environment it's in. The expression $x \rightarrow a$ is typed as a subscript to lim in the inline
formula $\lim _{x \rightarrow a} f(x)$, typed as $\$ \backslash 1$ lim_\{ x \to a\} $\mathrm{f}(\mathrm{x})$ \$, but it's placed below lim in the displayed version:

$$
\lim _{x \rightarrow a} f(x)
$$

typed as
\
$\backslash \lim _{\text {i }}\{\mathrm{x}$ \to a\} $\mathrm{f}(\mathrm{x})$
\]

- A math symbol is invoked by a command. Examples: the command for ∞ is \infty and the command for \rightarrow is \backslash to. The math symbols are organized into tables in Appendix A.

To access most of the symbols listed in Appendix A by name, use the amssymb package; in other words, the article should start with

```
\documentclass{article}
\usepackage {amssymb}
```

The amssymb package loads the amsfonts package, which contains the commands for using the AM SFonts (see section 4.14.2).

- Some commands such as \sqrt need arguments enclosed in $\{$ and $\}$. To typeset $\sqrt{5}$, type $\$ \backslash$ sqrt $\{5\}$ s, where \backslash sqrt is the command and 5 is the argument. Some commands need more than one argument. To get

$$
\frac{3+x}{5}
$$

type

```
\[
```

 \(\backslash f r a c\{3+x\}\{5\}\)
 \]

$\backslash \mathrm{frac}$ is the command, $3+\mathrm{x}$ and 5 are the arguments.
There are many mistakes you can make, even in such a simple note. You'll now introduce mistakes in math.tex, by inserting and deleting \% signs to make the mistakes visible to $L^{L A} T_{E} X$ one at a time. Recall that lines starting with \% are ignored by LATEX. Type the following source file, and save it under the name mathb.tex in the work directory (or copy over the file mathb. tex from the ftp directory).

```
% Sample file: mathb.tex
% Typeset with LaTeX format
\documentclass{article}
```

```
\begin{document }
In first year Calculus, we define intervals such as
%$(u, v)$ and $(u, \infty)$. Such an interval is a
    $(u, v)$ and (u, \infty)$. Such an interval is a
    {\emph{neighborhood} of $a$
if $a$ is in the interval. Students should
realize that $\infty$ is only a
symbol, not a number. This is important since
we soon introduce concepts
    such as $\lim_{x \to \infty} f(x)$.
%such as $\lim_{x \to \infty f(x)$.
When we introduce the derivative
\ [
            \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
    %\lim_{x \to a} \frac{f(x) - f(a) x - a}
\]
we assume that the function is defined and continuous
in a neighborhood of $a$.
\end{document }
```

Exercise 1 N ote that in line 8, the second \$ is missing. When you typeset the mathb.tex file, LATEX sends the error message:

```
! Missing $ inserted.
<inserted text>
    $
l.8 ..., v)$ and (u, \infty
    )$. Such an interval is a
```

$?$

Since you omitted \$, LATEX reads (u, \infty) as text; but the \backslash infty command instructs LATEX to typeset a math symbol, which can only be done in math mode. So LATEX offers to put a $\$$ in front of \backslash infty. LATEX suggests a cure, but in this example it comes too late. M ath mode should start just prior to (u.

Exercise 2 In the mathb. tex file, delete \% at the beginning of line 7 and insert a \% at the beginning of line 8 (this eliminates the previous error); delete \% at the beginning of line 15 and insert $a \%$ at the beginning of line 14 (this introduces a new error: the closing brace of the subscript is missing). Save the changes, and typeset the note. You get the error message:

```
! Missing } inserted.
<inserted text>
```

```
1.15 ...im_{x \to \infty f(x)$
```

$?$
LATEX is telling you that a closing brace $\}$ is missing, but it's not sure where. ${ }^{L A} T_{E} X$ noticed that the subscript started with $\{$ and it reached the end of the math formula before finding \}. You must look in the formula for a $\{$ that is not closed, and close it with $\}$.

Exercise 3 D elete \% at the beginning of line 14 and insert a \% at the beginning of line 15 , which removes the last error, and delete \% at the beginning of line 20 and insert $a \%$ at the beginning of line 19 (introducing the final error: deleting the closing brace of the first argument of \backslash frac). Save and typeset the file. You get the error message:

```
! LaTeX Error: Bad math environment delimiter.
```

```
1.21 \]
```

There is a bad math environment delimiter in line 21, namely, \]. So the reference to

! Bad math environment delimiter.
is to the displayed formula. Since the environment delimiter is correct, something must have gone wrong with the displayed formula. This is what happened: $\angle A T_{E} X$ was trying to typeset
$\backslash \lim \{x$ \to $a\} \backslash f r a c\{f(x)-f(a) x-a\}$
but \backslash frac needs two arguments. LATEX found $f(x)-f(a) \quad x-a$ as the first argument. While looking for the second, it found \backslash], which is obviously an error (it was looking for a \{).

1.2.3 Building blocks of a formula

A formula is built up from various types of components. We group them as follows:

- Arithmetic
- Subscripts and superscripts
- Accents
- Binomial coefficients
- Congruences
- D elimiters
- O perators
- Ellipses
- Integrals
- M atrices
- Roots
- Sums and products
- Text

Some of the commands in the following examples are defined in the amsmath package; in other words, to typeset these examples with the article document class, the article should start with
ckage\{amssymb,amsmath\}ArithmeticThearithmeticoperations$a+b,a-b,-a,a/b,ab$aretypedasexpected:\$a+b\$,\$a-b\$,\$-a\$,\$a/b\$,\$ab\$Ifyouwishtouse\cdotor\timesformultiplication,asin$a\cdotb$or$a\timesb$,use\backslashcdotor\backslashtimes,respectively.Theexpressions$a\cdotb$and$a\timesb$aretypedasfollows:\$a\cdotb\$\$a\timesb\$Displayedfractions,suchasundefined

$$
\frac{1+2 x}{x+y+x y}
$$

are typed with \backslash frac:
\ [
$\backslash f r a c\{1+2 x\}\{x+y+x y\}$
\]

The \backslash frac command is seldom used inline.
Subscripts and superscripts Subscripts are typed with _ (underscore) and superscripts with ^ (caret). Remember to enclose the subscripts and superscripts with $\{$ and $\}$. To get a_{1}, type the following characters:

Go into inline math mode: \$
type the letter a: a
subscript command:
bracket the subscripted 1: $\quad\{1\}$
exit inline math mode: \$
that is, type \$a_\{1\}\$. O mitting the braces in this example causes no harm; however, to get a_{10}, you must type \$a_\{10\}\$. Indeed, \$a_10\$ prints $a_{1} 0$. Further examples: $a_{i_{1}}, a^{2}, a^{i_{1}}$ are typed as

```
$a_{i_{1}}$, $a^{2}$, $a^{i_{1}}$
```

Accents The four most often used math accents are:
\bar{a} typed as $\$ \backslash$ bar $\{a\} \$$
\hat{a} typed as \$\hat $\{a\} \$$
\tilde{a} typed as \$\tilde\{a\}\$
\vec{a} typed as $\$ \backslash$ vec $\{a\} \$$
Binomial coefficients The amsmath package provides the \backslash binom command for binomial coefficients. For example, $\binom{a}{b+c}$ is typed inline as
\$ \backslash binom $\{a\}\{b+c\} \$$
whereas the displayed version

$$
\binom{a}{b+c}\binom{\frac{n^{2}-1}{2}}{n+1}
$$

is typed as

$$
\[
\backslash \operatorname{binom}\{a\}\{b+c\} \backslash \operatorname{binom}\left\{\backslash \text { frac }\left\{\mathrm{n}^{\wedge}\{2\}-1\right\}\{2\}\right\}\{\mathrm{n}+1\}
$$

\]

Congruences The two most important forms are:

$$
\begin{array}{lll}
a \equiv v(\bmod \theta) & \text { typed as } & \text { \$a \equiv } \mathrm{v} \backslash \operatorname{pmod}\{\backslash \text { theta }\} \$ \\
a \equiv v(\theta) & \text { typed as } & \text { \$a \equiv v } \backslash \operatorname{pod}\{\text { theta } \$ \$
\end{array}
$$

The second form requires the amsmath package.
Delimiters These are parenthesis-like symbols that vertically expand to enclose a formula. For example: $(a+b)^{2}$, which is typed as $\$(a+b) \wedge\{2\} \$$, and

$$
\left(\frac{1+x}{2+y^{2}}\right)^{2}
$$

which is typed as
\ [
\left (\backslash frac $\{1+\mathrm{x}\}\left\{2+\mathrm{y}^{\wedge}\{2\}\right\} \backslash$ right)^\{2\}
\]

contain such delimiters. The \left (and \right) commandstell LATEX to size the parentheses correctly (relative to the size of the symbols inside the parentheses). Two further examples:

$$
\left|\frac{a+b}{2}\right|, \quad\left\|A^{2}\right\|
$$

would be typed as:
\

$$
\text { \left| } \backslash \text { frac }\{a+b\}\{2\}|r i g h t|,
$$

\quad \left\| A^\{2\} \right\|
\]

where \quad is a spacing command (see section 4.11 and Appendix A).
0 perators To typeset the sine function $\sin x$, type: $\$ \backslash \sin x \$$. N ote that $\$ \sin x \$$ prints: $\sin x$, where the typeface of \sin is wrong, as is the spacing.
LATEX calls \backslash sin an operator; there are a number of operators listed in section 4.7.1 and Appendix A. Some are just like \sin; others produce a more complex display:

$$
\lim _{x \rightarrow 0} f(x)=0
$$

which is typed as
\

```
        \lim_{x \to 0} f(x) = 0
```

 \]
 Ellipses The ellipsis (. .) in math sometimes needs to be printed as low dots and sometimes as (vertically) centered dots. Print low dots with the \backslash ldots command as in $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, typed as

```
$F(x_{1}, x_{2}, \ldots , x_{n})$
```

Print centered dots with the \backslash cdots command as in $x_{1}+x_{2}+\cdots+x_{n}$, typed as
\$ $x_{-}\{1\}+x_{-}\{2\}+\backslash \operatorname{cdots}+x_{-}\{n\} \$$
If you use the amsmath package, there is a good chance that the command \dots will print the ellipsis as desired.

Integrals The command for an integral is $\backslash i n t ;$ the lower limit is a subscript and the upper limit is a superscript. Example: $\int_{0}^{\pi} \sin x d x=2$ is typed as
$\$ \backslash i n t _\{0\}^{\wedge}\{\backslash p i\} \backslash \sin \mathrm{x} \backslash, \mathrm{dx}=2 \$$
\backslash, is a spacing command (see section 4.11 and Appendix A).

Matrices The amsmath package provides you with a matrix environment:

$$
\begin{array}{cccc}
a+b+c & u v & x-y & 27 \\
a+b & u+v & z & 134
\end{array}
$$

which is typed as follows:

```
\ [
    \begin{matrix}
        a + b + c&uv & x - y & 27\\
        a+b & u + v & z & 134
    \end{matrix}
\]
```

The matrix elements are separated by \&; the rows are separated by $\backslash \backslash$. The basic form gives no parentheses; for parentheses, use the pmatrix environment; for brackets, the bmatrix environment; for vertical lines (determinants, for example), the vmatrix environment; for double vertical lines, the Vmatrix environment. For example,

$$
\mathbf{A}=\left(\begin{array}{cc}
a+b+c & u v \\
a+b & u+v
\end{array}\right)\left(\begin{array}{cc}
30 & 7 \\
3 & 17
\end{array}\right)
$$

is typed as follows:
\ [
\backslash mathbf $\{A\}=$
\begin\{pmatrix\} }
$a+b+c \& u v \backslash \backslash$
$a+b \& u+v$
\end\{pmatrix\} }
\backslash begin $\{$ pmatrix $\}$
$30 \& 7 \backslash \backslash$
3 \& 17
\end\{pmatrix\} }
\]

R oots \sqrt produces the square root; for instance, $\sqrt{5}$ is typed as
\$\sqrt $\{5\} \$$
and $\sqrt{a+2 b}$ is typed as
\$\sqrt\{a + 2b\}\$

The nth root, $\sqrt[n]{5}$, is done with two arguments:
\$ \backslash sqrt [n] $\{5\} \$$
N ote that the first argument is in brackets []; it's an optional argument (see section 2.3).

Sums and products The command for sum is \sum and for product is \backslash prod. The examples

$$
\sum_{i=1}^{n} x_{i}^{2} \quad \prod_{i=1}^{n} x_{i}^{2}
$$

are typed as
\ [
 \]

\qquad is a spacing command; it separates the two formulas(see section 4.11 and Appendix A).
Sums and products are examples of large operators; all of them are listed in section 4.8 and Appendix A. They display in a different style (and size) when used in an inline formula: $\sum_{i=1}^{n} x_{i}^{2} \quad \prod_{i=1}^{n} x_{i}^{2}$.
Text Place text in a formula with an \mbox command. For instance,

$$
a=b \quad \text { by assumption }
$$

is typed as
\ [
$\mathrm{a}=\mathrm{b} \backslash m b o x\{\backslash q q u a d$ by assumption\}
\]

N ote the space command \qquad in the argument of \backslash mbox. You could also have typed

```
\[
```

$\mathrm{a}=\mathrm{b}$ \qquad $\backslash m b o x\{b y$ assumption\}
\]

because \qquad works in text as well as in math.
If you use the amsmath package, then the \backslash text command is available in lieu of the \backslash mbox command. It works just like the $\backslash m b o x$ command except that it automatically changes the size of its argument as required, as in $a^{\text {power }}$, typed as

```
$a^{ \text {power} }$
```

If you do not want to use the large amsmath package, the tiny amstext package also provides the \backslash text command (see section 8.5).

1.2.4 Building a formula step-by-step

It is simple to build up complicated formulas from the components described in section 1.2.3. Take the formula

$$
\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i, i+1}^{i^{2}}}{\left[\frac{i+3}{3}\right]} \frac{\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}
$$

for instance. You should build this up in several steps. C reate a new file in the work directory. Call it formula.tex and type in the lines:

```
% File: formula.tex
% Typeset with LaTeX format
\documentclass{article}
\usepackage{amssymb,amsmath}
\begin{document }
\end{document}
```

and save it. At present, the file has an empty document environment. ${ }^{1}$ Type each part of the formula as an inline or displayed formula so that you can typeset the document and check for errors.
Step 1 Let's start with $\left[\frac{n}{2}\right]$:

```
$\left[ \frac{n}{2} \right]$
```

Type this into formula.tex and test it by typesetting the document.
Step 2 Now you can do the sum:

$$
\sum_{i=1}^{\left[\frac{n}{2}\right]}
$$

For the superscript, you can cut and paste the formula created in Step 1 (without the dollar signs), to get
\ [
\sum_\{i = 1\}^\{ \left } [\backslash frac \{ \mathrm { n } \} \{ 2 \} \backslash right] \}
\]

[^1]Step 3 N ext, do the two formulas in the binomial:

$$
x_{i, i+1}^{i^{2}} \quad\left[\frac{i+3}{3}\right]
$$

Type them as separate formulas in formula.tex:

```
\ [
    x_{i, i + 1}^{i^{2}} \qquad \left[ \frac{i + 3}{3} \right]
\]
```

Step 4 N ow it's easy to do the binomial. Type the following formula by cutting and pasting the previous formulas:
\ [
\binom $\left\{x_{-}\{i, i+1\} \wedge\left\{i^{\wedge}\{2\}\right\}\right\}\{$ left $[$ frac $\{i+3\}\{3\} \backslash r i g h t]\}$ \]

which prints:

$$
\binom{x_{i, i+1}^{i^{2}}}{\left[\frac{i+3}{3}\right]}
$$

Step 5 N ext type the formula under the square root $\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)$ as $\$ \backslash \operatorname{mu}(i) \wedge\{\backslash f r a c\{3\}\{2\}\}\left(i^{\wedge}\{2\}-1\right) \$$
and then the square root $\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}$ as
\$ \sqrt $\{\backslash \operatorname{mu}(i) \wedge\{\backslash \operatorname{frac}\{3\}\{2\}\}(i \wedge\{2\}-1)\} \$$
Step 6 The two cube roots, $\sqrt[3]{\rho(i)-2}$ and $\sqrt[3]{\rho(i)-1}$, are easy to type: \$ \backslash sqrt [3]\{ $\backslash r h o(i)-2\} \$ \$ \backslash s q r t[3]\{$ \rho(i) - 1 \}

Step 7 So now get the fraction:

$$
\frac{\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}
$$

typed, cut, and pasted as

```
\ [
    \frac{ \sqrt{ \mu(i)^{ \frac{3}{2}} (i^{2} -1) } }
    { \sqrt[3]{\rho(i) - 2} + \sqrt[3]{\rho(i) - 1} }
\]
```

Step 8 Finally, get the formula

$$
\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i, i+1}^{i^{2}}}{\left[\frac{i+3}{3}\right]} \frac{\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}
$$

by cutting and pasting the pieces together, leaving only one pair of displayed math delimiters:

```
\[
```

 \(\backslash\) sum_\{i \(=1\} \wedge\{\) left \([\backslash\) frac \(\{\mathrm{n}\}\{2\} \backslash\) right \(]\}\)
 \(\backslash\) binom \(\left\{x_{-}\{i, i+1\} \wedge\left\{i^{\wedge}\{2\}\right\}\right\}\)
 \(\{\) \left } \{ \text { \frac\{i } + 3 \} \{ 3 \} \backslash \text { right } \}
 \(\backslash\) frac \(\{\backslash\) sqrt \(\{\backslash \operatorname{mu}(i) \wedge\{\backslash f r a c\{3\}\{2\}\}(i \wedge\{2\}-1)\}\}\)
 \(\{\backslash\) sqrt [3] \(\backslash\) rho (i) - 2\} \(+\backslash\) sqrt [3]\{\rho(i) - 1\} \}
 \]

Notice the use of

- spacing to help distinguish the braces (note that some editors help you balance the braces);
- separate lines for the various pieces.

Keep the source file readable. Of course, this isfor your benefit, since ${ }^{L A T} E X$ does not care. It would also accept

```
\[\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i,i+1}^{i^{2}}}
{\left[\frac{i+3}{3}\right]}\frac{\sqrt{\mu(i)^{\frac{3}
{2}}(i^{2}-1)}}{\sqrt[3]{\rho(i)-2}+\squrt[3]{\rho(i)-1}}\]
```

Problems arise with this haphazard style when you make a mistake. Try to find the error in the next version:
$\backslash\left[\backslash \operatorname{sum} _\{i=1\}^{\wedge}\{\backslash \operatorname{left}[\backslash\right.$ frac $\{n\}\{2\} \backslash$ right $]\} \backslash \operatorname{binom}\left\{x _\{i, i+1\} \wedge\{i \wedge\{2\}\}\right\}$ $\{\backslash \operatorname{left}[\backslash f r a c\{i+3\}\{3\} \backslash r i g h t]\} \backslash$ frac $\{\backslash \operatorname{sqrt}\{\backslash \operatorname{mu}(i) \wedge\{\backslash$ frac $\{3\}$
$\left.\left.\left.\{2\}\}\}\left(i^{\wedge}\{2\}-1\right)\right\}\right\}\{\backslash \operatorname{sqrt}[3]\{\backslash r h o(i)-2\}+\backslash \operatorname{sqrt}[3]\{\backslash r h o(i)-1\}\} \backslash\right]$
(Answer: \frac \{3\}\{2\} should be followed by \}\} and not by \}\}\}.)

1.3 Formula gallery

In this section, I present the formula gallery (gallery.tex in the ftp directory), a collection of formulas-some simple, some complex-that illustrate the power of LATEX and athcal{S}\)-LATEX.Mostofthecommandsintheseexampleshavenotyetbeendiscussed,butcomparingthesourceformulawiththetypesetversionshouldanswermostofyourquestions.Occasionally,I'llgiveyouahelpinghandwithsomecomments.Manyoftheseformulasarefromtextbooksandresearcharticles.Thelastsixarereproducedfromthedocumenttestart.texthatwasdistributedbythe$\mathcal{A}_{\mathcal{M}\mathcal{S}}$with$\mathcal{A}\mathcal{M}\mathcal{S}$-LATEXversion1.1.Someoftheseexamplesrequiretheamssymbandamsmathpackages.Somakesuretoincludetheline\usepackage\{amssymb,amsmath\}followingthedocumentclasslineofanyarticleusingsuchconstructs.Thepackages(ifany)requiredforeachformulashallbeindicated.undefined

Formula 1 A set-valued function:

$$
x \mapsto\{c \in C \mid c \leq x\}
$$

$$
\(\mathrm{x} \backslash\) mapsto \(\backslash\{\backslash, \mathrm{c} \backslash\) in \(C \backslash m i d \mathrm{c} \backslash\) leq \(\mathrm{x} \backslash, \\}\)
$$

Note that both | and \backslash mia print |. U se | for absolute value signs. In this formula, \backslash mid is used because it provides extra spacing (see section 4.6.4). To equalize the spacing around $c \in C$ and $c \leq x$, a thin space was added inside each brace (see section 4.11). The same technique is used in a number of other formulas below.

Formula 2 The \backslash left | and \backslash right | commands print the vertical bars | whose size adjusts to the size of the formula. The \backslash mathfrak command provides access to the Fraktur math alphabet (which requires the amsfonts or the eufrak package):

$$
\left|\bigcup\left(I_{j} \mid j \in J\right)\right|<\mathfrak{m}
$$

```
typed as
\[
    \left| \bigcup (\, I_{j} \mid j \in J \,) \right|
        < \mathfrak{m}
\]
```

Formula 3 N ote that you need spacing both before and after the text fragment "for some" in the following example. The argument of \backslash mbox is typeset in text mode, so a single space is recognized.

$$
A=\left\{x \in X \mid x \in X_{i} \quad \text { for some } i \in I\right\}
$$

\ [

$$
\begin{aligned}
A=\backslash\{\backslash, & x \backslash \text { in } X \backslash \operatorname{mid} x \backslash i n X_{-}\{i\} \\
& \backslash \operatorname{mbox}\{\backslash \text { quad for some }\} \text { i } \backslash i n I \backslash, \backslash\}
\end{aligned}
$$

Formula 4 Space to show the logical structure:

```
        \langlea, ,a,2\rangle\leq\langle\mp@subsup{a}{1}{\prime},\mp@subsup{a}{2}{\prime}\rangle iff }\quad\mp@subsup{a}{1}{}<\mp@subsup{a}{1}{\prime}\quad\mathrm{ or }\quad\mp@subsup{a}{1}{}=\mp@subsup{a}{1}{\prime}\mathrm{ and }\mp@subsup{a}{2}{}\leq\mp@subsup{a}{2}{\prime
\ [
    \langle a_{1}, a_{2} \rangle \leq \langle a'_{1}, a'_{2}\rangle
    \qquad \mbox{if{f}} \qquad a_{1} < a'_{1} \quad \mbox{or}
    \quad a_{1} = a'_{1} \mbox{ and } a_{2} \leq a'_{2}
\]
```

Note that in if $\{\mathrm{f}\}$ (in the argument of \backslash mbox) the second f is in braces to avoid the use of the ligature- the merging of the two f ' s (see section 2.4.5).

Formula 5 H ere are some examples of G reek letters:

$$
\Gamma_{u^{\prime}}=\left\{\gamma \mid \gamma<2 \chi, B_{\alpha} \nsubseteq u^{\prime}, B_{\gamma} \subseteq u^{\prime}\right\}
$$

```
\ [
```

 \(\backslash\) Gamma_\{u'\} \(=\backslash\{\backslash, ~ \ g a m m a ~ \ m i d ~ \ g a m m a ~<~ 2 \backslash c h i, ~\)
 \ B_\{\alpha\} \nsubseteq u', \ B_\{\gamma\} \subseteq u' \\, \\\(}\)
 \]

SeeAppendix A for a complete listing of G reek letters. The \backslash nsubseteq command requires the amssymb package.

Formula 6 \mathbb gives the Blackboard bold math alphabet (available only in uppercase):

$$
A=B^{2} \times \mathbb{Z}
$$

$$
\(A=B^{\wedge}\{2\} \backslash\) times \(\backslash\) mathbb \(\{Z\}\)
$$

Blackboard bold requires the amsfonts package.
Formula 7 The \left (and \right) commands tell LATEX to size the parentheses correctly (relative to the size of the symbols in the parentheses).

$$
\left(\bigvee\left(s_{i} \mid i \in I\right)\right)^{c}=\bigwedge\left(s_{i}^{c} \mid i \in I\right)
$$

\
 \bigwedge (\backslash, s_\{i\}^\{c\} \mid i \in I
,) \]

N otice how the superscript is placed right on top of the subscript in s_{i}^{c}.

Formula 8

```
            y\vee\bigvee([\mp@subsup{B}{\gamma}{}]|\gamma\in\Gamma)\equivz\bigvee\bigvee([\mp@subsup{B}{\gamma}{}]|\gamma\in\Gamma) (mod \Phi
\[
    y \vee \bigvee (\, [B_{\gamma}] \mid \gamma
        \in \Gamma \,) \equiv z \vee \bigvee (\, [B_{\gamma}]
        \mid \gamma \in \Gamma \,) \pmod{ \Phi^{x} }
\]
```

Formula 9 U se \nolimits so that the "limit" of the large operator is displayed as a subscript:

$$
f(\mathbf{x})=\bigvee_{\mathfrak{m}}\left(\bigwedge_{\mathfrak{m}}\left(x_{j} \mid j \in I_{i}\right) \mid i<\aleph_{\alpha}\right)
$$

\ [
$\mathrm{f}(\backslash \operatorname{mathb} f\{\mathrm{x}\})=\backslash$ bigvee \backslash nolimits_\{ $\backslash \backslash \operatorname{mathfrak}\{\mathrm{m}\}\}$ \left(\,
\bigwedge\nolimits_\{ ${ }_{\text {mathfrak }\{m\}\}}$

, \right)
\]

The \backslash mathfrak command requires the amsfonts or the eufrak package. A negative space ($\backslash!$) was inserted to bring \mathfrak{m} a little closer to \bigvee (see section 4.11).

Formula 10 The \left. command gives a blank left delimiter.

$$
\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

$$
\[
\backslash \text { left. } F(x) \backslash \text { right }\left.\right|_{\{a\}^{\wedge}\{b\}}=F(b)-F(a)
$$ \]

Formula 11

$$
u+v \stackrel{1}{\sim} w \stackrel{2}{\sim} z
$$

\
u \underset $\{\backslash$ alpha\} $\{+\}$ v \overset $\{1\}\{\backslash$ thicksim $\}$ w \overset $\{2\}\{$ thicksim $\}$ \]

The \underset and \overset commands require the amsmath package.

Formula 12 In this formula, \mbox would not work properly, so we use $\backslash t e x t$.

$$
f(x) \stackrel{\text { def }}{=} x^{2}-1
$$

$$
\(\mathrm{f}(\mathrm{x})\) \overset \(\{\) \text \(\{\operatorname{def}\}\}\{=\} \mathrm{x}^{\wedge}\{2\}-1\)
$$

This formula requires the amsmath package.

Formula 13

$$
\overbrace{a+b+\cdots+z}^{n}
$$

\ \overbrace $\{a+b+\backslash \text { cdots }+z\}^{\wedge}\{n\}$ \]

Formula 14

$$
\left|\begin{array}{cc}
a+b+c & u v \\
a+b & c+d
\end{array}\right|=7
$$

\ [

$$
\begin{aligned}
& \text { \begin\{vmatrix\} } } \\
{\begin{array}{l}
a+b+c \& u v \backslash \backslash \\
a+b \& c+d
\end{array}}
\end{aligned}
$$

$$
\text { \end\{vmatrix\} }}
$$

$=7$
\]

$$
\left\|\begin{array}{cc}
a+b+c & u v \\
a+b & c+d
\end{array}\right\|=7
$$

\
\begin\{Vmatrix\} }
$\mathrm{a}+\mathrm{b}+\mathrm{c} \& \mathrm{uv} \backslash \backslash$
$a+b \& c+d$
\end\{Vmatrix\} }
$=7$
\]

The vmatrix and vmatrix environments require the amsmath package.

Formula 15 The $\backslash \operatorname{mathbf}\{\mathrm{N}\}$ command makes abold N . (\backslash textbf $\{\mathrm{N}\}$ would use a different font, namely, N.)

$$
\sum_{j \in \mathbf{N}} b_{i j} \hat{y}_{j}=\sum_{j \in \mathbf{N}} b_{i j}^{(\lambda)} \hat{y}_{j}+\left(b_{i i}-\lambda_{i}\right) \hat{y}_{i} \hat{y}
$$

\section*{\}

\sum_\{j \in \mathbf $\{N\}\}$ b_\{ij\} \backslash hat $\{y\} _\{j\}=$
\backslash sum_\{j \in $\backslash \operatorname{mathbf}\{N\}\} \mathrm{b}^{\wedge}\{(\backslash \operatorname{lambda})\} _\{i j\} \backslash \operatorname{lat}\{y\} _\{j\}+$
(b_\{ii\} - \lambda_\{i\}) \hat $\{y\} _\{i\} \backslash$ hat $\{y\}$
\]

Formula 16 To produce the formula:

$$
\left(\prod_{j=1}^{n} \hat{x}_{j}\right) H_{c}=\frac{1}{2} \hat{k}_{i j} \operatorname{det} \widehat{\mathbf{K}}(i \mid i)
$$

try
\

```
\left( \prod^n_{\, j = 1} \hat x_{j} \right) H_{c} =
```

 \(\backslash f r a c\{1\}\{2\} \backslash\) hat \(k_{-}\{i j\} \backslash \operatorname{det} \backslash\) hat \(\{\backslash \operatorname{mathbf}\{\mathrm{K}\}\) \}(i|i)
 \]

H owever, this produces:

$$
\left(\prod_{j=1}^{n} \hat{x}_{j}\right) H_{c}=\frac{1}{2} \hat{k}_{i j} \operatorname{det} \hat{\mathbf{K}}(i \mid i)
$$

C orrect the overly large parentheses by using the \backslash biggl and \backslash biggr commands in place of \backslash left (and \backslash right), respectively (see section 4.6.2). Adjust the small hat over K by using \backslash widehat:

```
\[
    \biggl( \prod^n_{\, j = 1} \hat x_{j} \biggr) H_{c} =
    \frac{1}{2} \hat{k}_{ij} \det \widehat{ \mathbf{K} }(i|i)
\]
```

Formula 17 In this formula, use \overline $\{I\}$ to get \bar{I} (the variant \backslash bar $\{I\}$, which prints \bar{I}, is less pleasing to me):

$$
\operatorname{det} \mathbf{K}\left(t=1, t_{1}, \ldots, t_{n}\right)=\sum_{I \in \mathbf{n}}(-1)^{|I|} \prod_{i \in I} t_{i} \prod_{j \in I}\left(D_{j}+\lambda_{j} t_{j}\right) \operatorname{det} \mathbf{A}^{(\lambda)}(\bar{I} \mid \bar{I})=0
$$

```
\ [
    \det \mathbf{K} (t = 1, t_{1}, \dots, t_{n}) =
        \sum_{I \in \mathbf{n} }(-1)^{|I|}
        \prod_{i \in I} t_{i}
        \prod_{j \in I} (D_{j} + \lambda_{j} t_{j})
        \det \mathbf{A}^{(\lambda)} (\overline{I} | \overline{I}) = 0
\]
```

Formula 18 N ote that \backslash | provides the || math symbol in this formula:

$$
\lim _{\left(v, v^{\prime}\right) \rightarrow(0,0)} \frac{H(z+v)-H\left(z+v^{\prime}\right)-B H(z)\left(v-v^{\prime}\right)}{\left\|v-v^{\prime}\right\|}=0
$$

\
$\backslash \lim _{-}\left\{\left(\mathrm{v}, \mathrm{v}^{\prime}\right)\right.$ \to $\left.(0,0)\right\}$ \frac $\left\{H(z+v)-H\left(z+v^{\prime}\right)-B H(z)\left(v-v^{\prime}\right)\right\}$
$\left\{\backslash\left|v-v^{\prime} \backslash\right|\right\}=0$
\]

Formula 19 This formula uses the calligraphic math alphabet:

$$
\int_{\mathcal{D}}|\overline{\partial u}|^{2} \Phi_{0}(z) e^{\alpha|z|} \geq c_{4} \alpha \int_{\mathcal{D}}|u|^{2} \Phi_{0} e^{\alpha z| |^{2}}+c_{5} \delta^{-2} \int_{A}|u|^{2} \Phi_{0} e^{\alpha|z|^{2}}
$$

\ [
\int_\{\mathcal\{D\}\} | \overline\{\partial u\} |^\{2\} \backslash Phi_\{0\}(z) $e^{\wedge}\{\backslash a l p h a|z| \wedge 2\} ~ \ g e q ~$ c_\{4\} \alpha \int_\{ \backslash mathcal\{D\}\} $|u| \wedge\{2\} \backslash P h i _\{0\}$ $e^{\wedge}\{\backslash a l p h a|z| \wedge\{2\}\}+c _\{5\} \backslash d e l t a \wedge\{-2\}$ \int_\{A\} $|u|^{\wedge}\{2\} \backslash$ Phi_ $\{0\} e^{\wedge}\{\backslash$ alpha $|z| \wedge\{2\}\}$
\]

Formula 20 The \hdotsfor command places dots spanning multiple columns in a matrix.

The \backslash dfrac command is the displayed variant of \backslash frac (see section 4.4.1).
\ [
$\backslash \operatorname{mathbf}\{\mathrm{A}\}=$
\begin\{pmatrix\} }

```
        \dfrac{\varphi \cdot X_{n, 1}}
            {\varphi_{1} \times \varepsilon_{1}}
        & (x + \varepsilon_{2})^{2} & \cdots
        & (x + \varepsilon_{n - 1})^{n - 1}
        & (x + \varepsilon_{n})^{n}\\
        \dfrac{\varphi \cdot X_{n, 1}}
            {\varphi_{2} \times \varepsilon_{1}}
        & \dfrac{\varphi \cdot X_{n, 2}}
            {\varphi_{2} \times \varepsilon_{2}}
        & \cdots & (x + \varepsilon_{n - 1})^{n - 1}
        & (x + \varepsilon_{n})^{n}\\
        \hdotsfor{5}\\
        \dfrac{\varphi \cdot X_{n, 1}}
            {\varphi_{n} \times \varepsilon_{1}}
        & \dfrac{\varphi \cdot X_{n, 2}}
            {\varphi_{n} \times \varepsilon_{2}}
        & \cdots & \dfrac{\varphi \cdot X_{n, n - 1}}
                            {\varphi_{n} \times \varepsilon_{n - 1}}
        & \dfrac{\varphi\cdot X_{n, n}}
            {\varphi_{n} \times \varepsilon_{n}}
    \end{pmatrix}
        + \mathbf{I}_{n}
\]
```

This formula requires the amsmath and the amssymb packages. I'll show in section 9.1.2 how to write this formula so that it's short and more readable.

1.4 Typing equationsand aligned formulas

1.4.1 Equations

The equation environment creates a displayed math formula and automatically generates a number. The equation

$$
\begin{equation*}
\int_{0}^{\pi} \sin x d x=2 \tag{1}
\end{equation*}
$$

is typed as
\begin \{equation\} \label\{E:firstInt\} }
$\backslash i n t _\{0\}^{\wedge}\{\backslash p i\} \backslash \sin x \backslash, d x=2$
\end\{equation\} }
Of course, the number generated depends on how many equations precede the given one.

To refer to this formula without having to remember a (changeable) number, assign a name to the equation in the argument of a \backslash label command; I 'll call the name of the equation a label. In this section, let's call the first equation "firstInt" (first integral). I use the convention that the label of an equation starts with " E :".

The number of this formula is referenced with the \backslash ref command. For example, to get the reference "see (1)", type

```
see~(\ref{E:firstInt})
```

Alternatively, with the amsmath package, you can use the \eqref command. For instance,

```
see~\eqref{E:firstInt}
```

also produces "see (1)".
An advantage of this cross-referencing system is that if a new equation is introduced, or the existing equations are rearranged, the numbering will automatically be adjusted to reflect these changes.

Rule ■ Typeset twice

For renumbering to work, you have to typeset the source file twice.

See sections 6.3.2 and E.2.4. LATEX will send a warning if you forget.
At the end of the typesetting, $L^{L A T} E X$ stores the labels in the aux file (see section 1.11.3). For every label, it stores the number the label is associated with and also the page number on which the label occurs in the typeset version.

An equation will be numbered whether or not there is a label command attached to it. Of course, if there is no \backslash label command, the number generated by $\operatorname{LAT}^{2} X$ for the equation can't be referenced automatically.

The system described here is called symbolic referencing. The argument of \backslash label is the "symbol" for the number, and \backslash ref provides the referencing. LATEX uses the same mechanism for all numberings it automatically generates: numbering of section titles, equations, theorems, lemmas, and bibliographic referencesexcept that for bibliographic references the commands are \backslash bibitem and \cite, respectively (see section 1.7.4).

With the amsmath package, equations can also be tagged by attaching a name to the formula with the \backslash tag command; the tag replaces the number.

Example:
(Int)

$$
\int_{0}^{\pi} \sin x d x=2
$$

is typed as

```
\begin{equation}
    \int_{0}^{\pi} \sin x \, dx = 2 \tag{Int}
\end{equation}
```

Tags (of the type discussed here) are absolute; this equation is always referred to as (Int). Equation numbers, on the other hand, are relative; they change as equations are added, deleted, or rearranged.

1.4.2 Aligned formulas

${ }^{L A} T_{E} X$, with the help of the amsmath package, has many ways to typeset multiline formulas. Right now, you'll be introduced to three constructs: simplealign, annotated align, and cases; see C hapter 5 for a discussion of many others.

The align math environment is used for simple and annotated align. Each line in this environment is an equation, which $\angle A T_{E} X$ automatically numbers.

Simplealign

Simple align is used to align two or more formulas. To obtain the formulas

$$
\begin{align*}
r^{2} & =s^{2}+t^{2} \tag{2}\\
2 u+1 & =v+w^{\alpha} \tag{3}\\
x & =\frac{y+z}{\sqrt{s+2 u}} \tag{4}
\end{align*}
$$

type (using $\backslash \backslash$ as a line separator)

```
\begin{align}
    r^{2} &= S^{2} + t^{2} \label{E:eqn1}\\
    2u + 1 &= v + w^{\alpha} \label{E:eqn2}\\
    x &= \frac{y + z}{\sqrt{s + 2u}} \label{E:eqn3}
\end{align}
```

(These equations are numbered (2), (3), and (4) because they are preceded by one numbered equation earlier in this section.)

The align environment can also be used to break a long formula into two. Since numbering both lines is undesirable, you may prevent the numbering of the second line with the \backslash notag command.

$$
\begin{align*}
h(x) & =\int\left(\frac{f(x)+g(x)}{1+f^{2}(x)}+\frac{1+f(x) g(x)}{\sqrt{1-\sin x}}\right) d x \tag{5}\\
& =\int \frac{1+f(x)}{1+g(x)} d x-2 \tan ^{-1}(x-2)
\end{align*}
$$

This formula may be typed as

```
\begin{align} \label{E:longInt}
    h(x) &= \int
        \left(
            \frac{f(x) + g(x) }
                    { 1+ f^{2}(x) }
            + \frac{ 1+ f(x)g(x) }
                { \sqrt{1 - \sin x} }
        \right) \, dx\\
            &= \int \frac{ 1 + f(x) }
                                    {1+g(x) }
            \, dx - 2 \tan^{-1}(x-2) \notag
\end{align}
```

See the split subsidiary math environment in section 5.5 .2 for a better way to split a long formula into (two or more) aligned parts, and on how to center the formula number (5) between the two lines.

The rules are easy for simple align:

Rule ■ Simple align

- Separate the lines with $\backslash \backslash$.
- In each line, indicate the alignment point with \&.
- Place a \notag in each line that you do not wish numbered.
- Place a \backslash label in each numbered line you may want to reference with \backslash ref or leqref.

A nnotated align

A nnotated align will align the formulas and the annotation (explanatory text) separately:
(6)

$$
\begin{aligned}
x & =x \wedge(y \vee z) & & \text { (by distributivity) } \\
& =(x \wedge y) \vee(x \wedge z) & & \text { (by condition (M)) } \\
& =y \vee z . & &
\end{aligned}
$$

This is typed as:

```
\begin{align} \label{E:DoAlign}
    x &= x \wedge (y \vee z)
        & &\text{(by distributivity)}\\
        &= (x \wedge y) \vee (x \wedge z)
        & &\text{(by condition (M)) } \notag\\
        &= y \vee z. \notag
\end{align}
```

The rules for annotated align are similar to the rules of simple align. In each line, in addition to the alignment point (marked by $\&$), there is also a mark for the start of the annotation: \& \&.

The align environment does much more than simple and annotated aligns (see section 5.4).

Cases

The cases construct is a subsidiary math environment; it must be used in a displayed math environment or in an equation environment (see section 5.5). H ere is a typical example:

$$
f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \\ \alpha+x, & \text { if } 0 \leq x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
$$

which may be typed as follows:

```
\ [
    f(x)=
    \begin{cases}
        -x^{2}, &\text{if $x < 0$;}\\
        \alpha + x, &\text{if $0 \leq x \leq 1$;}\\
        x^{2}, &\text{otherwise.}
    \end{cases}
\]
```

The rules for cases are simple:

Rule ■ cases

- Separate the lines with $\backslash \backslash$.
- In each line, indicate the alignment point for the annotation with \& .

1.5 The anatomy of an artide

The sampart . tex sample article (typeset on pages 361-363) uses the $\mathcal{A}_{\mathcal{M}}$ S article document class, amsart. In this introductory chapter, I want to start off with the popular article document class of $L A T_{E} X$, which is easier to use. So we'll use a simplified and shortened sample article, intrart. tex (in the ftp directory). Type it in as we discuss the parts of an article.

The preamble of an article is the initial part of the source file up to the line

\end\{document\} Figure 1.1: A schematic view of an article }

See Figure 1.1. The preamble contains instructions for the entire article, for instance, the
command.Hereisthepreambleoftheintroductorysamplearticle:\%Introductorysamplearticle:intrart.tex\%TypesetwithLaTeXformat\documentclass\{article\}\usepackage\{amssymb,amsmath\}\newtheorem\{theorem\}\{Theorem\}\newtheorem\{definition\}\{Definition\}\newtheorem\{notation\}\{Notation\}Thepreamblenamesthedocumentclass,article,andthennamesthe$L^{LA}T_{E}X$enhancements,orpackages,usedbythearticle.Thisarticleloadstwopackages:undefined

The amssymb package provides the names of all the math symbols in Appendix A and the amsmath package provides many of the math constructs used.

A proclamation is a theorem, definition, corollary, note, and so on. In the preamble, three proclamations are defined. For instance,
\newtheorem\{theorem \} \{Theorem \}
defines the theorem environment, which you can use in the body of your article (see section 1.7.3). LATEX will automatically number and visually format the theorems.

The article proper, called the body of the article, is contained in the document environment, that is, between the lines

```
\begin{document }
```

and
\end \{document \} }
as illustrated in Figure 1.1. The body of the article is also logically split up into several parts; we'll discuss these in detail in section 6.1.

The body of the article starts with the top matter, which contains the "title page" information. It follows the line:

```
\begin{document }
```

and concludes with the line

```
\maketitle
```

H ere is the top matter of the introductory sample article:

```
\title{A construction of complete-simple\\
            distributive lattices}
\author{George~A. Menuhin\thanks{Research supported
    by the NSF under grant number~23466.}\\\
    Computer Science Department\\
    University of Winnebago\\
    Winnebago, Minnesota 23714\\
    \texttt{menuhin@ccw.uwinnebago.edu}}
\date{March 15, 1995}
\maketitle
```

The body continues with an (optional) abstract, contained in an abstract environment:

```
\begin{abstract}
    In this note we prove that there exist \emph{complete-simple
    distributive lattices}, that is, complete distributive
    lattices in which there are only two complete congruences.
\end{abstract}
```


And here is the rest of the body of the introductory sample article:

```
\section{Introduction} \label{S:intro}
In this note we prove the following result:
\begin{theorem}
    There exists an infinite complete distributive lattice $K$
    with only the two trivial complete congruence relations.
\end{theorem}
\section{The $\Pi^{*}$ construction} \label{S:P*}
The following construction is crucial in our proof of our Theorem:
\begin{definition} \label{D:P* }
    Let $D_{i}$, $i \in I$, be complete distributive
    lattices satisfying condition~\textup{(J)}. Their
    $\Pi^{*}$ product is defined as follows:
    \ [
        \Pi^{*} ( D_{i} \mid i \in I ) =
            \Pi ( D_{i}^{-} \mid i \in I ) + 1;
    \]
    that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
    $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element.
\end{definition}
\begin{notation}
    If $i \in I$ and $d \in D_{i}^{-}$, then
    \[
            \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
                \dots \rangle
    \]
    is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
    $i$th component is $d$ and all the other components
    are $0$.
\end{notation}
See also Ernest~T. Moynahan~\cite{eM57a}.
Next we verify the following result:
\begin{theorem} \label{T:P*}
    Let $D_{i}$, $i \in I$, be complete distributive
    lattices satisfying condition~\textup{(J)}. Let $\Theta$
    be a complete congruence relation on
```

```
    $\Pi^{*} ( D__i} \mid i \in I )$.
    If there exists an $i \in I$ and a $d \in D_{i}$ with
    $d < 1_{i}$ such that for all $d \leq c < 1_{i}$,
    \begin{equation} \label{E:cong1}
        \langle \dots, 0, \dots, \overset{i}{d},
        \dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
        \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
    \end{equation}
    then $\Theta = \iota$.
\end{theorem}
\emph{Proof.} Since
\begin{equation} \label{E:cong2}
    \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
        \dots \rangle \equiv \langle \dots, 0, \dots,
        \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows
from condition~(C) that
\begin{align} \label{E:cong}
    & \langle \dots, \overset{i}{d}, \dots, 0,
        \dots \rangle \equiv\\
    &\qquad \qquad \quad \bigvee ( \langle \dots, 0, \dots,
    \overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 )
    \equiv 1 \pmod{\Theta}. \notag
\end{align}
Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2} with
$\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0,
\dots \rangle$, we obtain
\begin{align} \label{E:comp}
    0=& \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots
            \rangle \wedge \langle \dots, 0, \dots, \overset{j}{a},
            \dots, 0, \dots \rangle \equiv\\
            &\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots
            \rangle \pmod{\Theta}, \notag
\end{align}
Using the completeness of $\Theta$ and \eqref{E:comp},
we get:
\ [
```

```
    0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a},
    \dots, 0,\dots\rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.
\begin{thebibliography}{9}
    \bibitem{sF90}
        Soo-Key Foo, \emph{Lattice constructions}, Ph.D. thesis,
        University of Winnebago, Winnebago MN, December 1990.
    \bibitem{gM68}
        George~A. Menuhin, \emph{Universal Algebra}, D.~van Nostrand,
        Princeton-Toronto-London-Mel\-bourne, 1968.
    \bibitem{eM57}
        Ernest~T. Moynahan, \emph{On a problem of M.~H. Stone}, Acta
        Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
    \bibitem{eM57a}
        Ernest~T. Moynahan, \emph{Ideals and congruence relations in
        lattices. II}, Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl.
        \textbf{9} (1957), 417--434.
\end{thebibliography}
```

At the end of the body, the bibliography is typed between the lines

```
\begin{thebibliography}{9}
\end{thebibliography}
```

The argument " 9 " of the thebibliography environment tells $\operatorname{LAT}_{E} X$ to makeroom for single digit numbering, since in this article there are fewer than 10 articles. In the typeset article, the bibliography is entitled "References".

O bserve that we refer to condition (J) in the definition as \backslash textup $\{(\mathrm{J})\}$. We do this so that if the text of the definition is emphasized (as it is), then (J) should still be typeset as (J) and not as (J); see section 2.6.4 for the \backslash text up command.

1.5.1 The typeset article

H ere is the typeset introductory sample article (note that the equation numbers are on the right, the default in the article document class; elsewhere in this book you find the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ default, equations on the left-see sections 7.1 .2 and 8.4 on how to change the default).

A construction of complete-simple distributive lattices

George A. Menuhin*
Computer Science Department
Winnebago, Minnesota 23714
menuhin@ccw.uwinnebago.edu

March 15, 1995

Abstract

In this note we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices in which there are only two complete congruences.

1 Introduction

In this note we prove the following result:
Theorem 1 There exists an infinite complete distributive lattice K with only the two trivial complete congruence relations.

2 The Π^{*} construction

The following construction is crucial in our proof of our Theorem:
Definition 1 Let $D_{i}, i \in I$, be complete distributive lattices satisfying condition (J). Their Π^{*} product is defined as follows:

$$
\Pi^{*}\left(D_{i} \mid i \in I\right)=\Pi\left(D_{i}^{-} \mid i \in I\right)+1
$$

that is, $\Pi^{*}\left(D_{i} \mid i \in I\right)$ is $\Pi\left(D_{i}^{-} \mid i \in I\right)$ with a new unit element.
Notation 1 If $i \in I$ and $d \in D_{i}^{-}$, then

$$
\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle
$$

is the element of $\Pi^{*}\left(D_{i} \mid i \in I\right)$ whose ith component is d and all the other components are 0 .

[^2]See also Ernest T. Moynahan [4].
Next we verify the following result:
Theorem 2 Let $D_{i}, i \in I$, be complete distributive lattices satisfying condition (J). Let Θ be a complete congruence relation on $\Pi^{*}\left(D_{i} \mid i \in I\right)$. If there exists an $i \in I$ and a $d \in D_{i}$ with $d<1_{i}$ such that for all $d \leq c<1_{i}$,

$$
\begin{equation*}
\left\langle\ldots, 0, \ldots,{ }_{d}^{i}, \ldots, 0, \ldots\right\rangle \equiv\langle\ldots, 0, \ldots, \stackrel{i}{c}, \ldots, 0, \ldots\rangle \quad(\bmod \Theta), \tag{1}
\end{equation*}
$$

then $\Theta=\iota$.
Proof. Since

$$
\begin{equation*}
\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \equiv\langle\ldots, 0, \ldots, \stackrel{i}{c}, \ldots, 0, \ldots\rangle \quad(\bmod \Theta), \tag{2}
\end{equation*}
$$

and Θ is a complete congruence relation, it follows from condition (C) that

$$
\begin{align*}
& \langle\ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \equiv \tag{3}\\
& \bigvee(\langle\ldots, 0, \ldots, \stackrel{i}{c}, \ldots, 0, \ldots\rangle \mid d \leq c<1) \equiv 1 \quad(\bmod \Theta)
\end{align*}
$$

Let $j \in I, j \neq i$, and let $a \in D_{j}^{-}$. Meeting both sides of the congruence (2) with $\langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle$, we obtain

$$
\begin{align*}
0= & \langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \wedge\langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle \equiv \tag{4}\\
& \langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle \quad(\bmod \Theta),
\end{align*}
$$

Using the completeness of Θ and (4), we get:

$$
0 \equiv \bigvee\left(\langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle \mid a \in D_{j}^{-}\right)=1 \quad(\bmod \Theta),
$$

hence $\Theta=\iota$.

References

[1] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990.
[2] George A. Menuhin, Universal Algebra, D. van Nostrand, Princeton-Toronto-London-Melbourne, 1968.
[3] Ernest T. Moynahan, On a problem of M. H. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[4] Ernest T. Moynahan, Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1957), 417-434.

1.6 Artidetemplates

Before you start writing your first article, I suggest you create two article templates for your own use.

There are two templates for articles written in the article document class in this book: article.tpl for articles with one author and article2.tpl for articles with two authors. ${ }^{2}$ You can find these in the ftp directory (see page 4). So copy article.tpl into the work directory or type it in as follows:

```
% Sample file: article.tpl
% Typeset with LaTeX format
\documentclass{article}
\usepackage {amsmath,amssymb }
\newtheorem{theorem} {Theorem}
\newtheorem{lemma} { Lemma }
\newtheorem{proposition} {Proposition}
\newtheorem{definition} {Definition}
\newtheorem{corollary} {Corollary}
\newtheorem{notation} {Notation}
\begin{document }
\title{%
    titleline1\\
    titleline2}
\author{name\thanks{support}\\
    addressline1\\
    addressline2\\
    addressline3}
\date{date}
\maketitle
\begin{abstract }
    abstract
\end{abstract}
\begin{thebibliography}{99}
\end{thebibliography}
\end{document }
```

[^3]N ow copy article2.tpl into the work directory, or type it in. It is identical to article.tpl except for the argument of the \author command:
\author $\{$ name1 \thanks $\{$ support 1$\} \backslash \backslash$
address1line1

address1line2

address1line3
\and
name2 \thanks \{support2\}

address2line1

address2line2

address2line3\}
N ote the \and command; it separates the two authors.
N ow let's customize the template files. Open article.tpl and save it under a name of your choosing; I saved it under the name ggart.tpl (in the ftp directory-see page 4). In this personalized template file, I edit the top matter:

```
\title{titleline1\\
        titleline2}
\author{G. Gr\"{a}tzer\thanks{Research supported by the
                                    NSERC of Canada.}\\
    University of Manitoba\\
    Department of Mathematics\\
    Winnipeg, Man. R3T 2N2\\
    Canada}
\date{date}
```

I did not edit the \backslash title lines because they change from article to article. There is also a personalized ggart2.tpl for two authors.

1.7 Your first artide

Your first article will be typeset using the article document class. To start, open the personalized article template created in section 1.6, and save it under the name of your first article. The name must be one word (no spaces) ending with .tex.

1.7.1 E di ting the top matter

Edit the top matter to contain the article information (title, date, and so on). H ere are some simple rules to follow:

Rule ■ Top matter for the article document class

1. If the title is only one line long, then there is no $\backslash \backslash$ in the argument of the \title command; otherwise, separate the lines of the title with $\backslash \backslash$. There is no $\backslash \backslash$ at the end of the last line.
2. Separate the lines of the address with $\backslash \backslash$. There is no $\backslash \backslash$ at the end of the last line.
3. \thanks places a footnote at the bottom of the first page. If it is not needed, delete it.
4. M ultiple authors are separated by \backslash and. There is only one \backslash author command, and it contains all the information (name, address, support) about all the authors.
5. The \title command is the only compulsory command. The others are optional.
6. If there is no \date command, the current date will be shown. If you do not want a date, type the form \date\{\}; if you want a specific date, say February 21, 1995, write \date\{February 21, 1995\}

1.7.2 Sectioning

An article, as a rule, is divided into sections. To start the section entitled "Introduction", type

\section\{Introduction\} \label\{S:intro\}

Int roduct ion is the title of the section, s : int ro is the label. I use the convention that " s :" starts the label for a section. The number of the section is automatically assigned by $L A T_{E} X$, and you can refer to this section number by \backslash ref $\{\mathrm{S}$:intro\}, as in

In section~\ref $\{\mathrm{S}:$ intro\}, we introduce...
(the tilde " is an unbreakable space, it keeps the word "section" and the section number together-see section 2.4.3).

For instance, the section title of this section was typed as follows:

\section\{Typing your first article\} \label\{S:FirstArticle\}

A reference to this section is made by typing

```
\ref{S:FirstArticle}
```

Sections have subsections, and subsections have subsubsections, followed by paragraphs and subparagraphs. The corresponding commands are

```
\subsection \subsubsection \paragraph \subparagraph
```


1.7.3 I nvoking prodamations

In the preamble of article.tpl, you typed the theorem, lemma, proposition, definition, corollary, and notation proclamations. E ach of these proclamations defines an environment. For example, type a theorem in a theorem environment; the body of the theorem (that is, the part of the source file that produces the theorem) is between the two lines:

```
\begin{theorem} \label{T:xxx}
```

and
\end\{theorem\} }
where $\mathrm{T}: \mathrm{xxx}$ is the label for the theorem. Of course, xxx should be somewhat descriptive of the contents of the theorem. The theorem number is automatically assigned by $L^{L A} T_{E} X$, and it can be referenced by \backslash ref $\{T: x x x\}$ as in

```
it follows from Theorem~\ref{T:xxx}
```

(the tilde ~ keeps the word "Theorem" and the theorem number together-see section 2.4.3). I use the convention that the label for a theorem starts with " $\mathrm{T}:$ ".

1.7.4 I nserting references

Finally, we discuss the bibliography. Below are typical entries for the most often used types of references: an article in a journal, a book, an article in a conference proceedings, an article (chapter) in a book, a Ph.D. thesis, and a technical report (see inbibl.tpl in the ftp directory).

```
\bibitem{eM57}
    Ernest~T. Moynahan, \emph{On a problem of M.~H. Stone},
    Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
\bibitem{gM68 }
    George~A. Menuhin, \emph{Universal Algebra}, D.~van Nostrand,
        Princeton-Toronto-London-Melbourne, 1968.
\bibitem{pK69}
```

```
Peter~A. Konig, \emph{Composition of functions}, Proceedings
    of the Conference on Universal Algebra (Kingston, 1969).
\bibitem{hA70}
    Henry~H. Albert, \emph{Free torsoids}, Current Trends in
        Lattice Theory, D.~van Nostrand, 1970.
\bibitem{sF90}
    Soo-Key Foo, \emph{Lattice constructions}, Ph.D. thesis,
        University of Winnebago, 1990.
\bibitem{gF86}
    Grant~H. Foster, \emph{Computational complexity in lattice
        theory}, Tech. report, Carnegie Mellon University, 1986.
```

I use the convention that the label for the \bibitem consists of the initials of the author and the year of publication: a publication by Andrew B. Reich in 1987 would have the label aR87 (the second publication would be aR87a). For joint publications, the label consists of the initials of the authors and the year of publication; for instance, a publication by John Bradford and Andrew B. Reich in 1987 would have the label BR87. Of course, you can use any label you choose (subject to the rule in section 6.4.2).

Suppose you want to include as the fifth item in the bibliography the following article:

John Bradford and Andrew B. Reich, Duplexes in posets, Proc. Amer. Math. Soc. 112 (1987), 115-125.

M odeling it after M oynahan's article, type it as:

```
\bibitem{BR87}
    John~Bradford and Andrew~B. Reich, \emph{Duplexes in posets},
        Proc. Amer. Math. Soc. \textbf{112} (1987), 115--125.
```

A reference to this article is made with \cite\{BR87\}, for instance:

```
\Gamma
```

this result was first published in [5]

L

typed as

```
this result was first published in~\cite{BR87}
```

N ote that you have to arrange the references in the thebibliography environment in the order you wish to see them. LATEX only takes care of the numbering and the citations in the text.

Tip The thebibliography environment properly handles periods. You do not have to mark periods for abbreviations (in the form . \backslash-as discussed in section 2.2.2) in the name of a journal, so

Acta Math. Acad. Sci. Hungar.
is correct.

1.8 LATEX error mearages

You'll probably make a number of mistakes in your first article. The mistakes come in various forms:

- Typographical errors, which LATEX will blindly typeset. View the typeset version, find the errors, and correct the source file.
- Errors in mathematical formulas or in the formatting of the text.
- Errors in your instructions- commands and environments- to $L^{L T} T_{E X}$.

Let's look at some examples by introducing a number of errors in the source file of the intrart.tex introductory sample article and see what error messages occur.

Example 1 Go to line 21 (you do not have to count lines, since most editors have a "go to line" command) and remove the closing brace so it reads:

\backslash begin\{abstract

U pon typesetting intrart.tex, LATEX informs you of a mistake:

```
Runaway argument?
{abstract
! Paragraph ended before \end was complete.
<to be read again>
    \par
1.26
```

Line 26 of the file is the line after \end \{abstract \}. From the error message, you } can tell that something is wrong with the abstract environment.

Example 2 N ow correct line 21, go to line 25, change it from

```
\end{abstract}
to
\end{abstrac}
```

and typeset again. LATEX will inform you:

```
! LaTeX Error: \begin{abstract} on input line 21
ended by \end{abstrac}.
```

1. 25 \end\{abstrac \} }

Pressing return, $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ will recover from this error.
Example 3 Instead of correcting the error in line 25, comment it out:
\% \end\{abstrac\} }
and introduce an additional error in line 67. This line presently reads:
lattices satisfying condition~\textup\{(J)\}. Let \$\Theta\$
Change \backslash Theta to \backslash Teta:
lattices satisfying condition~\textup\{(J)\}. Let \$\Teta\$
Typesetting the article now, the message is:

```
! Undefined control sequence.
1.67 ...xtup{(J)}. Let $\Teta
```

and pressing return gives the message:

```
! LaTeX Error: \begin{abstract} on input line 21 ended
```

by \end\{document\}. }
1.131 \end\{document \}}

These two mistakes are easy to identify. \Teta is a typo for \backslash Theta. O bserve how LATEX tries to match
\begin \{abstract \} }
with
\end \{document \} }
U ndo the two changes (lines 25 and 67).
Example 4 In line 73, change

```
\langle \dots, 0, \dots,\overset{i}{d},
```

to
\langle \dots, 0 , \dots, \overset $\{i\}\{d$,

This results in the message:

```
Runaway argument?
\def \\{\@amsmath@err {\Invalid@@ \\}\@eha } \label {E\ETC.
! Paragraph ended before \equation was complete.
<to be read again>
    \par
1.79
```

Line 79 is the blank line following \end\{theorem\}. LATEX skipped over the de- } fective construct loverset and the incomplete equation environment, indicating the error past the end of the theorem environment. The error message indicates that the error may have been caused by the new paragraph ($\backslash \mathrm{par}$). Of course, there can be no new paragraph in either the second argument of \overset or the displayed formula. The solution does not come easily except by isolating the last paragraph and investigating it.

Error messages from $\operatorname{LAT}_{E} X$ are not always as helpful as one would like, but there is always some information to be gleaned from them. As a rule, the error message should at least inform you of the line number (or paragraph or formula) where the error was caught. Try to identify the structure that caused the error: a command, an environment, or so forth. Keep in mind that it could be quite far from the line where $\operatorname{LAT}_{E} \mathrm{X}$ indicated the error. Try reading the section of this book that describes that command or environment; it should help in correcting the error.

The next best defense is to isolate your problem. Create a current. tex file that is the same as the present article, except that there is only one paragraph in the document environment. When this paragraph is typeset correctly, cut and paste it into your source file. If there is only one paragraph in the document, the error is easier to find. If the error is of the type as in the last example, split the paragraph into smaller paragraphs. See also section 2.5 on how to use the comment environment for finding errors.

1.9 Logical and visual des gn

This book attempts to show how to typeset an article, not how to write it. N evertheless, it seems appropriate to point out some approaches to article design.

The typeset version of our intrart . tex introductory sample article (pp. 3940) looks impressive. (For another example of a typeset article, see sampart.tex on pp. 361-363.) To produce an article like this, you have to realize that there are two aspects of article design: the visual and the logical. Let's borrow an example from the sample article to illustrate this: a theorem. You tell $L A T_{E} X$ to typeset a theorem and number it. H ere is how you type the theorem:
\begin\{theorem\} \label\{T: P*\} }

```
    Let $D_{i}$, $i \in I$, be complete distributive
    lattices satisfying condition~\textup{(2)}. Let $\Theta$
be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exists an $i \in I$ and a $d \in D_{i}$ with
$d< 1_{i}$ such that for all $d \leq c < 1_{i}$,
\begin{equation} \label{E:cong1}
    \langle \dots, 0, \dots,\overset{i}{d},
    \dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
    \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
```

You find the typeset form on page 40.
The logical design is the theorem itself, which is placed in the theorem environment. For the visual design, $\mathrm{LA} T_{E} \mathrm{X}$ makes literally hundreds of decisions: the vertical space before and after the theorem; the bold Theorem heading and its numbering; the vertical space before and after the equation, and its numbering; the spacing of all the math symbols (inline and displayed formulas are spaced differently); the text of the theorem to be emphasized; and so on.

The decisions were made by professional designers, whose expertise is hidden in $T_{E X}$ itself, in $L A T_{E X}$, in the document class, and in the packages. Could you have typeset this theorem yourself? Probably not. Aesthetic decisions are difficult for lay people to make. But even if you could have guessed the correct spacing, you would have faced the problem of consistency (guaranteeing that the next theorem will look the same), and just as importantly, you would have spent a great deal of time and energy on the visual design of the theorem, as opposed to the logical design. The idea is to concentrate on the logical design and let LATEX take care of the visual design.

This approach has the advantage that by changing the document class (or its options; see sections 7.1.2 and 8.4), the visual design can be changed. If you code the visual design into the article ("hard coding" it, as a programmer would say), it's very difficult to change.
${ }^{L A T} E X$ uses four major tools to separate the logical and visual designs of an article:

Commands Information is given to $L^{A} T_{E} X$ as arguments of commands; it's up to ${ }^{L A T} T_{E} X$ to process the information. For instance, the title page information (especially in the amsart document class) is given in this form; the organization of the title page is completely up to the document class and itsoptions.
A more subtle example is the use of a command for distinguishing a term or
notation. For instance, you may want to use an \env command for environment names. You may define \env as follows (\backslash newcommand is explained in section 9.1.1):
\newcommand $\{\backslash \operatorname{env}\}[1]\{\backslash$ textet $\{\# 1\}\}$
which typesets all environment names in typewriter style (see section 2.6.2). Logically, you have decided that an environment name should be marked up. Visually, you may change the decision any time. By changing the definition to
\newcommand $\{\backslash \operatorname{env}\}[1]\{\backslash$ textbef $\{\# 1\}\}$
all environment names will be typeset in bold (see section 2.6.7).
The following more mathematical example istaken from sampart2.tex (see Appendix D and the ftp directory). This article defines the construct $D^{\langle 2\rangle}$ with the command
\newcommand $\{\backslash \mathrm{Ds}\}\left\{\mathrm{D}^{\wedge}\{\backslash\right.$ langle 2 \rangle $\}$
If a referee (or coauthor) suggests a different notation, changing this oneline will carry out the change throughout the whole article.

Environments Important logical structures are placed in environments. For instance, you can give a list as an environment by saying that this is a list and these are the items (see section 3.1). Again, exactly how the list is typeset is up to $L A T_{E} X$; you can even switch from one list type to another by just changing the name of the environment.

Proclamations These define numbered environments. If the amsthm package is used, you can further specify which one of three styles to use for typesetting; at any time you can change the style or the numbering scheme in the preamble (see the typeset sampart. tex on pages 361-363 for examples of proclamations printed in the three styles).

Cross-referencing Sincetheorems and sectionsarelogical units, they can befreely moved around. This gives tremendous freedom in reorganizing the source file to improve the logical design.

You write articles to communicate. The closer you get to a separation of logical and visual design, the more you are able to concentrate on communicating your ideas. Of course, you can never quite reach this ideal. For instance, a "line too wide" warning (see sections 1.1.3 and 2.7.1) is a problem of visual design. When the journal changes the document class, unless the new document class retains the same fonts and line width, new "line too wide" problems arise. H owever, LATEX is successful well over 95% of the time in solving visual design problems without your intervention. This is getting fairly close to the ideal.

Figure 1.2: The structure of $L A T_{E} X$

1.10 A brief overview

H aving finished the short course, maybe it's time to pause and get a brief overview of how LATEX works. As I pointed out in the Introduction, at the core of $L A T_{E} X$ is a programming language called $T_{E} X$, providing many typesetting instructions. Along with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ comesa set of fonts called C omputer M odern (CM). The CM fonts and the $T_{E} X$ programming language form the foundation of a typical $T_{E} X$ system.
$T_{E} X$ is expandable, that is, additional commands can be defined in terms of more basic ones. One of the best known expansions of $T_{E} X$ is $L A T_{E} X$; it introduces the idea of a logical unit that you read about in section 1.9.

Visual layout in $\operatorname{LAT}_{E} \mathrm{X}$ is determined by the document class; for example, you now have some familiarity with the article document class. Expansions of $L A T_{E} X$ are called packages; you have already come across the amssymb and amsmath packages.

The structure of $L A T_{E} X$ is illustrated in Figure 1.2. This figure suggests that, in order to work with a $\angle A T_{E X}$ document, you first have to install $T_{E} X$ and the $C M$ fonts, then $L A T E X$, and finally specify the document class and the necessary packages. The AM SF onts font set is useful but it's not absolutely necessary.

Figure 1.2 illustrates my view of $T_{E} X$ and $L A T_{E} X$: it is the foundation on which many useful packages-extensions of LATEX - are built. It is essential that you understand the packages that make your work easier. An important example of this is the central focus of this book: typesetting math in $L A T E X \mathrm{X}$. When typesetting math, invoke the amsmath package. In Part I, you invoke the amsmath package directly; in later parts of this book, I point out when a described feature needs the amsmath (or some other) package. The $\mathcal{A} \mathcal{M} \mathcal{S}$ document classes automatically load the amsmath and amsfonts packages.

1.11 Using LATEX

Figure 1.3 illustrates the steps taken to produce a typeset document. As illustrated in Figure 1.3, you open the source file or create a new one using an editor; call the source file myart.tex. Once the document is ready, typeset it with $T_{E} X$ using the LaTex format. This step produces three files:

- myart.dvi, the typeset article in machine readable format;
- myart. aux, the auxiliary file; it is used by $L^{A T} T_{E} X$ for internal "book keeping", including cross-referencing;
- myart. log, the log file; LATEX records the typesetting session in the log file, including the warnings and the errors.

U se a video driver to display the typeset article, myart. dvi, on the monitor, and a printer driver to print the typeset article, myart. dvi on a printer.

It should beemphasized that of the four programs used, only one $\left(T_{E} X\right)$ is the same for all computers and all implementations. If you use $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in an "integrated environment", then all four programs appear as one.

1.11.1 $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-L A T E X}$ revisited

N ow that you understand the structure of $L A T_{E} X$, we can again discuss $\mathcal{A}_{\mathcal{M} \mathcal{S}}$ - LAT $T_{E} X$, a set of enhancements to $L^{A} T_{E} X$ by the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$. As outlined in the Introduction, the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ enhancements to $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ fall into three groups: the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ math enhancements, the document classes, and theAM SF onts. Each consists of several packages.

An $\mathcal{A}_{\mathcal{M}}$ S document class automatically invokes the following $\mathcal{A}_{\mathcal{M} \mathcal{S}}$ packages (see section 8.5 for a more detailed discussion and for the package interdependency diagram, Figure 8.3):

- amsmath, the main $\mathcal{A} \mathcal{M}$ math package;
- amsthm, proclamations with style and the proof environment;
- amsopn, operator names;
- amstext, the \backslash text command;
- amsfonts, commands for math alphabets;
- amsbsy, bold symbol commands.

Figure 1.3: U sing $L A T_{E} X$

They do not automatically input the amssymb package, which provides the math symbol names. You can additionally input this and other $\mathcal{A} \mathcal{M} \mathcal{S}$-LATEX or LATEX packages as needed.

When we discuss a feature of $L A T_{E} X$ that requires a package, I point this out in the text. I do not always point out, however, the interdependencies of the document classes and of the packages. For instance, the \backslash text command (section 2.9) is provided by the amstext package, which is loaded automatically by the amsmath package, which in turn is loaded automatically by each of the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX document classes. These interdependencies are discussed in section 8.5.

1.11.2 Interactive ${ }^{A T} T_{E} X$

As a rule, L AT $E X$ typesets an article non-interactively. O ccasionally, you may want to use $L A T_{E} X$ interactively, that is, give $L A T_{E} X$ an instruction and ask it to carry it out. If LATEX can't carry out your instructions, it displays a prompt:

- The ** prompt means that LATEX wants to know the name of a source file to typeset. Probably, you misspelled a name, or you are in the wrong directory.
- The ? prompt asks "What should I do about the error I found?" Press return to continue; most of the time ${ }^{A} T_{E} X$ recovers from the error, and completes the typesetting. If $L A T_{E} X$ can't recover from the error at the ? prompt, press x to exit. Typing н instead may yield useful advice.
- The * signifies interactive mode: $L^{A T} E X$ is waiting for an instruction. To get to such a prompt, comment out the line
\end\{document \} }
(by inserting \% as the first character of the line) in the source file and typeset. I nteractive instructions (such as \backslash show- see section 9.1.6) may be given at the * prompt. Typing
\end \{document \} }
at the * prompt exits $L^{A T} E X$.

1.11.3 Files

A number of files are created when a document called, say, myart . tex is typeset. When the typesetting takes place, a number of messages appear on the monitor. These are stored in the log file, myart.log. The typeset document is written in the myart .dvi file. LATEX also writes one or more auxiliary files, as necessary. The most important one is myart . aux, the aux file (see section E.2.4).

1.11.4 Versions

All components of $L A T_{E} X$ interact. Since all of them have many versions, make sure they are up-to-date and compatible. While writing this book, I used LATEX 2_{ε} (LATEX version 2e), issued on D ecember 1, 1994. You can check the version numbers and dates by reading the first few lines of the files in an editor or by checking the dates shown on the file list discussed below.
${ }^{L A} T_{E} X$ is updated every six months; in-between updates, the 1tpatch.1tx document is posted periodically on the CTAN (see Appendix G). Get this file and place it in your $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ input directory. When you rebuild your formats, 1tpatch. 1tx will patch $L^{A} T_{E} X$.

When you typeset a $L A T E X$ document, $L A T E X$ introduces itself in the log file with a line such as

LaTeX2e <1994/12/01> patch level 3
giving you the release date and patch level. If you use a new feature of $L A T_{E} X$ that was introduced recently, place in the preamble of your document the command
\NeedsTeXFormat \{LaTeX2e\}[1994/12/01]
where the date is the release date of the version you must use.
As of this writing, $\mathcal{A} \mathcal{M} \mathcal{S}-L A T E X$ is at version 1.2 and the $A M$ SFonts font set is at version 2.2. See Appendix G on how to get updated versions of $\mathcal{A} \mathcal{M}$ - LAT ${ }_{E} X$ and the AM SFonts.

BIBTEX is at version 0.99 (version 1.0 is expected soon). In this book, I use the amsplain.bst bibliographic style file (version 1.2a).

If you include the \backslash listfiles command in the preamble of your document, the log file will contain a detailed listing of all the files used in the typesetting of your document.

H ere are a few lines from such a listing:

```
*File List*
book.cls 1994/12/09 v1.2x Standard LaTeX document class
leqno.clo 1994/12/09 v1.2x Standard LaTeX option
bk10.clo 1994/12/09 v1.2x Standard LaTeX file (size option)
amsmath.sty 1995/02/23 v1.2b AMS math features
Ueus57.fd 1994/10/17 v2.2d AMS font definitions
latexsym.sty 1994/09/25 v2.1f Standard LaTeX package
xspace.sty 1994/11/15 v1.03 Space after command names (DPC)
Ulasy.fd 1994/09/25 v2.1f LaTeX symbol font definitions
************
```


1.12 What's next?

H aving read thus far, you probably know enough about LATEX to write your first article. The best way to learn $L^{A} T_{E} X$ is by experimentation. Later, you may want to read PartsII-V.

If you look at the source files of the sample articles, your first impression may be how very verbose $L A T_{E} X$ is. In actual practice, $L A T_{E} X$ is fairly easy to type. There are two basic tools to make typing LATEX more efficient.

Firstly, you should have a good editor. For instance, you should be able to train your editor so that a single keystroke produces the text:

```
\begin{theorem} \label{T:}
\end{theorem}
```

with the cursor in the position following ":" (where you type the label).
Secondly, customizing LATEX will make repetitious structures such as

```
\begin{equation}
    \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
        \dots \rangle \equiv \langle
        \dots, 0, \dots, \overset{i}{c}, \dots, 0, \dots
        \rangle \pmod{\Theta},
\end{equation}
```

which prints

$$
\begin{equation*}
\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \equiv\langle\ldots, 0, \ldots, \stackrel{i}{c}, \ldots, 0, \ldots\rangle \quad(\bmod \Theta) \tag{3.1}
\end{equation*}
$$

(see page 369) become much shorter and (with practice) more readable. U tilizing the user-defined commands \backslash con (for congruence), \vct (for vector), and \gQ (for Greek theta), in sampart2.tex (in the ftp directory and in Appendix C), this formula becomes

```
\begin{equation}
    \con \vct{i}{d}=\vct{i}{c}(\gQ),
\end{equation}
```

which is about as long as the typeset formula itself.
The topic of user-defined commands is taken up in Part IV.
Finally, custom formats (section 9.7) substantially speed up the typesetting of an average document.

A. 1 H ebrew letters

Type:	Print:	Type:	Print:
\aleph	\aleph	\beth	\beth
\daleth	\urcorner	\gimel	\beth

All symbols but \aleph need the amssymb package.

A. 2 Greak characters

Type:	Print:	Type:	Print:	Type:	Print:
\alpha	α	\backslash beta	β	\gamma	γ
\backslash \igamma	\digamma	\delta	δ	\epsilon	ϵ
\varepsilon	ε	\backslash zeta	ζ	\eta	η
\backslash theta	θ	\vartheta	ϑ	\iota	ι
\backslash kappa	κ	\varkappa	\varkappa	\backslash lambda	λ
$\backslash \mathrm{mu}$	μ	$\backslash \mathrm{nu}$	ν	$\backslash \mathrm{xi}$	ξ
$\backslash \mathrm{pi}$	π	\varpi	ϖ	\rho	ρ
\varrho	ϱ	\sigma	σ	\varsigma	ς
\tau	τ	\upsilon	v	\phi	ϕ
\backslash varphi	φ	$\backslash \mathrm{chi}$	χ	$\backslash \mathrm{psi}$	ψ
\omega	ω				

\digamma and \varkappa require the amssymb package.

Type:	Print:	Type:	Print:
\backslash Gamma	Γ	\varGamma	Γ
\Delta	Δ	\varDelta	Δ
\backslash Theta	Θ	\varTheta	Θ
\backslash Lambda	Λ	\varLambda	Λ
\backslash Xi	Ξ	\varXi	Ξ
\backslash Pi	Π	\varPi	Π
\backslash Sigma	Σ	\varSigma	Σ
\backslash Upsilon	Υ	\varUpsilon	Υ
\backslash Phi	Φ	\varPhi	Φ
\backslash Psi	Ψ	\varPsi	Ψ
\backslash Omega	Ω	\varOmega	Ω

All symbols whose name begins with var need the amsmath package.

A. 3 LATEX binaryrelations

Type:	Print:	Type:	Print:	
\in	ϵ	$\backslash \mathrm{ni}$	\ni	
\leq	\leq	\geq	\geq	
$\backslash 11$	\ll	\gg	\gg	
\prec	\prec	\backslash succ	\succ	
\preceq	\preceq	\backslash succeq	\succeq	
\backslash sim	\sim	\backslash cong	\cong	
\backslash simeq	\simeq	\approx	\approx	
\equiv	三	\backslash doteq	\doteq	
\backslash subset	\subset	\backslash supset	\supset	
\backslash subseteq	\subseteq	\backslash supseteq	\supseteq	
\backslash sqsubseteq	\sqsubseteq	\sqsupseteq	\sqsupseteq	
\smile	\smile	\frown	\bigcirc	
\perp	\perp	\backslash models	1	
\backslash mid	\|	\parallel	\|	
\vdash	\vdash	\dashv	\dashv	
\propto	\propto	\asymp	\asymp	
\bowtie	\bowtie			
\sqsubset	\sqsubset	\sqsupset	\sqsupset	
\Join	\bowtie			

The latter three symbols need the latexsym package.

A. $4 \quad \mathcal{A}_{\mathcal{M}} \mathcal{S}$ binary relations

T ype:	Print:	Type:	Print:
\backslash leqslant	\leqslant	\geqslant	\geqslant
\backslash \eqslantless	<	\eqslantgtr	$>$
\backslash lesssim	\lesssim	\gtrsim	\gtrsim
\backslash lessapprox	\lesssim	\gtrapprox	\gtrsim
\approxeq	\approx		
$\backslash \mathrm{lessdot}$	\lessdot	\gtrdot	\gtrdot
\llı	\lll	\ggg	\gg
$\backslash \mathrm{lessgtr}$	F	\gtrless	\gtrless
\backslash lesseqgtr	\lesseqgtr	\gtreqless	\gtreqless
$\backslash \mathrm{lesseqqgtr}$	§	\gtreqqless	\gtreqless
\doteqdot	\doteqdot	\eqcirc	픈
\circeq	$\stackrel{\circ}{=}$	\backslash fallingdotseq	\fallingdotseq
\backslash risingdotseq	\risingdotseq	\triangleq	\triangleq
\backslash backsim	\sim	\thicksim	\sim
$\backslash \mathrm{backsimeq}$	\simeq	\thickapprox	\approx
$\backslash p r e c c u r l y e q$	\preccurlyeq	\backslash succcurlyeq	\succcurlyeq
\backslash curlyeqprec	\gtrless	\curlyeqsucc	\succ
$\backslash \mathrm{precsim}$	\precsim	\backslash succsim	\succsim
\precapprox	冗	\succapprox	\succsim
\backslash subseteqq	\bigcirc	\backslash supseteqq	\supseteqq
\backslash Subset	\Subset	\backslash Supset	\ni
\vartriangleleft	\triangleleft	\vartriangleright	\triangleright
\trianglelefteq	\unlhd	\trianglerighteq	\unrhd
\vDash	\vDash	\Vdash	$\stackrel{+}{\square}$
$\backslash \mathrm{Vvdash}$	II-		
\backslash smallsmile	\smile	\smallfrown	\bigcirc
\backslash shortmid	1	\backslash Shortparallel	11
\backslash bumpeq	\bumpeq	\backslash Bumpeq	\approx
\backslash between	l	\pitchfork	内
\varpropto	\propto	\backepsilon	${ }^{\text { }}$
\backslash blacktriangleleft	4	\blacktriangleright	-
\therefore	\therefore	\backslash because	.

All symbols require the amssymb package.

A． $5 \quad \mathcal{A} \mathcal{M}$ S negated binary relations

Type：	Print：	Type：	Print：
\backslash ne	\neq	\backslash notin	\notin
\backslash nless	＜	$\backslash \mathrm{ngtr}$	\ngtr
$\backslash \mathrm{nleq}$	\neq	$\backslash \mathrm{ngeq}$	\ngtr
\backslash nleqslant	＊	\backslash ngeqslant	\ngtr
\backslash nleqq	考	\backslash ngeqq	\nsupseteq
\backslash lneq	\Varangle	\gneq	\geqslant
$\backslash \mathrm{lneqq}$	\supsetneqq	\gneqq	\supsetneqq
\backslash lvertneqq	\ddagger	\gvertneqq	¥
\lnsim	$\grave{\chi}$	\gnsim	$\underset{\sim}{*}$
\backslash lnapprox	$\not \approx$	\gnapprox	$\not \approx$
\backslash nprec	K	\backslash nsucc	\nsucc
\backslash npreceq	\npreceq	\backslash nsucceq	\nsucceq
\precneqq	\supsetneqq	\succneqq	\supsetneqq
\backslash precnsim	$ゐ$	\backslash sucensim	\succsim
\precnapprox	$æ$	\backslash succnapprox	\succsim
$\backslash \mathrm{nsim}$	\nsim	\backslash ncong	\nsupseteq
\backslash nshortmid	†	\nshortparallel	H
$\backslash \mathrm{nmid}$	ł	\backslash nparallel	H
$\backslash \mathrm{nvdash}$	\nvdash	$\backslash \mathrm{nvDash}$	\nvdash
$\backslash \mathrm{nVdash}$	\nVdash	\nVDash	\nVdash
\ntriangleleft	A	\ntriangleright	¢
\ntrianglelefteq	$\not \pm$	\ntrianglerighteq	中
\backslash nsubseteq	\nsubseteq	\backslash nsupseteq	\nsupseteq
\backslash nsubseteqq	\nsubseteq	\backslash nsupseteqq	\nsupseteq
\backslash subsetneq	\subsetneq	\backslash supsetneq	\supsetneq
\varsubsetneq	\neq	\varsupsetneq	\geq
\subsetneqq	\varsubsetneqq	\supsetneqq	\supsetneqq
\backslash varsubsetneqq	\varsubsetneqq	\varsupsetneqq	\supsetneqq

All symbols but \backslash ne require the amssymb package．

A． 6 Binary operations

T ype：	Print：	Type：	Print：
\pm	\pm	$\backslash \mathrm{mp}$	干
\times	\times	\cdot	．
\circ	\bigcirc	$\backslash \mathrm{bigcirc}$	\bigcirc
$\backslash \mathrm{div}$	\div	\diamond	\diamond
\ast	＊	\star	\star
\backslash cap	\cap	\backslash cup	\cup
\sqcap	\sqcap	\sqcup	\sqcup
\wedge	\wedge	\vee	\checkmark
\triangleleft	\triangleleft	\triangleright	\triangleright
\bigtriangleup	\triangle	$\backslash \mathrm{bigtriangledown}$	∇
\oplus	\oplus	\ominus	\ominus
lotimes	\otimes	\oslash	\oslash
\odot	\odot	$\backslash \mathrm{bullet}$	\bullet
\backslash dagger	\dagger	\ddagger	\ddagger
\setminus	\backslash	\uplus	\uplus
\wr	2	\amalg	Ш
\backslash lhd	\triangleleft	$\backslash \mathrm{rhd}$	－
\unlhd	\unlhd	\unrhd	$\underline{\square}$
\dotplus	$\dot{+}$	\centerdot	－
$\backslash l t i m e s$	\ltimes	$\backslash r$ imes	\rtimes
$\backslash l e f t t h r e e t i m e s ~$	λ	$\backslash r i g h t t h r e e t i m e s ~$	人
\circleddash	Θ	\smallsetminus	\backslash
\backslash barwedge	$\bar{\wedge}$	\doublebarwedge	$\overline{\bar{\wedge}}$
\curlywedge	λ	\curlyvee	γ
\veebar	\underline{V}	\intercal	T
\backslash Cap	ก	\backslash Cup	U
\circledast	\circledast	\circledcirc	（
\boxminus	\boxminus	\boxtimes	区
$\backslash \mathrm{boxdot}$	\square	\backslash boxplus	\＃
\backslash \divideontimes	\％		
\backslash And	\＆		

This table is divided into four parts．The first part contains the binary operations in LATEX．The second part requires the latexsym package．The third part contains the $\mathcal{A}_{\mathcal{M} \mathcal{S}}$ additions；they require the amssymb package．The symbol \backslash And requires the amsmath package．

A. 7 Arrows

Type:	Print:	Type:	Print:
\leftarrow	\leftarrow	\rightarrow or \to	\rightarrow
\longleftarrow	\longleftarrow	\longrightarrow	\longrightarrow
\Leftarrow	\Leftarrow	\backslash Rightarrow	\Rightarrow
\Longleftarrow	\Longleftarrow	\Longrightarrow	\longrightarrow
\leftrightarrow	\leftrightarrow	\longleftrightarrow	\longleftrightarrow
\Leftrightarrow	\Leftrightarrow	\Longleftrightarrow	\Longleftrightarrow
\uparrow	\uparrow	\downarrow	\downarrow
\Uparrow	介	\Downarrow	\Downarrow
\updownarrow	\downarrow	\Updownarrow	I
\backslash nearrow	\nearrow	\searrow	\downarrow
\swarrow	\swarrow	\nwarrow	
\backslash mapsto	\mapsto	\longmapsto	\longrightarrow
\backslash hookleftarrow	\hookleftarrow	\hookrightarrow	\hookrightarrow
\backslash \eftharpoonup	\leftharpoonup	\rightharpoonup	-
\leftharpoondown	\leftharpoondown	\rightharpoondown	\checkmark
\rightleftharpoons	\rightleftharpoons		
\backslash leadsto	\sim		
\leftleftarrows	\leftleftarrows	\rightrightarrows	\rightrightarrows
\backslash \eftrightarrows	\leftrightarrows	\rightleftarrows	\rightleftarrows
\Lleftarrow	\Leftarrow	\backslash Rrightarrow	\Rightarrow
\twoheadleftarrow	世	\twoheadrightarrow	\rightarrow
\backslash \eftarrowtail	\leftarrow	\rightarrowtail	\mapsto
\backslash \ooparrowleft	\leftarrow	\looparrowright	ใ
\upuparrows	\uparrow	\downdownarrows	\downarrow
\upharpoonleft	1	\upharpoonright	\downarrow
\downharpoonleft	\checkmark	\downharpoonright	1
\backslash \eftrightsquigarrow	tur	\rightsquigarrow	\rightsquigarrow
\multimap	\bigcirc		
\nleftarrow	\nleftarrow	\nrightarrow	\rightarrow
\nleftarrow	ψ	$\backslash \mathrm{nRightarrow}$	\nRightarrow
\nleftrightarrow	H	\nLeftrightarrow	μ

This table is divided into three parts. The top part contains the symbols provided by LATEX; the last command, \leadsto, requires the latexsym package. The middle table contains the $\mathcal{A} \mathcal{M} \mathcal{S}$ arrows; they all require the amssymb package. The bottom table lists the negated arrow symbols; they also require amssymb.

A. 8 Miscellaneoussymbols

Type:	Print:	Type:	Print:	
\hbar	\hbar	\ell	ℓ	
\imath	\imath	\backslash jmath	\jmath	
\wp	\wp	$\backslash \mathrm{Re}$	\Re	
$\backslash \mathrm{Im}$	\Im	\backslash partial	∂	
\infty	∞	\prime	1	
\emptyset	\emptyset	$\backslash \mathrm{backslash}$	1	
\backslash forall	\forall	\exists	\exists	
\backslash smallint	J	\triangle	\triangle	
\surd	$\sqrt{ }$	\Vert	\|	
\top	T	\backslash bot	\perp	
$\backslash \mathrm{P}$	9	$\backslash \mathrm{S}$	§	
\backslash dag	\dagger	\backslash ddag	\ddagger	
$\backslash \mathrm{flat}$	b	\natural	\square	
\backslash sharp	,	\angle	\angle	
\clubsuit	9	\backslash diamondsuit	\diamond	
\backslash heartsuit	\bigcirc	\backslash spadesuit	Q	
$\backslash \mathrm{neg}$	\neg			
\backslash Box	\square	\Diamond	\diamond	
\backslash mho	V			
\hslash	\hbar	\complement	C	
$\backslash \mathrm{backprime}$	1	\vartriangle	\triangle	
\Bbbk	\mathfrak{k}	\varnothing	\varnothing	
\diagup	/	\diagdown	\rangle	
\backslash blacktriangle	-	\blacktriangledown	∇	
\triangledown	∇	\Game	ว	
\square	\square	$\backslash \mathrm{blacksquare}$	\square	
\lozenge	\diamond	$\backslash \mathrm{blacklozenge}$	\checkmark	
\backslash measuredangle	\measuredangle	\backslash sphericalangle	『	
\circledS	(S)	$\backslash \mathrm{bigstar}$	\star	
\backslash Finv	\pm	\eth	д	
\backslash nexists	\#			

This table is divided into two parts. The top part contains the symbols provided by LATEX; the last three commands require the latexsym package. The bottom table lists symbols from the $\mathcal{A} \mathcal{M}$; they all require the amssymb package.

A. 9 Math spacing commands

Short form:	Full form:	Size:	Short form:	Full form:
\backslash,	\thinspace	u	$\backslash!$	\negthinspace
$\backslash:$	\backslash medspace	\cup		\negmedspace
$\backslash ;$	\thickspace	\sqcup		\negthickspace
	\quad	\sqcup		
	\qquad			

The \medspace, \thickspace, \negmedspace, and \negthickspace commands require the amsmath package.

A. 10 Delimiters

Name:	Type:	Print:	Name:	Type:	Print:	
Left paren	l	$($	Right paren	$)$	$)$	
Left bracket	$[$	$[$	Right bracket	$]$	$]$	
Left brace	$\backslash\{$	$\{$	Right brace	$\backslash\}$	$\}$	
Reverse slash	\backslash backslash	\backslash	Forward slash	$/$	$/$	
Left angle	\backslash langle	\langle	Right angle	\backslash rangle	\rangle	
Vertical line	\mid	\mid	Double vert. line	$\backslash \mid$	$\\|$	
Left floor	\backslash lifloor	\lfloor	Right floor	\backslash rfloor	\rfloor	
Left ceiling	\backslash lceil	\lceil	Right ceiling	\rceil	\rceil	
Upper left corner	\ulcorner	\ulcorner	Upper right corner	\urcorner	\urcorner	
Lower left corner	\backslash llcorner	\llcorner	Lower right corner	\lrcorner	\lrcorner	

The corners require the amsmath package.

Name:	Type:	Print:
U pward arrow	\uparrow	\uparrow
Double upward arrow	\Uparrow	\Uparrow
Downward arrow	\downarrow	\downarrow
Double downward arrow	\Downarrow	\Downarrow
Up-and-down arrow	\updownarrow	\uparrow
Double up-and-down arrow	\Updownarrow	\Uparrow

A. 11 Operators

$\backslash \mathrm{arccos}$	\backslash \arcsin	\arctan	$\backslash \mathrm{arg}$
$\backslash \cos$	$\backslash \mathrm{cosh}$	$\backslash \cot$	$\backslash \mathrm{coth}$
$\backslash \mathrm{csc}$	\backslash dim	$\backslash \mathrm{exp}$	$\backslash \mathrm{hom}$
\backslash ker	$\backslash 1 g$	$\backslash 1 \mathrm{n}$	$\backslash \log$
\backslash sec	\backslash sin	\backslash sinh	\tan
\tanh			
$\backslash \mathrm{varliminf}$	\varlimsup	\varinjlim	\varprojlim

The \backslash var commands require the amsmath package.

\det	\gcd	\inf	\injlim
\lim	\liminf	\limsup	\max
\min	\projlim	$\backslash \operatorname{Pr}$	\sup

The \injlim and \backslash projlim commands require the amsmath package.

Type:	Inline	Displayed	Type:	Inline	Displayed
\backslash prod_\{i=1\}^\{n\}	$\prod_{i=1}^{n}$	$\prod_{i=1}^{n}$	\backslash coprod_\{i=1\}^\{n\}	$\coprod_{i=1}^{n}$	$\coprod_{i=1}^{n}$
\backslash bigcap_\{i=1\}^\{n\}	$\bigcap_{i=1}^{n}$	$\bigcap_{i=1}^{n}$	\backslash bigcup_\{i=1\}^\{n\}	$\bigcup_{i=1}^{n}$	$\bigcup_{i=1}^{n}$
$\backslash \mathrm{bigwedge}$ _ $\{\mathrm{i}=1\}^{\wedge}\{\mathrm{n}\}$	$\bigwedge_{i=1}^{n}$	$\bigwedge_{i=1}^{n}$	\backslash bigvee_\{i=1\}^\{n\}	$\bigvee_{i=1}^{n}$	$\bigvee_{i=1}^{n}$
\backslash igsqcup_\{i=1\}^\{n\}	$\bigsqcup_{i=1}^{n}$	$\bigsqcup_{i=1}^{n}$	\backslash biguplus_\{i=1\}^\{n\}	$\biguplus_{i=1}^{n}$	$\biguplus_{i=1}^{n}$
\backslash bigotimes_\{i=1\}^\{n\}	$\bigotimes_{i=1}^{n}$	$\bigotimes_{i=1}^{n}$		$\oplus_{i=1}^{n}$	$\bigoplus_{i=1}^{n}$
	$\bigodot_{i=1}^{n}$	$\bigodot_{i=1}^{n}$	\backslash sum_\{i=1\}^\{n\}	$\sum_{i=1}^{n}$	$\sum_{i=1}^{n}$

A. 12 Math accents

\backslash hat \{a\}	\hat{a}	\backslash Hat $\{\mathrm{a}\}$	\hat{a}	\widehat $\{$ a	\widehat{a}	a\sphat $a^{\text {a }}$
\backslash tilde $\{\mathrm{a}\}$	\tilde{a}	\backslash Tilde $\{\mathrm{a}\}$	\tilde{a}	\widetilde\{a\}	\widetilde{a}	a\sptilde a^{\sim}
\acute\{a\}	á	\backslash Acute $\{\mathrm{a}\}$	á			
$\backslash \mathrm{bar}\{\mathrm{a}\}$	\bar{a}	$\backslash \operatorname{Bar}\{\mathrm{a}\}$	\bar{a}			
\backslash breve \{a\}	\breve{a}	\backslash Breve \{a\}	\breve{a}			a \spbreve $a^{\breve{ }}$
\backslash check $\{\mathrm{a}\}$	\check{a}	\backslash Check \{a\}	\check{a}			a \spcheck a^{\vee}
$\backslash \operatorname{dot}\{\mathrm{a}\}$	\dot{a}	\backslash Dot \{a\}	\dot{a}			a \backslash spdot $\quad a$.
$\backslash \operatorname{ddot}\{\mathrm{a}\}$	\ddot{a}	\backslash dot $\{$ a	\ddot{a}			a \spddot a^{\prime}.
\backslash dddot \{a\}	\dddot{a}					a \spdddot $a^{. .}$
\backslash ddddot \{a\}	\cdots					
\grave\{a\}	\grave{a}	\backslash Grave $\{\mathrm{a}\}$	à	\imath	\imath	
\vec $\{\mathrm{a}\}$	\vec{a}	$\backslash \mathrm{Vec}\{\mathrm{a}\}$	\vec{a}	\jmath	\jmath	

The \dddot and \ddddot commands and all the capitalized commands require the amsmath package; the commands in the fourth column require the amsxtra package.

A. 13 Math font commands

Type:	Print:
$\backslash \operatorname{mathbf}\{\mathrm{A}\}$	A
$\backslash \operatorname{mathit~}\{\mathrm{A}\}$	A
$\backslash \operatorname{mathsf}\{\mathrm{~A}\}$	A
$\backslash \operatorname{mathrm}\{\mathrm{A}\}$	A
$\backslash \operatorname{mathtt}\{\mathrm{A}\}$	A
$\backslash \operatorname{mathnormal}\{\mathrm{A}\}$	A
$\backslash \operatorname{mathbb}\{\mathrm{~A}\}$	\mathbb{A}
\backslash mathfrak $\{\mathrm{A}\}$	\mathfrak{A}
\backslash mathcal $\{\mathrm{A}\}$	\mathcal{A}
\backslash boldsymbol $\{\backslash$ alpha $\}$	$\boldsymbol{\alpha}$

The \mathbb, \mathfrak, and \mathcal commands require the amsfonts package. The \backslash boldsymbol command requires the amsbsy package.

B. 1 Speci al text characters

Type:	Print:	Type:	Print:	Type:	Print:
$\backslash \#$	$\#$	$\backslash \$$	$\$$	$\backslash \%$	$\%$
$\backslash \&$	$\&$	$\backslash \sim\}$	\sim	$_{-}$	-
$\backslash \wedge\}$	\wedge	$\backslash\{$	$\{$	$\backslash\}$	$\}$
$\$ \mid \$$	\mid	$@$	$@$	$\$ * \$$	$*$
		\$ ${ }^{\prime}$ backslash $\$$	\backslash		

B. 2 Text accents

Type:	Print:	Type:	Print:	Type:	Print:
\'\{0\}	ò	$\backslash^{\prime}\{0\}$	ó	$\backslash "\{0\}$	ö
\H\{0\}	ő	$\backslash \wedge\{0\}$	ô		
~\{0\}	õ				
\v\{o\}	ǒ	\u\{0\}	о̆	$\backslash=\{0\}$	$\bar{\square}$
$\backslash \mathrm{b}$ \{ 0$\}$	o	\. $\{0\}$	$\dot{\text { ó }}$	\d\{o\}	\bigcirc
\cat	¢	$\backslash \mathrm{x}\{0\}$	\bigcirc	$\backslash t\{00\}$	00
\i	1			\j	J

B. 3 Some E uropean characters

Type:	Print:	Type:	Print:	T ype:	Print:
\aa	å	\backslash AA	\AA	$\backslash \mathrm{ae}$	$æ$
$\backslash \mathrm{AE}$	Æ	\o	\emptyset	\o	\emptyset
\oe	œ	$\backslash \mathrm{OE}$	(E	$\backslash 1$	ł
\L	モ	\ss	β	$\backslash \mathrm{SS}$	SS
? ${ }^{\prime}$	i	!	i		

B. 4 Extra text symbols

Type:	Print:
\dag	\dagger
\ddag	\ddagger
\S	\S
$\backslash P$	\oplus
\copyright	C
£	$£$
•	\bullet
˽	-
\textcircled\{a\}	(a)
·	\cdot

B. 5 Text spacing commands

Short form:	Full form:	Size:	Short form:	Full form:
\backslash,	\thinspace	घ	$\backslash!$	\negthinspace
$\backslash:$	\backslash medspace	u		\negmedspace
$\backslash ;$	\thickspace	u		\negthickspace
	\quad	\sqcup		
	\qquad			

The \backslash medspace, \thickspace, \negmedspace, and \backslash negthickspace commands require the amsmath package.

B. 6 Text font commands

command with argument	command declaration	switch to
\textnormal\{...\}	\{ \normalfont ...\}	document font family
\textrm\{...\}	\{\rmfamily ...\}	roman font family
\textsf\{...\}	\{\sffamily ...\}	sans serif font family
\texttt\{...\}	\{\ttfamily ...\}	typewriter style font family
\textup\}	\{\upshape ...\}	upright shape
\textit $\{. .$.		
itshape ...\}	italic shape	
\textsl\{...\}	\{\slshape ...\}	slanted shape
\textnormal\{...\}	\{\normalfont ...\}	default font
\textsc $\{. .$.	\{\scshape ...\}	Small capitals
$\backslash \mathrm{emph}\{\ldots, \ldots$	\{\em ...\}	emphasis
\textbf\{...\}	\{ \bfseries ...\}	bold (extended)
\textma\{...\}	\{\mdseries ...\}	normal weight and width

B. 7 Text font sizechanges

B. $8 \quad \mathcal{A} \mathcal{M} \mathcal{S}$ text font size changes

\Tiny
\large
\tiny
\Large
\backslash SMALL

\normalsize
\LARGE
\Small
\backslash huge
\small
\backslash Huge

A fterword

This book is based on my earlier book M ath into $T_{E} X$: A simple introduction to $\mathcal{A}_{\mathcal{M} \mathcal{S}}$-LATEX [13]. Although the topic changed considerably, I borrowed a fair amount of material from that book.

So it may be appropriate to begin by thanking here those who helped me with the earlier book. H arry L akser was extremely generous with histime; M ichael D oob and Craig Platt assisted me with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and U NIX; and D avid Kelly and Arthur Gerhard read and commented on an early version of that manuscript. M ichael D ownes, Frank M ittelbach, and R alph Freese read various drafts. Richard Ribstein read the third and fourth drafts very conscientiously.

The first draft of this new book was read for the publisher by

- D avid Carlisle (of the LATEX3 team)
- M ichael J. D ownes (the project leader of the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ team)
- Fernando Q. Gouvêa (Colby C ollege)
- Frank M ittelbach (the project leader of the $\operatorname{LAT}_{\mathrm{E}} \mathrm{X} 3$ team)
- Tobias O etiker (D e M ontfort U niversity)
- N ico A. F. M. Poppelier (Elsevier Science Publishers)

Together they produced a huge tutorial on $L^{L A} T_{E} X$ for my benefit. I hope that I succeeded in passing on to you some of what I learned from them.

On February 8, 1995, a short announcement was posted on the Internet (in the comp.text.tex newsgroup) asking for volunteers to read the first draft. The response was overwhelming.

I received reports from the following volunteers:

- J eff Adler (U niversity of Chicago, C hicago, IL, U SA)
- H elmer Aslaksen (N ational U niversity of Singapore, Singapore, Republic of Singapore)
- Andrew C aird (U niversity of M ichigan Center for Parallel Computing, Ann Arbor, MI, USA)
- M ichael C arley (Trinity College, Dublin, Ireland)
- M iroslav D ont (Czech Technical U niversity, Prague, The Czech Republic)
- Simon P. Eveson (U niversity of York, H eslington, York, England)
- Weiqi Gao (St. Louis, M O, U SA)
- Suleyman Guleyupoglu (Concurrent TechnologiesC orporation, Johnstown, PA, USA)
- Peter Gruter (Laboratoir Kastler Brossel, Paris, France)
- Chris F.W. H endriks (N ational A erospace Laboratory, Amsterdam, The N etherlands)
- M ark H iggins (Global Seismology, British Geological Survey, Edinburgh, Scotland)
- Zhihui H uang (U niversity of M ichigan, Ann Arbor, M I, U SA)
- D avid M . Jones (Information and Computation, M IT Laboratory for C omputer Science, C ambridge, M A, U SA)
- Alexis K otte and John van der Koijk (U niversity H ospital U trecht, U trecht, The Netherlands)
- D onal Lyons (Trinity College, D ublin, I reland)
- M ichael Lykke (Roskild, Denmark)
- Steve N iu (U niversity of T oronto, Toronto, O N , C anada)
- Piet van O ostrum (U trecht U niversity, U trecht, The N etherlands)
- D enis Roegel (CRIN, N ancy, France)
- Kevin Ruland (Washington U niversity, St. Louis, M O, U SA)
- Thomas R. Scavo (Syracuse, N Y, U SA)
- Peter Schmitt (U niversity of Vienna, Vienna, Austria)
- N andor Sieben (Arizona State U niversity, Tempe, AZ, U SA)
- Paul Thompson (C ase Western Reserve U niversity, C leveland, OH , U SA)
- Ronald M. Tol (U niversity of Groningen, Groningen, The N etherlands)
- Ernst U. Wallenborn (Federal Institute of T echnology, Zurich, Switzerland)
- Doug Webb (Knoxville, TN, USA)

There were many volunteers, ranging in expertise from users who wanted to learn more about $L A T_{E} X$, to experts in charge of large ${ }^{A T} T_{E} X$ installations, to internationally known experts whose names are known to many LATEX users; and ranging in background from graduate students, to professional mathematicians, computer scientists, chemical engineers, psychiatrists, and consultants. I would like to thank them all for their enthusiastic reports. They shared their learning and their teaching experiences. This has become a much better book for their contributions.

I also received carefully crafted reports on Chapter 10 from O ren Patashnik (Stanford U niversity), the author of $B / B T_{E X}$.

Based on these reports (ranging in size from two pages to over thirty pages), the manuscript has been rewritten, most of it has been reorganized, and sections have been added or deleted. I felt that as a result of the major changes probably many new errors have been introduced. So the second draft was again sent to
three readers; Jeff Adler, Simon P. Eveson, and David M . Jones sent me 27 pages of reports, confirming my suspicions. My deepest appreciation to these three individuals for their excellent repeat performance.

In the meanwhile, M erry 0 brecht Sawdey undertook the visual design of the book. She also lent a helping hand in the final typesetting of the book.

The manuscript then was sent to the technical editor, Thomas R. Scavo, who flooded it with red ink; it would be hard to overstate the importance of his work. The final version of the book was checked again by him.

L ast but not least, I want to thank Edwin Beschler, who believed in the project from the very beginning.

I ndex

\#, 5

\# (\#), 356
\$, 5
\$ (inline math delimiter), 11

\$ (\$), 356
\%, 5, 6
commenting out, 6

% (\%), 5, 356
\& 5
alignment point, 32, 33
$\backslash \&(\&), 356$
\backslash^{\prime} (' accent), 357
(, 5
((math delimiter), 353
), 5
) (math delimiter), 353
*, 5
\$*\$(*), 356
@, 5
$+, 5,15$
, (comma), 5
, (thin space, also \thinspace), 353, 358

- (dash, hyphen, minus), 15
\- (optional hyphen), 8
-- (number ranges, en-dash), 10
--- (em-dash), 10
. (period), 5
l. (• accent), 357
... (ellipsis), 17
/ (math delimiter), 353
/ (slash), 5, 15
: (colon), 5
\: (medium space, also \medspace), 353, 358
; (semicolon), 5
\; (thick space, also \thickspace), 353, 358
$<, 10$
$=, 5$
\= (- accent), 357
$>, 10$
" (double quote), 5, 7
\" (" accent), 357
? (question mark), 5
? ' (i), 357
! (exclamation mark), 5
! ` (i), 357
\! (negative thin space, also
\negthinspace), 353, 358
[, 5
[(math delimiter), 353
\ [(start displayed math), 11
$\backslash, 5,9$
start of command, 9
\backslash (math delimiter), 353
\{, 5
\{ (math delimiter), 353

{ (\{), } 3 5 6
\}, 5
\} (math delimiter), 353

$(\}), } 356$

row/ line separator, 18, 31-33
], 5
] (math delimiter), 353
\] (end displayed math), 11

^, 5
\^ (^ accent), 357
_ (underscore), 5, 15
_ (_ accent), 357

- (left quote), 5
, (right quote), 5
|, 5, 10
\$|\$(|), 356
| (math delimiter), 28, 353
\| (|| math delimiter), 353

~ (~ accent), 357
~, 5
\AA (\AA), 357
\aa (å), 357
abstract environment, 36
abstract in article, 36
accent
E uropean, 10, 357
math, 16, 355
accented character, 10, 357
\Acute (' math accent), 355
\acute (' math accent), 355
Jeff Adler, 416, 418
\AE (Æ), 357
\ae (å), 357
\aleph (※), 345
align, 31
annotated, 31, 32
simple, 31
align (math environment), 31, 32
aligned multiline formula, 31
alignment point, 32, 33
\alpha (α), 346

Alt key, 5
\amalg (Ш), 347, 350
$\mathcal{A}_{\mathcal{M} \mathcal{S}}$ document class, xxiii
amsart (document class), xxiii, 33, 41
amsbsy (package), 54
AM SFonts, 51, 52
amsfonts (package), xxiii, 12, 51, 54
$\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX, xx, xxii-xxiv, xxv, 23, 52-54
amsmath (package), 15-20, 23, 30-33, $35,41,50,51,54,346,350$, 353-355, 358
amsopn (package), 54
amssymb (package), 12, 15, 20, 23, 35, 41, 54, 346-352
$\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}, \mathrm{xxv}$
amstext (package), 19, 54
amsthm (package), 50, 54
amsxtra (package), 355
\backslash And (\&), 350
\and, 42, 43
\angle (\angle), 352
annotated align, 31, 32
\approx (\approx), 347
\approxeq, 348
\arccos (arccos operator), 354
\arcsin (arcsin operator), 354
\arctan (arctan operator), 354
\arg (arg operator), 354
argument of command, $9,11,12,14$ optional, 19
arithmetic operation, 15
arrow, 351
article, 34-46
abstract, 36
bibliography, 38-40
body, 35
design, 48
preamble, 34-35
sample intrart, $x x, 34-40,46,48$
sampart, xx-xxiii, 33, 49, 50
sampart2, 50, 56
sectioning, 43
template, 41-42
top matter, 35, 36, 41, 42, 43
article (document class), 34, 41, 42, 49, 51
article.tpl, 41
article2.tpl, 41
H elmer Aslaksen, 416
\ast (*), 350
\asymp (\asymp), 347
aux file, 30, 55
\b (_ accent), 357
\backepsilon (э), 348
\backprime (1), 352
\backsim(\sim), 348
\backsimeq (\simeq), 348
\backslash (
), 352
\$ \backslash backslash\$ (\backslash), 356
\backslash (math delimiter), 353
\Bar (- math accent), 355
\bar (${ }^{-}$math accent), 16, 27, 355
\backslash barwedge ($\bar{\wedge}$), 350
\backslash Bbbk (k), 352
\backslash because ($\because \cdot$), 348
Edwin Beschler, 418
\beta (β), 346
\beth (コ), 345
\between ($\mathrm{\ell}$), 348
\backslash bfseries, 358
\bibitem, 30, 38, 41, 45
bibliography, 38-40
\bigcap (\cap large operator), 354
\bigcirc (○), 350
\bigcup (Ulargeoperator), 23, 354
\biggl, 27
\biggr, 27
\bigodot (\odot large operator), 354
\backslash bigoplus (\bigoplus large operator), 354
\backslash bigotimes (\otimes large operator), 354
\bigsqcup (\bigsqcup large operator), 354
\backslash bigstar (\star), 352
\backslash bigtriangledown $(\nabla), 350$
\backslash bigtriangleup (\triangle), 350
\backslash biguplus (\biguplus large operator), 354
\bigvee (V large operator), 24, 25, 354
\bigwedge (\bigwedge large operator), 25, 354
binary operation, 350
binary relation, 348
negated, 349
\backslash binom, 16, 21
binomial, 16
Blackboard bold math alphabet, xxiii, 24
\blacklozenge ($\mathbf{~) ~ , ~} 352$
\blacksquare (■), 352
\blacktriangle (4), 352
\blacktriangledown (\mathbf{V}), 352
\blacktriangleleft (4), 348
\blacktriangleright ($\boldsymbol{(}), 348$
blank delimiter, 25
blank line
marking end of paragraph, 7
bmatrix (subsidiary math environment), 18
body of article, 35
\backslash bot (\perp), 352
\backslash bowtie (\bowtie), 347
\backslash Box (\square), 352
\backslash boxdot (\square), 350
\backslash boxminus ($\boxminus), 350$
\backslash boxplus (\boxplus), 350
brace
closing, 14
\Breve (${ }^{\text {m math accent), } 355}$
\breve (${ }^{\text {m math accent), } 355 ~}$
\bullet (•), 350
\backslash Bumpeq (\approx), 348
\backslash bumpeq ($\bumpeq), 348$
\c (, accent), 357
Andrew Caird, 416
calligraphic alphabet, 28
\backslash cap (\cap), 350
\backslash cap ($\cap), 350$
M ichael C arley, 417
D avid C arlisle, xviii, 416
cases (subsidiary math environment), 33
\cdot (.), 15, 350
\cdots (...), 17
center, 9
\centerdot (.), 350
centimeter, 10
character, 4
accented, 10, 357
European, 10, 357
invalid, 5
math, 10
prohibited, 5
special, 5, 356
tab, 5, 7
\Check (' math accent), 355
\check (${ }^{\prime}$ math accent), 355
\chi (χ), 346
\circ (o), 350
\circeq (으), 348
\circledast (\circledast), 350
\circledcirc (๑), 350
\circleddash (Θ), 350
\circledS (), 352
\cite, 30, 45
\clubsuit ($\left.\boldsymbol{q}^{(}\right), 352$
cm (dimensional unit), 10
CM fonts, 51
command
argument, $9,11,12,14$
start with $\backslash, 9$
Command key, 5
commenting out, 6
\complement (C), 352
computer, xxi
Computer M odern (CM) fonts, 51
\cong (\cong), 347
congruence, 16
\coprod (\amalg large operator), 354
\copyright (), 357
$\backslash \cos (\cos$ operator), 354
\cosh (cosh operator), 354
\cot (cot operator), 354
\coth (coth operator), 354
cross-referencing, 30
\csc (csc operator), 354
Ctrl key, 5
\backslash Cup (ש), 350
\cup (U), 350
\curlyeqprec (そ), 348
\curlyeqsucc (\succ), 348
\curlyvee (\curlyvee), 350
\curlywedge (\curlywedge), 350
custom format, 57
customized
preamble of article, 41-42
top matter of article, 41-42
\d (. accent), 357
\backslash dag (\dagger math symbol), 352
\dag (\dagger text symbol), 357
\backslash dagger (\dagger), 350
\daleth (7), 345
dash, 10
em-dash, 10
en-dash, 10
\dashv (-), 347
\ddag (\ddagger math symbol), 352
\ddag (\ddagger text symbol), 357
\ddagger (\ddagger), 350
\ddddot (${ }^{\prime \prime}$. math accent), 355
\dddot (${ }^{\prime}$ math accent), 355
\Ddot (" math accent), 355
\ddot (" math accent), 355
delimiter, 16, 353
blank, 25
\backslash Delta (Δ), 346
\delta (δ), 346
$\backslash \operatorname{det}(\operatorname{det}$ operator), 354
\dfrac, 28
\diagdown (\backslash), 352
\diagup (/), 352
\backslash Diamond $(\diamond), 352$
\diamond (\diamond), 350
\backslash diamondsuit (\diamond), 352
\backslash digamma (\digamma), 346
digit key, 4
\dim (dim operator), 354
displayed
math, 11
\div (\div), 350
\divideontimes (*), 350
document class, xxii-xxiv, 6, 15, 34, 35, 42, 49, 51
$\mathcal{A}_{\mathcal{M}} \mathcal{S}$, xxiii
amsart, xxiii, 33, 41
article, 34, 41, 42, 49, 51
option
draft, 8
document (environment), 9, 20
\documentclass, 12, 15
M iroslav D ont, 417
M ichael D oob, 416
\Dot (' math accent), 355
\dot (' math accent), 355
\backslash doteq (\doteq), 347
\doteqdot (\doteqdot), 348
dotlessi $\left({ }_{1}\right), 357$
dotlessj (J , 357
\backslash dotplus (+), 350
\dots (... or ...), 17
double quote, 5,7
\doublebarwedge ($\bar{\wedge}$), 350
\Downarrow (\downarrow math delimiter), 353
\Downarrow (\Downarrow), 351
\downarrow (\downarrow math delimiter), 353
\downarrow (\downarrow), 351
\downdownarrows (\downarrow), 351
M ichael J. D ownes, xviii, 416
\downharpoonleft (J), 351
\downharpoonright (1), 351
draft (document class option), 8
editor, 46, 51, 56
\ell (), 352
ellipsis (...), 17
\em, 358
em-dash (-), 10
\emph, 358
emphasized text, 9
\emptyset (\emptyset), 352
en-dash (-), 10
enter (return) key, 5
environment, 4, 9
abstract, 36
document, 9,20
thebibliography, 38
\epsilon (ϵ), 346
\eqcirc (피), 348
\eqref, 30
\eqslantgtr ($>$), 348
\eqslantless ($<$), 348
equation, 29-31
labelled, 30
referenced, 30
tagged, 31
equation (math environment), 29-
31
\equiv (\equiv), 16, 347
error message, $6,13,46-48$
\errorcontextlines, 6
leta (η), 346
leth (ð), 352
eufrak (package), 23
Euler Script, xxiii
European accent, 10, 357
European character, 10, 357
\EuScript, 355
euscript (package), 355
Simon P. Eveson, 417, 418
exclamation mark, 5
\exists (\exists), 352
\exp (exp operator), 354
\backslash fallingdotseq ($=$), , 348
file
aux, 30, 55
log, 54, 55
source, 3, 6, 7, 9, 11, 22, 30, $44,46,48,51,54$
\backslash Finv (-), 352
\flat (b), 352
flushleft (text environment), 4
flushright (text environment), 4, 9
font
Computer M odern (CM), 51
\footnotesize, 359
\backslash forall (\forall), 352
format
custom, 57
LaTex, xxii, 6, 20
plain, 51
\backslash frac, 15
fraction, 15
Fraktur math alphabet, xxiii, 23
Ralph Freese, 416
\backslash frown (\frown), 347
ftp
directory, 4
gallery.tex, 22
\Game (D), 352
\Gamma (Г), 346
\backslash gamma (γ), 346
Weiqi Gao, 417
\gcd (gcd operator), 354
$\backslash \mathrm{geq}(\geq), 347$
\geqslant (\geqslant), 348
Arthur Gerhard, 416
\gg (>), 347
lggg (>), 348
lgimel (コ), 345
\gnapprox (Z $_{2}$), 349
\backslash gneq ($>$), 349
\backslash gneqq $(\ngtr), 349$
\gnsim ($\langle x), 349$
Fernando Q. Gouvêa, 416
\Grave (` math accent), 355 \grave (` math accent), 355
Greek alphabet, 346
Peter Gruter, 417
\gtrapprox (\gtrsim), 348
lgtrdot (>), 348
\gtreqless (
\gtreqqless ($\gg), 348$
\gtrless (\gtrless), 348
\gtrsim (\gtrsim), 348
Suleyman Guleyupoglu, 417
lgvertneqq (\ddagger), 349
\н (" accent), 357
\Hat (` math accent), 355 \hat (` math accent), 16, 355
\hbar (\hbar), 352
\hdotsfor, 28
\backslash heartsuit ($($), 352
H ebrew letters, 345
Peter H endriks, 417
M ark Higgins, 417
\hom (hom operator), 354
\backslash hookleftarrow (\hookleftarrow), 351
\hookrightarrow (\hookrightarrow), 351
horizontal space
math, 353
text, 358
\hslash (\ddagger), 352
H TML (markup language), xxi
Zhihui H uang, 417
\backslash Huge, 359
\huge, 359
hyphen, 5, 10
optional, 8
\i (1), 357
$\backslash \operatorname{Im}(\Im), 352$
\imath ($)$, 352, 355
\in $(\epsilon), \mathbf{3 4 7}$
in (dimensional unit), 10
inch, 10
\inf (inf operator), 354
\infty $(\infty), 12,352$
\injlim（injlim operator）， 354
inline
math environment， 11
math formula， 11
instruction
to LATEX，9， 51
\int（ \int ），4，17， 28
integral， 17
interactive LATEX， 54
\intercal（T）， 350
intrart（sample article），$x x, 34-40$ ，
46， 48
invalid character， 5
\iota（ $), 346$
\itshape， 358
\ j（ $)$ ） 357
\jmath（ \jmath ），352， 355
\backslash Join（®）， 347
D avid M．Jones，xviii，417， 418
\backslash kappa（ κ ）， 346
D avid Kelly， 416
\ker（ker operator）， 354
key，4， 10
Alt， 5
Command， 5
Ctrl， 5
digit， 4
enter（return）， 5
letter， 4
Option， 5
prohibited， 5
return， 5
space， 5
special，5， 356
tab，5， 7
Donald E．Knuth，xviii，xx， 416
John van der Koijk， 417
Alexis Kotte， 417
\L（モ）， 357
\1（ł）， 357
label，30，43， 44
\label，30，43， 44
H arry L akser， 416
\backslash Lambda（ Λ ）， 346
\backslash lambda（ λ ）， 346
\langle（ \langle math delimiter），24， 353
\LARGE， 359
\Large， 359
\large， 359
large operator，19， 354
LATEX， 51
format，xxii，6， 20
interactive mode， 54
LATEX 2_{ε} ，xviii
latexsym（package），347，350－352
\lceil（ 「 math delimiter）， 353
$\backslash l \operatorname{dots}(. .),$.
\backslash leadsto（ \sim ）， 351
\left，17，23，24， 27
left single quote，5， 7
\left（（（ math delimiter），16，24， 32
\left．（blank math delimiter）， 25
\backslash Leftarrow（ \Leftarrow ）， 351
\leftarrow（ \leftarrow ）， 351
\leftarrowtail（ $\longleftarrow), 351$
\backslash leftharpoondown $(\leftharpoondown), 351$
\backslash leftharpoonup（ ᄃ）， 351
\leftleftarrows（ \leftleftarrows ）， 351
\Leftrightarrow（ \Leftrightarrow ）， 351
\leftrightarrow（ \leftrightarrow ），351
\leftrightarrows（ \leftrightarrows ）， 351
\leftrightsquigarrow（ $\rightsquigarrow>$ ）， 351
\leftthreetimes（ λ ）， 350
\backslash leq（ \leq ）， 347
\backslash leqslant $(\leqslant), 348$
\lessapprox（ \lesssim ）， 348
\lessdot（ \lessdot ）， 348
\lesseqgtr（ \lesseqgtr ）， 348
\lesseqqgtr（引），348
\backslash lessgtr (\lessgtr) ， 348
\backslash lesssim $(\lesssim), 348$
letter key, 4
\lfloor (\lfloor math delimiter), 353
$\backslash \lg$ (lg operator), 354
\backslash lhd (\triangleleft), 350
\lim (lim operator), 11, 17, 354
\liminf (liminf operator), 354
\limsup (lim sup operator), 354
line in text
too wide, 7
line separator ($\backslash \backslash$), 18, 31, 32
line too wide, 7
\listfiles, 55
\ll (<<), 347
\backslash Lleftarrow (\Leftarrow), 351
$\backslash 111$ (<<), 348
$\backslash \ln$ (ln operator), 354
$\backslash \operatorname{lnapprox}(\not \approx)$), 349
$\backslash \operatorname{lneq}(\leq), 349$
\backslash lneqq (\nsupseteq), 349
$\backslash \operatorname{lnsim}(\underset{\varnothing}{\infty}), 349$
$\backslash \log (\log$ operator), 354
log file, 54, 55
logical unit, 49
\Longleftarrow (\Longleftarrow), 351
\longleftarrow (\longleftarrow), 351
\Longleftrightarrow (\Longleftrightarrow), 351
\longleftrightarrow (\longleftrightarrow), 351
\backslash longmapsto (\longmapsto), 351
\Longrightarrow (\Longrightarrow), 351
\longrightarrow (\longrightarrow), 351
\looparrowleft (\leftarrow), 351
\looparrowright (\rightarrow), 351
\lozenge (\diamond), 352
\ltimes (\ltimes), 350
\lvertneqq (\nsupseteq), 349
M ichael Lykke, 417
Donal Lyons, 417
\backslash maketitle, 35
\backslash mapsto (\mapsto), 23, 351
markup language, xx
HTML, xxi
math, 10-33
accent, 16, 355
character, 10
displayed, 11
inline, 11
symbol, 346-355
math environment
align, 31, 32
annotated align, 31, 32
equation, 29-31
inline, 11
simple align, 31
subsidiary, 33
math font
AM SFonts, xxiii, 51, 52
Blackboard bold, xxiii, 24
calligraphic, 28
Euler Script, xxiii
Fraktur, xxiii, 23
math.tex (sample file), 11, 12
mathb.tex (sample file), 12,13
\backslash mathbb, 24, 355
\backslash mathbf, 355
\mathcal, 355
\mathfrak, 355
\backslash mathit, 355
\backslash mathrm, 355
\backslash mathsf, 355
\backslash mathtt, 355
matrix (subsidiary math environment),

18

$\backslash \max$ (max operator), 354
\backslash mbox, 19
\backslash mdseries, 358
\backslash measuredangle (\measuredangle), 352
\backslash medspace (medium space, also \:), 353, 358
\backslash mho (ひ), 352
$\backslash \operatorname{mid}(\mid), 23,347$
\backslash min (min operator), 354
minus, 15
Frank M ittelbach, xviii, 416
\backslash models $(\mid=), 347$
$\backslash \mathrm{mp}(\mp), 350$
$\backslash m u(\mu), 346$
multiline formula, 31
annotated aligned, 32
simple align, 31
\backslash multimap (-), 351
multiplication, 15
\natural ($\mathfrak{4}$), 352
\backslash ncong $(\neq), 349$
\backslash ne (\neq), 349
\nearrow ($/$), 351
\backslash neg (\neg), 352
negated binary relation, 349
\backslash negmedspace (negative medium space), 353, 358
\negthickspace (negativethick space), 353, 358
\negthinspace (negative thin space, also \!), 353, 358
\backslash nexists (\ddagger), 352
\backslash ngeq ($~ \geq$) , 349
\backslash ngeqq ($\not \equiv$), 349
\backslash ngeqslant $(\ngtr), 349$
\backslash ngtr $(\ngtr), 349$
$\backslash \mathrm{ni}(\ni), 347$
Steve Niu, 417
\backslash nLeftarrow (\nLeftarrow)), 351
\nleftarrow (\leftarrow), 351
\nLeftrightarrow (\$), 351
\nleftrightarrow (\leftrightarrow), 351
$\backslash n l e q(\not \subset), 349$
\backslash nleqq $(\not \equiv), 349$
\nleqslant ($\nless), 349$
\nless ($丸$), 349
\backslash nmid (\dagger), 349
\normalsize, 359
\backslash notag, 32
note1.tex (sample file), 6, 7
note1b.tex (sample file), 7, 8
note2.tex (sample file), 9
noteslug.tex (sample file), 8
\backslash notin $(\notin), 349$
\nparallel (ł), 349
\backslash nprec ($\nprec), 349$
\backslash npreceq $(\npreceq), 349$
\backslash nRightarrow (\nRightarrow), 351
\nrightarrow (\rightarrow), 351
\nshortmid (\not), 349
\nshortparallel (H), 349
\backslash nsim (\not)) 349
\backslash nsubseteq (\nsubseteq)) 349
\backslash nsubseteqq (\ddagger), 349
\backslash nsucc (\nsucc), 349
\backslash nsucceq (\nsucceq)), 349
\backslash nsupseteq $(\nsupseteq), 349$
\backslash nsupseteqq ($¥$), 349
nth root, 19
\ntriangleleft ($丸$), 349
\backslash ntrianglelefteq $(\nsubseteq), 349$
\ntriangleright (\varnothing), 349
\ntrianglerighteq (\nsubseteq), 349
$\backslash \mathrm{nu}(\nu), 346$
number range, 10
\nVDash (\nVdash), 349
\nVdash (K), 349
\backslash nvDash (\nvdash), 349
\backslash nvdash (\nvdash), 349
\nwarrow (\backslash), 351
$10(\varnothing), 357$
1० (\varnothing), 357
lodot (\odot), 350
loe (E), 357
।oe (œ), 357
Tobias O etiker, 416
\omega (Ω), 346
\omega (ω), 346
\ominus (\ominus), 350
Piet van O ostrum, 417
operation
arithmetic, 15
operator, 17, 354
large, 19, 354
\oplus (\oplus), 350
Option key, 5
optional
argument, 19
hyphen, 8
\oslash (\oslash), 350
\otimes (\otimes), 350
\overbrace, 26
Overfull \hbox, 7, 8
overline, 27, 28
loverline, 27, 28
\overset, 25, 26, 38, 48
$\backslash \mathrm{P}$ (థ math symbol), 352
$\backslash P$ ($\mathbb{1}$ text symbol), 357
packages
amsbsy, 54
amsfonts, xxiii, 12, 51, 54
amsmath, 15-20, 23, 30-33, 35, 41, 50, 51, 54, 346, 350, 353-355, 358
amsopn, 54
amssymb, $12,15,20,23,35,41$, 54, 346-352
amstext, 19, 54
amsthm, 50, 54
amsxtra, 355
eufrak, 23
euscript, 355
latexsym, 347, 350-352
paragraph
end of, 7
\parallel (||), 347
parentheses, 5
\partial ($)$), 28, 352
Oren Patashnik, 417
period, 5
\backslash perp (\perp), 347
personal computer, xxi
$\backslash \mathrm{Phi}(\Phi), 346$
$\backslash \mathrm{phi}(\phi), 346$
$\backslash \mathrm{Pi}(\Pi), 346$
$\mathrm{pi}(\pi), 346$
\pitchfork (\pitchfork), 348
plain.fmt, 51

Craig Platt, 416
$\backslash \mathrm{pm}(\pm), 350$
pmatrix (subsidiary math environment),
18, 28
\backslash pmod, 16
\pod, 16
point (font size), 8
Nico A. F. M. Poppelier, 416
£ (£ text symbol), 357
$\backslash \mathrm{Pr}$ (Pr operator), 354
preamble of article, 34-35
\backslash prec (\prec), 347
\precapprox ((ح), 348
\preccurlyeq (\preccurlyeq), 348
\backslash preceq ($\preceq), ~ 347$
\precnapprox (æ), 349
\precneqq (\nsupseteq), 349
\backslash precnsim ($(\prec), 349$
\backslash precsim (§ 2, 348
\prime (/), 352
proclamation, 35
invoking, 44
\prod (${ }^{\text {I large operator), 19, } 354}$
product, 19
prohibited character/ key, 5
\projlim (proj lim operator), 354
prompt, 54
\backslash propto (α), 347
\backslash Psi (Ψ), 346
$\backslash \mathrm{psi}(\psi), 346$
pt (dimensional unit), 8
punctuation mark, 5
\qquad (space command), 19, 353, 358
\quad (space command), 17, 353, 358
question mark, 5
quotation mark, 5, 7
double quote, 5,7
single quote, 5, 7
\r (${ }^{\circ}$ accent), 357
\rangle ($>$ math delimiter), 24, 353
\rceil（7 math delimiter）， 353
$\backslash \operatorname{Re}(\Re), 352$
\ref，30，31， 44
reference in article，38， 44
references， 38
referencing
bibliographic item， 45
label，30，43， 44
return key， 5
\rfloor（」 math delimiter）， 353
\rhd（ \triangleright ）， 350
\rho（ ρ ）， 346
Richard Ribstein， 416
\right，17，23，24， 27
right single quote， 5,7
\right）（ ）math delimiter），16，24， 32
\backslash Rightarrow (\Rightarrow) ， 351
\rightarrow（ \rightarrow ，also \to），12， 351
\rightarrowtail（ \rightarrow ）， 351
\rightharpoondown（ - ）， 351
\rightharpoonup（ - ）， 351
\rightleftarrows（ \rightleftarrows ）， 351
\rightleftharpoons (\rightleftharpoons) ， 351
\rightrightarrows（ \rightrightarrows ）， 351
\rightsquigarrow（ \rightsquigarrow ）， 351
\rightthreetimes（ $人$ ）， 350
\risingdotseq (\risingdotseq) ， 348
\rmfamily， 358
D enis Roegel， 417
root，12， 19
n th， 19
square，12， 19
row／line separator（ $\backslash \backslash$ ），18，31， 32
\backslash Rrightarrow（ \Rightarrow ）， 351
\rtimes（ \rtimes ）， 350
Kevin Ruland， 417
\s（§ math symbol）， 352
\s（§ text symbol）， 357
sampart（sample article），xx－xxiii，33， 49， 50
sampart2（sample article），50， 56

M erry O brecht Sawdey， 418
Thomas R．Scavo，417， 418
Rainer Schöpf，xviii
Peter Schmitt， 417
\scriptsize， 359
\scshape， 358
\searrow（ \searrow ）， 351
\sec（sec operator）， 354
section， 44

\section， 44

sectioning of article， 43
paragraph， 44
section， 44
subparagraph， 44
subsection， 44
subsubsection， 44
\backslash setminus（ \backslash ）， 350
\sffamily， 358
$\backslash \operatorname{sharp}(\sharp), 352$
\shortmid（।）， 348
\shortparallel（॥）， 348
\show， 54
N andor Sieben， 417
\backslash Sigma（ Σ ）， 346
\backslash sigma（ σ ）， 346
$\backslash \operatorname{sim}(\sim), 347$
\backslash simeq（ \simeq ）， 347
simple align， 31
\sin（sin operator），17， 354
sine，17， 354
single quote， 5,7
\backslash sinh（sinh operator）， 354
\slshape， 358
\SMALL， 359
\Small， 359
\small， 359
\smallfrown（ $)$ ）， 348
\smallint（ \int ）， 352
\backslash smallsetminus（ \backslash ）， 350
\smallsmile（し）， 348
\backslash smile（ \smile ）， 347
source file，$x x, 3,5-7,9,11,22,30$ ，
$44,46,48,51,54$
space
key, 5
rules
in text, 7
vertical, 10
spacebar, 5
\spadesuit ($\boldsymbol{\oplus}$), 352
\spbreve (` math accent), 355
\spcheck (\vee math accent), 355
\spdddot (\cdots math accent), 355
\spddot (${ }^{\prime}$ math accent), 355
\spdot (• math accent), 355
special key/ character, 5, 356
\sphat (^ math accent), 355
\sphericalangle (\varangle), 352
M ichael Spivak, xviii
\sptilde (\sim math accent), 355
\backslash sqcap (\square), 350
\backslash sqcup (ப), 350
\sqrt ($\sqrt{ }$), 12, 19
\sqsubset (■), 347
\sqsubseteq ($Б$), 347
\sqsupset (\sqsupset), 347
\sqsupseteq (\sqsupseteq), 347
\square (\square), 352
square root, 12, 19
\SS (SS), 357
\ss (ß), 357
$\backslash \operatorname{star}(\star), 350$
subscript, 15
\backslash Subset (\Subset), 348
\backslash subset (\subset), 347
\backslash subseteq (\subseteq), 347
\backslash subseteqq (\subseteq), 348
\subsetneq (\subsetneq), 349
\subsetneqq (\varsubsetneqq), 349
subsidiary math environment, 33
bmatrix, 18
cases, 33
matrix, 18
pmatrix, 18, 28

Vmatrix, 18, 26
vmatrix, 18, 26
$\backslash \operatorname{succ}(\succ), 347$
\backslash succapprox (\succsim), 348
\succcurlyeq (\succcurlyeq), 348
\backslash succeq (\succeq), 347
\succnapprox $(\succsim), 349$
\backslash succneqq (\ddagger)), 349
\succnsim (\succsim)), 349
$\backslash \operatorname{succsim}(\succsim), 348$
sum, 19, 20, 27
\sum (\sum largeoperator), 19, 20, 27, 354
\sup (sup operator), 354
superscript, 15
\backslash Supset (\supseteq), 348
\backslash supset (\supset), 347
\backslash supseteq (\supseteq), 347
\backslash supseteqq (\supseteq), 348
\backslash supsetneq $(\supsetneq), 349$
\backslash supsetneqq $(\supsetneqq), 349$
$\backslash \operatorname{surd}(\sqrt{ }), 352$
\swarrow (\swarrow), 351
symbolic referencing, 30
\t ($~ a c c e n t), 357$
tab character/ key, 5, 7
\tag, 30
tagging equations, 31
\tan (tan operator), 354
\tanh (tanh operator), 354
\tau (τ), 346
testart.tex, 23
TEX, xx, xxi, 9, 51
TEX log, 54, 55
text, 3, 4
emphasized, 9
in math, 19
\text, 19, 23, 54
text environment, 9
flush right, 4, 9
text symbol, 356-357
\textbe, 9, 358
• (• text symbol), 357
\textcircled (Otext symbol), 357
\textit, 358
\textmd, 358
· (• text sym-

$$
\text { bol), } 357
$$

\textrm, 358
\textsc, 358
\textsf, 358
\textsl, 358
\textstyle, 25
\texttt, 358
\textup, 358
˽ (_text symbol), 357
thebibliography (text environment),

38

\therefore (\therefore), 348
\backslash Theta $(\Theta), 346$
\theta (θ), 346
\thickapprox (\approx), 348
\thicksim (~), 348
\thickspace (thick space, also \;), 353, 358
\thinspace (thin space, also \backslash,), 4, 353, 358
Paul Thompson, 417
\backslash Tilde (~ math accent), 355
\tilde (~ math accent), 16, 355
\backslash times $(\times), 15,350$
\Tiny, 359
\tiny, 359

\title, 42, 43

title page, 35
$(\rightarrow$,also\rightarrow),12,351RonaldM.Tol,417\top(T),352topmatter,35,36,41-43\triangle(\triangle),352\triangledown(∇),352\triangleleft(\triangleleft),350\trianglelefteq(\unlhd),348\triangleq(\triangleq),348\triangleright(\triangleright),350\trianglerighteq(\unrhd),348\ttfamily,358\twoheadleftarrow(\leftarrow),351\backslashtwoheadrightarrow(\rightarrow),351\u(${}^{\text{accent),}357}$\underset,25\unihd(\unlhd),350\unrhd(\unrhd),350\Uparrow(\uparrowmathdelimiter),353\Uparrow(\uparrow),351\uparrow(\uparrowmathdelimiter),353\uparrow(\uparrow),351\Updownarrow(\downarrowmathdelimiter),353\Updownarrow(\downarrow),351\updownarrow(\uparrowmathdelimiter),353\updownarrow(\uparrow),351\upharpoonleft(1),351\upharpoonright(\upharpoonright),351\backslashuplus(\uplus),350\upshape,358\Upsilon(Υ),346\upsilon(v),346\upuparrows($\uparrow\uparrow$),351\usepackage,12,15,20\v(${}^{\text{~accent)}),357}$$\backslash$varDelta($\Delta$),346\varepsilon($\varepsilon$),346\varGamma($\Gamma$),346\varinjlim(limoperator)),354\varkappa(\varkappa),346\backslashvarLambda(1),346,348\varliminf(limoperator)),354\varlimsup($\overline{\mathrm{lim}}$operator)),354\varnothing(\varnothing),352\varOmega(Ω),346$\backslash\operatorname{varPhi}(\Phi),346$$\backslash$varphi$(\varphi),28,346$$\backslash\operatorname{varPi}(\Pi),346$$\backslash$varpi($\varpi$),346\varprojlim(limoperator)),354\varpropto(\propto),348$\backslash\operatorname{varPsi}(\Psi),346$\varrho($\varrho),346$$\backslash$varSigma($\Sigma$),346\varsigma(ऽ),346\varsubsetneq($£$),349\varsubsetneqq(\varsubsetneqq),349\varsupsetneq(\supseteq),349\backslashvarTheta$(\Theta),346$\vartheta(ϑ),346\vartriangle(\triangle),352\vartriangleleft(\triangleleft),348\vartriangleright(\triangleright),348\varUpsilon$(\Upsilon),346$$\backslash\operatorname{varXi}(\Xi),346$$\backslash$Vdash(ト),348\vDash($(\vDash),348$\vdash($\vdash$),347$\backslash\mathrm{Vec}(\rightarrow$mathaccent),355\vec($\rightarrow$mathaccent),16,355Ivee(V),25,350\backslashveebar(V$^{\prime}$),350versionnumber,55\Vert(||mathsymbol),352verticalspace,10Vmatrix(subsidiarymathenvironment),18,26vmatrix(subsidiarymathenvironment),18,26\vspace,10\Vvdash(IIト),348ErnstU.Wallenborn,417DougWebb,417\wedge(\wedge),350\widehat(${}^{\text{mmathaccent),27,}355~}$\widetilde(~mathaccent),355workdirectory,4,6,7,9,11,12,20,41,42WorldWideWeb,xxi\wp(\wp),352\wr(2),350\backslashXi(Ξ),346\xi(ξ),346\xvarsupsetneqqx(\ddagger),349\zeta(ζ),4,346undefined

[^0]: ${ }^{1}$ Of course, markup languages have always dominated typographic work of high quality. On the Internet, the most trendy communications on the W orld Wide Web are written in a markup language called HTML (H yperT ext M arkup Language).
 ${ }^{2}$ ASCII stands for American Standard C ode for Information Interchange.

[^1]: 1Thequickestwaytocreatethisfileistoopenmathb.tex,saveitunderthenewnameformula.tex,anddeletethelinesinthedocumentenvironment.Thenaddtheline\usepackage\{amssymb,amsmath$\}$undefined

[^2]: *Research supported by the NSF under grant number 23466.

[^3]: ${ }^{2}$ In section 8.3, we discuss a template file, amsart.tpl, for the $\mathcal{A} \mathcal{M}$ S document class amsart.

