
8

The WEB System of Structured
Software Design and Documentation
for C, C++, Fortran, Ratfor, and TEX

User Manual

JOHN A. KROMMES
Princeton University

krommes@princeton.edu

FWEB Version 1.30
June 15, 1993

1. INTRODUCTION

FWEB understands C, C++, Fortran–
77, Fortran–90, Ratfor, and TEX.

This manual describes how to write programs in Knuth’s WEB system, as adapted and extended by J. A.
Krommes to handle the programming languages of Fortran (including both Fortran–77 and Fortran–
90), Ratfor, C, C++, and TEX. We shall call this new version FWEB when necessary, but generally we’ll
just refer to the WEB system. This adaptation is a substantial modification of S. Levy’s C version CWEB

of WEB, which in turn was a complete rewrite in C of Knuth’s original Pascal source. (TEX is written in
the original Pascal WEB.) The principal design contributions to this version of WEB are (1) the concept of a

current language, so that one can process code
written in multiple languages in the same WEB
run; (2) new production rules for Fortran,
Ratfor, and TEX (and some modifications of

Levy’s rules for C); (3) a C-like built-in macro preprocessor; and (4) the ability to directly translate Ratfor
into Fortran. In addition, many miscellaneous details have been changed and a variety of convenience
features have been added. For example, a general style-file mechanism allows the user to customize various
actions of the system.

This manual covers quite a breadth of material, from the most introductory to very advanced. To help
identify the level of difficulty, the sections are marked with 0, 1, or 2 dangerous bends (here shown as ♣)
a la the TEXbook.

1.1 Previous authors, and the structure of this manual

The WEB system and this manual have evolved through contributions of several authors, principally
Knuth and Levy, and the flavor of the system is best captured with those authors’ original words. Levy
attempted to highlight Knuth’s original text by indenting it. Quoting from Levy’s manual, “The bulk of
this document consists of quotes from Knuth’s memo ‘The WEB System of Structured Documentation’; these
quotes are clearly distinguished by their indentation, and apart from such substitutions as ‘code’ for ‘Pascal’,
all other changes to them are explicitly indicated. This also serves to indicate which commands and features
are common to all versions of WEB and which are characteristic of this version (of course if you’re new to
WEB you don’t have to worry about this).” In practice, new users of WEB seem to find the indented style
somewhat confusing; furthermore, the length of this manual has grown to a point where more than 50% of
the text is new. Therefore, in an attempt to accomodate everyone, this user manual can be TEXed in two
ways, depending on the setting of the TEX macro \ifbilevel, defined near the beginning of the macro
package fmanmacs.tex for this manual. By default, that switch is false and most indentation is suppressed.
(A few of the most significant quotes are indented in both formats.) To obtain the indented style, say
\bileveltrue. In the bilevel mode, we shall preface Levy’s remarks by “[Levy]:”, and we shall feel free to
interject additional remarks by enclosing them in square brackets or to skip extraneous material by using an
ellipsis. The brackets and ellipses are also suppressed when the bilevel switch is false.

— The origins of FWEB — 9

1.2 The origins of FWEB

(The contents of this subsection are totally irrelevant to the narrow goal of learning to use FWEB. But
they might be of some “cultural” interest.)

FWEB was born of necessity. One of the focuses of my research in theoretical plasma physics has been
the construction and solution of so-called “statistical closure approximations,” the most famous example of
which is Kraichnan’s 1959 direct-interaction approximation (DIA). At some point around 1985 I decided
that further progress would benefit greatly from numerical solutions of the DIA and related closures applied
specifically to plasma turbulence. (Kraichnan, Herring, and others had long before done the analogous
calculations for neutral-fluid turbulence.) So I began writing my DIA code—in standard Fortran. The
result was a disaster.

I needed extensive memory allocation facilities, but Fortran–77 doesn’t provide them. I simulated
them using tricky array manipulations, but the code was difficult to debug and to understand. I wanted
complicated data structures, but again Fortran–77 wasn’t up to the task. Ditto for simple string manip-
ulations, communication with the command line, and transparent, easy-to-write I/O statements. In other
words, I didn’t want Fortran–77 at all; I wanted C! So I threw away a year’s worth of work and started
over.

The second time around, I at least had a better sense of the scale of the project—it was large. Also,
upon looking back at my original attempt, I realized that I couldn’t understand the code at all, even though I
had been fairly liberal with Fortran-style comments. Looking ahead, I also realized that graduate students
would likely become involved. Since I have strong feelings about wanting my students to actually do physics
instead of just computing, it became imperative to write the code using the most powerful documentation
scheme available so they could quickly understand how it worked and could modify it as easily as possible.
Knuth’s article on “Literate programming” [1] had already provided a “religious experience” for me when I
read it several years previously, tempered only by the fact that I hadn’t been in a computing phase at that
time. But faced with the demands of the DIA project, Knuth’s excellent points all came back and I realized
that WEB was the natural choice. Luckily, Levy had just announced his beautiful CWEB, so everything seemed
to be in place.

Then, another setback. One of the important characteristics of plasma, as opposed to incompressible
fluid, turbulence is the presence of linearly propagating waves—described most naturally with complex
numbers. Unfortunately, C doesn’t have an intrinsic complex type. C++ can easily be taught complex
arithmetic, but good C++ compilers weren’t widely available, especially on the Cray supercomputers on
which I intended to work. One can, of course, easily typedef a C structure that duplicates Fortran’s
layout of a complex number, but short of function calls one can’t in C perform arithmetic on complex
structures in the natural way one does in Fortran. Readability was important. So was vectorization,
which also wasn’t available in the C compilers available at that time and in any case would probably be
broken by function calls. So reluctantly I decided that the innermost, computational routines of the code
should be written in Fortran.

Of course, no way was CWEB going to handle Fortran code gracefully. But my colleague Henry Greenside
had been arguing strongly for the use of Ratfor as a superior tool, given that one was stuck with some
sort of Fortran. I agreed, and also hoped that Ratfor’s C-like syntax would be close enough to C’s that
CWEB would be adequate. And so I plunged ahead, writing in a mixture of C and Ratfor.

CWEB worked for Ratfor—sort of. One was able to obtain the invaluable index, and often the Ratfor
routines typeset just fine. But there were constant annoying glitches because of the inevitable differences of
syntax. After a few years of experience, it became clear that one really wanted a proper Fortran version
of WEB. Also, the absence of a Fortran macro preprocessor was causing us major annoyance. Although

10 — The origins of FWEB —

Knuth’s original WEB had a rudimentary preprocessor, Levy had deleted it for CWEB, since C has its own
preprocessor. I decided there needed to be one built in that would serve all languages equally well. Thus,
the major design goals were clear: a new Fortran WEB that also supported Ratfor and C, with a macro
preprocessor. So I learned how Knuth and Levy had implemented the syntax production rules, sat down
with a Fortran reference manual, and began to write some Fortran productions. I thought this would
take a couple of weeks. That was actually about right. Ultimately, however, my estimate of the total amount
of work involved in realizing all of my ideas about an “industrial strength” WEB easily usable in the scientific
environment was off by at least two orders of magnitude. (Well, I’m a theoretical physicist.)

Some years later, I’m still upgrading FWEB. Had I been left to my own devices, I probably would never
have made it publicly available, since the conflicts between trying to complete the research I had intended to
do and maintaining a reasonable robust code are almost overwhelming. But my colleague Charles Karney, a
true expert both in TEX and scientific computation, began distributing codes written in FWEB and convinced
me that a public announcement was the best way of both achieving some sort of standardization and
accomplishing the debugging task. So an announcement was timidly made, and the response has been
amazing. Most incredible has been the continuing patience of the many users who are faced with a utility
that is still not bug-free and that they might have designed differently. FWEB is far from perfect, but it’s
much better than my original attempt because of the many well-thought-out suggestions and questions that
I continue to receive. My profound thanks.

(Incidently, in the midst of all this a workable version of the DIA code was finally finished with the
completion of John Bowman’s Ph.D. thesis [2] at Princeton University. To John fell the terrible task of
working with the early prototypes of FWEB. The demands of his project stressed the system to its limits,
sometimes beyond, and elaborate kludges were sometimes necessary in order for him to continue in a timely
way with his research. But John’s excellent, properly skeptical remarks also measurable improved FWEB, and
in the final analysis it’s still not clear to me that we could have accomplished so much in a period of just a
few years had we not had the principles of WEB and literate programming to help and guide us. So I’ll both
apologize to John for the early days as well as thank him for his patience and valuable suggestions. Although
it’s not uncommon for recent Ph.D.’s to want never to think about the thesis research again, I hope John
will be an exception, since his contributions to both physics and FWEB have been outstanding.

1.3 Why is this *!@%*#@! manual so large?

As stated above, FWEB evolved from the excellent, tidy CWEB code of Levy and Knuth. Without CWEB
and Knuth’s original WEB, there would be no FWEB, so my debt to those authors is very large indeed. So I
attempted to retain the original manual that came with CWEB, adding to it as necessary. That worked in
the beginning, but as various features were added and, in particular, as I continued to try to explain WEB
programming to a scientific user community that was strongly oriented toward vanilla Fortran, the manual
accreted very much new material—too much for the present organization.

From at least two points of view, it is time for a complete rewriting of the manual. First, the appearance
of Knuth’s new book [2] on Literate Programming means that much background material can be omitted
from the manual. Second, I’m probably past the experimental stage of FWEB; the functional design has
mostly stabilized and I’ve accumulated enough experience to know where the troublesome points are. So
there’s just the issue of time to worry about. Unfortunately, that’s nontrivial, so for now one is stuck with
the present monstrosity.

However, the size and detail of this manual are alleviated in two ways. First, Marcus Speh [3] moderates
an FWEB literate programming question and answer bulletin board and information service, from which
elementary information can be easily obtained. Second, some of the appendices to this manual can be printed
separately as a self-contained user guide. Third, emacs users can obtain online help from an fweb.info file
that is distributed with the FWEB release.

— THE PHILOSOPHY OF WEB — 11

2. The PHILOSOPHY of WEB

“The WEB system consists of two
processors, WEAVE and TANGLE.
These are software tools...”

The WEB system consists of two processors, WEAVE and TANGLE. These are software tools in the sense
of Kernighan and Plauger [4]. Together, these
processors make important contributions to the
two principle facets of software design: how to
efficiently write a program that works and that
can be easily maintained (TANGLE); and how to
document what you have done so that both you and others can understand, appreciate, and later modify
the code (WEAVE).

2.1 The purpose of the processors

If one is not interested in obtaining documentation, the TANGLE processor can be used stand-alone, as
a powerful preprocessor for any of the source languages. The WEAVE processor must be used in conjunction
with TEX in order to obtain the documentation. Here documentation refers both to prose exposition of
the logic and algorithms of the code, as well as to a typeset listing of the code itself. Note that, strictly
speaking, you don’t actually have to know TEX in order to document your code with WEAVE. Just typing
straight text at the appropriate places will produce documentation whose quality will be far in excess of what
can be achieved with comment lines embedded in the source code. The code itself is typeset automatically
in a visually appealing format by using special TEX macros about which the user need not generally be
concerned. However, the more features of TEX you employ, the higher quality your documentation will be.
This is particularly important when the algorithms you are explaining are based on complicated mathematical
formulas. The ability to typeset intricate mathematics right next to the code that implements the algorithm
(or even as a comment within a line of source code), instead of trying to spell out the symbols in words in
a series of comment lines, is so extraordinarily useful that it becomes difficult to understand how one could
ever have gotten along without it. Compare, for example, the standard Fortran commenting style

C Perform the integral over v parallel from alpha to beta of the Maxwellian:
call integrate(x,alpha,beta,fM)

with what FWEAVE can achieve:

call integrate (x, α, β, fM) // Perform
∫ β

α dv‖ fM(v‖).

Here one needs to know something about TEX (not very much) in order to use math mode in the text of
the comment; however, the typesetting of the equation itself was performed automatically. (If you want to
know precisely how this was done, read about “Overloading identifiers” below.) Time spent learning the
fundamentals of TEX will be amply repaid in dramatically increased productivity—and it’s not hard to learn
to do even rather powerful operations.

2.2 Top-down programming and structured design

“The fundamental logic of the WEB
system encourages ‘top-down’ pro-
gramming and ‘structured’ design.”

The fundamental logic of the WEB system encourages “top-down” programming and “structured” design.
Quoting from Kernighan and Plauger, “Top-down design and successive refinement attack a programming
task by specifying it in the most general
terms, then expanding these into more and
more specific and detailed actions, until the
whole program is complete. Structured de-
sign is the process of controlling the overall
design of a system or program so the pieces
fit together neatly, yet remain sufficiently decoupled that they may be independently modified. . . . Each
of these disciplines can materially improve programmer productivity and the quality of code produced.”

12 — Top-down programming and structured design —

The WEB system encourages you to work top-down by giving you the ability to break up your code into
independent segments (called “modules”). Often, modules correspond to individual subroutines. However,
this is not necessary and the WEB system goes further by strongly encouraging you to also subdivide long
subroutines into additional modules that can be given names for readability, put into a separate place, and
explained as logic dictates. WEAVE prints out your explanations (and associated code fragments) in the logical
order in which you have decided to explain the code. TANGLE strips off the explanations and rearranges the
code into the physical order in which the compiler should see it. For example, in Fortran all common
declarations must physically be placed at the beginning of a subroutine, before executable code. However,
various parts of such declarations may be quite unrelated, and should logically be explained in separate,
not necessarily adjacent, sections of the documentation. As another example, in C code function prototypes
should appear at the beginning if they are to be useful; however, it’s distracting to find a very long list of
prototypes at the beginning of the documentation. WEB allows one to both place the prototypes at the end of
the documentation and to tell the compiler to read them first. Finally, it might be desirable to explain the
output routines of a code before the input routines, since one might then better know exactly what should
be input.

Though top-down programming is easy with WEB, bottom-up coding is not excluded either. It’s perfectly
possible to write very low-level routines first, if that’s convenient, and hook them into the web. The flexibility
to mix top-down and bottom-up programming in a superior documentation environment means that one gets
the best of all possible worlds!

Although WEB is simple in conception, it is quite sophisticated in practice because WEAVE uses the full
power of TEX to typeset not only the expository documentation but also the actual code. (Note that
automatically formatting source code is nontrivial, because WEAVE must understand a good deal about the
language syntax in order to emphasize keywords, indent loops, and so forth.) Such visual enhancements
help one to write good code, because it can be more clearly and logically explained and, therefore, better
understood in the future.

“When arbitrary choices of syntax have
arisen, the design of FWEB has been
strongly influenced by the solution
adopted by the ANSI standard for C.”

Furthermore, the FWEB version of the WEB system goes significantly beyond this. In fact, FTANGLE
is also a macro preprocessor and a statement translator. By allowing symbolic macro abbreviations for
commonly used constructions, FTANGLE allows you to write significantly more concise and therefore more
readable code. Furthermore, in its Ratfor mode it endows the Fortran language with a richer, C-like

syntax that provides much more log-
ical, flexible, and readable loop and
conditional constructions. These con-
structions are translated directly into
Fortran code. Although it is impos-
sible to fully correct for the many de-
sign deficiencies of Fortran (except

by writing in a better language such as C, which is highly recommended whenever possible), in many sit-
uations the Ratfor syntax is so close to that of the C language that users have complained that they
can’t remember in which language they’re programming. FWEB deliberately adopts the point of view that
the language syntaxes should be as close as possible because it is a common practice to mix languages, and
uniform syntax should reduce the frequency of errors. When arbitrary choices of syntax have arisen, the
design of FWEB has been strongly influenced by the solution adopted by the recent ANSI standard for C. For
example, the macro preprocessor behaves like C’s, not like m4 or Knuth’s original preprocessor for his Pascal
WEB.

2.3 Knuth’s original description of WEB

We begin with Knuth’s original description of WEB.

— Knuth’s original description of WEB — 13

“The philosophy behind WEB is that an experienced system programmer, who wants to
provide the best possible documentation of his or her software products, needs two things
simultaneously: a language like TEX for formatting, and a language like C for programming.
Neither type of language can provide the best documentation by itself; but when both are
appropriately combined, we obtain a system that is much more useful than either language
separately.

“The structure of a software program may be thought of as a “web” that is made
up of many interconnected pieces. To document such a program, we want to explain each
individual part of the web and how it relates to its neighbors. The typographic tools provided
by TEX give us an opportunity to explain the local structure of each part by making that
structure visible, and the programming tools provided by languages such as C or Fortran
make it possible for us to specify the algorithms formally and unambiguously. By combining
the two, we can develop a style of programming that maximizes our ability to perceive the
structure of a complex piece of software, and at the same time the documented programs can
be mechanically translated into a working software system that matches the documentation.

“The structure of a software
program may be thought of
as a ‘web’ that is made up of
many interconnected pieces.”

“Since WEB is an experimental system developed for internal use within the TEX project
at Stanford, this report is rather terse, and it assumes that the reader is an experienced pro-
grammer who is highly motivated to read a detailed description of WEB’s rules. Furthermore,
even if a less terse manual were to be written, the reader would have to be warned in advance
that WEB is not for beginners and it never will be: The user of WEB must be familiar with
both TEX and the source language in
which he is writing. When one writes
a WEB description of a software sys-
tem, it is possible to make mistakes
by breaking the rules of WEB and/or
the rules of TEX and/or the rules of
the source language. In practice, all
three types of errors will occur, and you will get different error messages from the different
language processors. In compensation for the sophisticated expertise needed to cope with
such a variety of languages, however, experience has shown that reliable software can be
created quite rapidly by working entirely in WEB from the beginning; and the documentation
of such programs seems to be better than the documentation obtained by any other known
method. Thus, WEB users need to be highly qualified, but they can get some satisfaction
and perhaps even a special feeling of accomplishment when they have successfully created
a software system with this method.”

2.4 How to use WEB

Extensive cross-index informa-
tion is gathered automatically.

To use WEB, you prepare a file called COB.WEB (say), and then you apply a system program called WEAVE

to this file, obtaining an output file called COB.TEX. When TEX processes COB.TEX, your output will be
a “pretty printed” version of COB.WEB that takes appropriate care of typographic details like page layout
and the use of indentation, italics, boldface, etc.;
this output will contain extensive cross-index in-
formation that is gathered automatically. You
can also submit the same file COB.WEB to another
system program called TANGLE, which will produce for example, a file COB.FOR that contains the Fortran
code of your COB program. The Fortran compiler will convert COB.FOR into machine-language instructions
corresponding to the algorithms that were so nicely formatted by WEAVE and TEX. Finally, you can (and
should) delete the files COB.TEX and COB.FOR, because COB.WEB contains the definitive source code. Are
you paying attention? Did you hear what I just said? Examples of the behavior of WEAVE and TANGLE

14 — How to use WEB —

are appended to this manual.

When you are using FWEB you should use the commands FWEAVE and FTANGLE to avoid confusion with
the original Pascal WEB processors WEAVE and TANGLE, which are still supplied with the TEX distribution.

Let us review what has been said so far. Given a Fortran code that has been prepared in the WEB
format in file test.web, to get compilable code you say (using upper case solely for emphasis to distinguish
the system command from the file name)

FTANGLE test

This produces the file test.for, which can be compiled, linked, and executed. To get the documentation of
your code, you say

FWEAVE test

This produces the file test.tex, which can be processed with either Plain TEX or LaTEX.

A worry that arises when one is deciding whether to use the WEB system is whether the overhead of using
it will be annoying. Experience shows that the answer is generally “No”. The TANGLE processor is quite fast;
the pass through TANGLE typically takes a small fraction of the time to compile and link, especially for large
codes. WEAVE is slower (it does a lot of work!), and furthermore one must run the output of WEAVE through
TEX. However, when one is developing a code he typically tangles it many times for each time he weaves
it, and furthermore the clarity and completeness of the resulting documentation are very much worth any
additional overhead. The shift from heavily time-shared mainframes to very fast, individual workstations
will further reduce any annoyance with overhead.

“FWEB enhances the source lan-
guages by providing a relatively so-
phisticated, C-like macro capability
together with the ability to permute
pieces of the program text...”

Besides providing a documentation tool, FWEB enhances the source languages by providing a relatively
sophisticated, C-like macro capability together with the ability to permute pieces of the program text,
so that a large system can be understood entirely in terms of small modules and their local interrela-

tionships. Furthermore, it can even under-
stand syntactical constructions absent from
the source language and translate those into
valid, compilable code; for example, it can
translate the Ratfor dialect of Fortran
directly into standard Fortran. The TAN−
GLE program is so named because it takes
a given web and moves the modules from

their web structure into the order required by the compilers; the advantage of programming in WEB is that
the algorithms can be expressed in “untangled” form, with each module explained separately. The WEAVE

program is so named because it takes a given web and intertwines the TEX and code portions contained in
each module, then it knits the whole fabric into a structured document. (Get it? Wow.) Perhaps there is
some deep connection here with the fact that the German word for “weave” is “web”, and the corresponding
Latin imperative is “texe”!

2.5 History and design influences (Knuth)

It is impossible to list all of the related work that has influenced the design of WEB, but

the key contributions should be mentioned here. (1) Myrtle Kellington, as executive editor for

ACM publications, developed excellent typographic standards for the typesetting of Algol programs

during the 1960s, based on the original designs of Peter Naur; the subtlety and quality of this

influential work can be appreciated only by people who have seen what happens when other printers

try to typeset Algol without the advice of ACM’s copy editors. (2) Bill McKeeman introduced

— History and design influences (Knuth) — 15

a program intended to automate some of this task [Algorithm 268, “Algol 60 reference language

editor,” CACM 8 (1965), 667–668]; and a considerable flowering of such programs has occurred

in recent years [see especially Derek Oppen, “Prettyprinting,” ACM TOPLAS 2 (1980), 465–

483; G. A. Rose and J. Welsh, “Formatted programming languages,” SOFTWARE Practice &
Exper. 11 (1981), 651–669]. (3) The top-down style of exposition encouraged by WEB was of course

chiefly influenced by Edsger Dijkstra’s essays on structured programming in the late 1960s. The less

well known work of Pierre-Arnoul de Marneffe [“Holon programming: A survey,” Univ. de Liege,

Service Informatique, Liege, Belgium, 1973; 135 pp.] also had a significant influence on the author

as WEB was being formulated. (4) Edwin Towster has proposed a similar style of documentation

in which the programmer is supposed to specify the relevant data structure environment in the

name of each submodule [“A convention for explicit declaration of environments and top-down

refinement of data,” IEEE Trans. on Software Eng. SE–5 (1979), 374–386]; this requirement

seems to make the documentation a bit too verbose, although experience with WEB has shown that

any unusual control structure or data structure should definitely be incorporated into the module

names on psychological grounds. (5) Discussions with Luis Trabb Pardo in the spring of 1979

were extremely helpful for setting up a prototype version of WEB that was called DOC. (6) Ignacio

Zabala’s extensive experience with DOC, in which he created a full implementation of TEX in Pascal

that was successfully transported to many different computers, was of immense value while WEB was

taking its present form. (7) David R. Fuchs made several crucial suggestions about how to make

WEB more portable; he and Arthur L. Samuel coordinated the initial installations of WEB on dozens

of computer systems, making changes to the code so that it would be acceptable to a wide variety of

Pascal compilers. (8) The name WEB itself was chosen in honor of [Knuth’s] wife’s mother, Wilda

Ernestine Bates.

The appendices to this report contain various examples of WEB programming. Complete WEB programs
for the FWEAVE and FTANGLE processors are available in the source files provided with the release of FWEB.
A study of these examples, together with an attempt to write WEB programs by yourself, is the best way to
understand why WEB has come to be like it is.

3. SIMPLE EXAMPLES

Before we plunge into the depths of the WEB system, it may be useful to introduce several simple
examples, even though few of the concepts have been yet introduced.

3.1 A simple C program organized with FWEB

The first example gives the outline of a simple C program that has been organized with FWEB. (If you are
not familiar with C, you should not worry. Examples from both Fortran and Ratfor will be given shortly,
and almost all of the important WEB features are language-independent.) First, we present a verbatim listing
of the source code. Then, we show how FWEAVE typesets the documentation.

@z --- demo0.web ---

This file is part of FWEB. It and its tangled output demo0.tex are
included into the user manual fwebman.tex. All web source files should
have header information such as this.

Author: J. A. Krommes
Version: 1.23
Date: April 1, 1992

@x---

16 — A simple C program organized with FWEB —

@c @% This command (invisible on output) sets the global language to C.
@* EXAMPLE. The ‘\.{@@*}’~begins a major module or section (one for which an
entry is made in the table of contents). We are now in the \TeX\ part of
the section, in which we can type arbitrary \TeX\ to explain what goes on in
the remainder of the section.

The next statement introduces the definition part of this section.
\modlabel{FirstMod} % Attach an identifying name to this section.

@m PRINT(word) printf("%s, world.\n",#word) /* An example of a \.{WEB}
macro def’n. They are compatible with ANSI~C, but have extensions
(not illustrated here) that will be explained later.
Long comments that extend over more than one line can be written
like this, in the C commenting style. */

@a @% The @a command (invisible on output) introduces the code part of
@% this (unnamed) module.

main()
{
PRINT(Hello); /* Bullets as subscripts indicate that the name is defined in

the current section. */
init(); /* Example of a function call. The subscript is inserted

automatically, and indicates in which section the function is
defined. */

@<Do the computations@>; /* Use of named modules makes the code readable.
Again, the section number where this module is defined is inserted
automatically. */

PRINT(Goodbye);
}

@ The ‘\.{@@\ }’~begins a minor section. (No entry is made in the table of
contents.) Here the named fragment |@<Do...@>| used in the previous module
is actually defined. (The definition part of this section is empty.) The
name of this module is ‘Do the computations’; it can be abbreviated (using
an ellipsis) for simplicity in the source because it appeared earlier in
full; however, when it’s printed the full name will be used for
readability.

@<Do the comp...@>=
{
/* Put arbitrary C code here. */
}

@ In general, function names don’t carry as much information as do named
modules, since a module name can be arbitrarily long and complicated. But
function calls have their place as well, as described later.

This function is actually accreted to the unnamed module begun in
\WEBsection{FirstMod}. Examine the source listing to see how the section
number in the last sentence was generated automatically through the use of
\FWEB’s \TeX\ macros \.{\\modlabel} and \.{\\WEBsection}.

— A simple C program organized with FWEB — 17

@a
void init(void)
{}

@* INDEX. It’s customary to make the index the last major module.

It is hoped that this example is mostly self-explanatory. Its various facets will be explained in great
detail below. Here, we just observe that the source file is broken up into modules or sections, which in turn
are divided into parts, with the aid of simple commands or control codes beginning with ‘@’. In each section
there is space for TEX’d documentation, macro definitions (and other stuff to be explained later), and the
code itself. The code can be broken up into named fragments, and these can be defined elsewhere. Therefore,
each section can be short and its purpose and logical structure can be easily captured by the eye. The other
nuances of this example will be explained later.

FWEAVE typesets this example as follows. (For brevity, the last few pages of the output from FWEAVE are
omitted here; those include the index and the table of contents. Those items are some of the most important
features of the WEB system. To see how they appear for this example, you can run FWEAVE yourself on the
source code for this demo, which is called demo0.web.)

1. EXAMPLE. The ‘@*’ begins a major module or section (one for which an entry is made in the table
of contents). We are now in the TEX part of the section, in which we can type arbitrary TEX to explain
what goes on in the remainder of the section.

The next statement introduces the definition part of this section.

@m PRINT •(word) printf ("%s, world.\n", #word)
/∗ An example of a WEB macro def’n. They are compatible with ANSI C, but have extensions (not

illustrated here) that will be explained later. Long comments that extend over more than one
line can be written like this, in the C commenting style. ∗/

main •()
{
PRINT •(Hello);

/∗ Bullets as subscripts indicate that the name is defined in the current section. ∗/
init 3(); /∗ Example of a function call. The subscript is inserted automatically, and indicates in

which section the function is defined. ∗/
〈Do the computations 2 〉; /∗ Use of named modules makes the code readable. Again, the section

number where this module is defined is inserted automatically. ∗/
PRINT •(Goodbye);
}

18

2. The ‘@ ’ begins a minor section. (No entry is made in the table of contents.) Here the named fragment
〈Do the computations 2 〉 used in the previous module is actually defined. (The definition part of this section
is empty.) The name of this module is ‘Do the computations’; it can be abbreviated (using an ellipsis) for
simplicity in the source because it appeared earlier in full; however, when it’s printed the full name will be
used for readability.

〈Do the computations 2 〉 ≡
{ /∗ Put arbitrary C code here. ∗/
}

This code is used in section 1.

3. In general, function names don’t carry as much information as do named modules, since a module name
can be arbitrarily long and complicated. But function calls have their place as well, as described later.

This function is actually accreted to the unnamed module begun in section 1. Examine the source listing
to see how the section number in the last sentence was generated automatically through the use of FWEB’s
TEX macros \modlabel and \WEBsection.

void init •(void)
{ }

4. INDEX. It’s customary to make the index the last major module.

(Index and remaining material skipped.)

(Page break skipped.)

Note how module numbers are used both in module names and as subscripts to identifiers to help one
find his way around the documentation. (When an identifier is used in the same section in which it is defined,
it is subscripted with a bullet.) These features will be discussed at length later.

3.2 Converting a Fortran program to WEB

We continue to “learn by doing” by considering how to convert a very simple Fortran code to WEB.
Consider the following elementary example:

— Converting a Fortran program to WEB — 19

C --- f0to_web.src---

C A simple Fortran example (that does nothing at all).
program main

C Do the computation of alpha.
call compute
end

C --- COMPUTATIONAL ROUTINES ---

subroutine compute
call compute1
end

subroutine compute1
end

The code consists of one main program and several related subroutines. To convert such a code to WEB,
the standard procedure is to make each program unit a separate WEB section. This is done by prefacing each
program unit by (1) an ‘@*’ or ‘@ ’ command, signifying major or minor sections, respectively; (2) explanatory
TEX text about the purpose and general logic of the program unit, and (3) an ‘@a’ command to signal the
start of the actual code. Since the explanatory text can be absent, the quickest way of converting a Fortran
code is to preface each subroutine with ‘@ @a’. (Actually, one could just preface the entire code with ‘@ @a’,
thereby making the entire code into just one huge section. It would still weave and tangle correctly. However,
in this case one loses one of the most important feature of WEB—namely, a useful index. With everything
in one big section, every index entry would refer to section 1!) Thus, the WEB code one constructs from the
present Fortran source will look something like this:

@z --- f0to_web.web ---

A simple Fortran example (that does nothing at all).

@x
@n
@* The MAIN PROGRAM. {\it (Explain the purpose of the code here, using the
full power of \TeX\ to help you.)}
@a

program main

C Do the computation of~α.
call compute
end

@* COMPUTATIONAL ROUTINES. {\it (Explain the general philosophy of the
computational algorithm here.)}
@a

subroutine compute
call compute1
end

20 — Converting a Fortran program to WEB —

@ {\it (Other computational routines should be minor sections, all grouped
under the major section called ‘‘\.{COMPUTATIONAL ROUTINES}’’.)}
@a

subroutine compute1
end

@* INDEX. {\it (An index is produced automatically. It’s customary to make
the index a separate major section.)}

Notice that in the conversion we removed the comments that preceded the beginning of the program
units. Such comments are best incorporated into the names of major sections or expanded into a more
leisurely prose that becomes the TEX text. However, we left a comment internal to the main program
(almost) intact. However, we took the opportunity to change the word “alpha” into the more meaningful
TEX form “α”. This is not necessary when one is making a first cut at converting a working code,
but in the long run it greatly improves the readability. Thus, the present example weaves to

1. The MAIN PROGRAM. (Explain the purpose of the code here, using the full power of TEX to
help you.)

program main •

// Do the computation of α.
call compute2

end

2. COMPUTATIONAL ROUTINES. (Explain the general philosophy of the computational algo-
rithm here.)

subroutine compute •
call compute1 3

end

3. (Other computational routines should be minor sections, all grouped under the major section called
“COMPUTATIONAL ROUTINES”.)

subroutine compute1 •
end

4. INDEX. (An index is produced automatically. It’s customary to make the index a separate major
section.)

(Index and remaining material skipped.)

(Page break skipped.)

21

This leads us to a very important point: WEAVE does not just transcribe the contents of comments
literally, it treats them as TEX to be typeset. Thus, if your comments weren’t written with TEX in mind but
contain characters that are special to TEX, such as ’$’ or ’_’, TEX may complain or typeset the comments in
weird ways. Users converting large codes may find this quite annoying. However, note the annoyance should
not arise when writing a code in WEB from the start since one should be thinking about and writing in TEX
from the very beginning.

A related point is that authors of pre-WEB codes have sometimes gone to considerable lengths to align
fields within comments in readable, meaningful ways. For example, one might see something like this in a
Fortran code:

C The method is as follows:
C (1) Specify the initial condition.
C (2) Integrate forward one step.

Unfortunately, by default WEAVE will undo most of this painstaking work. Unless one does something special,
the previous comments will come out looking something like this:

/∗ The method is as follows: (1) Specify the initial condition. (2) Integrate forward one step. ∗/

The pretty alignment has been totally lost! This is the price one pays for having the full power of TEX
available. In TEX, one has the powerful \halign macro and other mechanisms to create alignments. Had
one been writing in WEB from the beginning, he would have used that naturally. The best advice, then, is:
Write all your codes in WEB from the very beginning. It’s easier to do that than to convert them later—and
the results are generally spectacular.

Actually, there is a mechanism that will transcribe arbitrary material verbatim to the output. This is
the meta-comment: Any material enclosed between the commands ‘@(’ and ‘@)’ (each of which should begin
in column 1 and be on a line by itself) will be appropriately enclosed in a verbatim environment (slightly
different depending on whether TEX or LaTEX is used). Thus, spaces and alignment are preserved in the
following example:

@(
0 2 4
1 3 5

@)

The meta-comment can be used for purposes other than comments; see the more detailed discussion of
the ‘@(’ command below. In general, it is not recommended that one use meta-comments in lieu of standard
WEB comments whose contents are valid TEX.

In Appendices A–E we describe more complicated instances of WEB programming. Many further examples
can be found throughout the text. As we proceed, we will learn more methods and guidelines for writing
or converting to high-quality WEB code. A more complete review of the typical conversion procedure will be
given later in the section “Usage Tips and Suggestions” below

4. GENERAL RULES

In this section we describe the syntax rules that must be followed in preparing a WEB source file. Al-
though the syntax is ultimately straightforward, the issue itself is somewhat complex because of the need
to simultaneously process source codes written in several different languages. We shall therefore proceed in
stages, first introducing the logic, later discussing nuances and differences between languages.

22 — Text —

4.1 Text

The original documentation for WEB stated the following:

“A WEB file is a long string of text that has been divided into individual lines. The exact
line boundaries are not terribly crucial, and a programmer can pretty much chop up the WEB
file in whatever way seems to look best as the file is being edited; but string constants and
control texts must end on the same line on which they begin, since this convention helps to
keep errors from propagating. The end of a line means the same thing as a blank space.”

Unfortunately, the situation becomes intrinsically more complicated when one desires to support a column-
oriented language such as Fortran–77. However, this detail can be dealt with later. For C and Ratfor
free-form syntax is indeed appropriate, and once you’ve used it you’ll probably hate going back to Fortran’s
clumsy conventions. Note that Fortran–90 allows a free-form mode, which should be used for new codes.
(However, as we will explain below, Ratfor–90 is still easier to use than free-form Fortran–90.)

“Writing WEB programs is something
like writing TEX documents, but
with an additional ‘code mode’ that
is added to TEX’s horizontal mode,
vertical mode, and math mode.”

Two kinds of material go into WEB files: TEX text and code text. A programmer writing in WEB

should be thinking both of the documentation and of the program that he or she is creating; i.e., the
programmer should be instinctively aware of the different actions that WEAVE and TANGLE will perform on

the WEB file. TEX text is essentially copied
without change by WEAVE, and it is entirely
deleted by TANGLE, since the TEX text is
“pure documentation.” Code text, on the
other hand, is formatted by WEAVE and it
is shuffled around by TANGLE, according to
rules that will become clear later. For now
the important point to keep in mind is that

there are two kinds of text. Writing WEB programs is something like writing TEX documents, but with an
additional “code mode” that is added to TEX’s horizontal mode, vertical mode, and math mode.

4.2 Modules

A WEB file is built up from units called modules or sections that are more or less self-contained. Each
section has three parts:

1) A TEX part, containing explanatory material about what is going on in the module.

2) A definition part, containing (1) macro definitions that serve as abbreviations for code con-
structions that would be less comprehensible if written out in full each time, (2) preprocessor
commands that allow one to selectively process the macro definitions, (3) format statements
that tell WEAVE how to deal with identifiers such as macro names that are not in its vocabulary,
and (4) miscellaneous commands related to operator overloading, limbo text, etc.; these will
be explained later.

3) A code part, containing a piece of the program that TANGLE will produce. This code should
ideally be about a dozen lines long, so that it is easily comprehensible as a unit and so that its
structure is readily perceived. (Italics added.) Preprocessor commands may also appear in the
code part, allowing one to selectively include or delete fragments of code.

The three parts of each module must appear in this order; i.e., the TEX commentary must come first, then
the definitions, and finally the source code. Any of the parts may be empty.

— Beginning a module — 23

4.3 Beginning a module

A module begins with
either ‘@ ’ or ‘@*’.

A module begins with the pair of symbols ‘@ ’ or ‘@*’, where ‘ ’ denotes a blank space. A module
ends at the beginning of the next module (i.e., at the next ‘@ ’ or ‘@*’), or at the end of the file, whichever
comes first. The WEB file may also contain material that is not part of any module at all, namely the
text (if any) that occurs before the first module. Such text is
said to be “in limbo”; it is ignored by TANGLE except for any
embedded language-switching commands and copied essentially
verbatim by WEAVE, so its function is primarily to provide any
additional formatting instructions that may be desired in the TEX output. Indeed, it is customary to begin
a WEB file with TEX code in limbo that loads special fonts, defines special macros, changes the page sizes,
and/or produces a title page. You should also place a global language command such as ‘@n’ somewhere in
limbo; see below.

If a source file begins with ‘@z’ as the very first two characters, all text between the ‘@z’ and the end
of a subsequent line begun with ‘@x’ is completely ignored by both processors. This material is intended to
include commentary such as author, date, version, etc. See the demo programs scattered throughout this
manual for simple examples of such commentary.

Modules are numbered consecutively, starting with 1; these numbers appear at the beginning of each
module of the TEX documentation, and they appear as bracketed comments at the beginning of the code
generated by that module in the source program.

Fortunately, you never mention these numbers yourself when you are writing in WEB. You just say ‘@ ’
or ‘@*’ at the beginning of each new module, and the numbers are supplied automatically by WEAVE and
TANGLE. As far as you are concerned, a module has a name instead of a number; such a name is specified
by writing ‘@<’ followed by TEX text followed by ‘@>’—for example, ‘@<Read α and~β@>’.
When WEAVE outputs a module name, it replaces the ‘@<’ and ‘@>’ by angle brackets and inserts the module
number in small type—for example, ‘〈Read α and β 5 〉’. Thus, when you read the output of WEAVE it is
easy to locate any module that is referred to in another module.

For expository purposes, a module name should be a good description of the contents of that module,
i.e., it should stand for the abstraction represented by the module; then the module can be “plugged into” one
or more other modules so that the unimportant details of its inner workings are suppressed. A module name
therefore ought to be long enough to convey the necessary meaning. Unfortunately, however, it is laborious
to type such long names over and over again, and it is also difficult to specify a long name twice in exactly
the same way so that WEAVE and TANGLE will be able to match the names to the modules. Therefore a module
name can be abbreviated after its first appearance in the WEB file, by typing ‘@<α...@>’, where α is any string
that is a prefix of exactly one module name that appears in the file. For example, ‘@<Clear the arrays@>’
can be abbreviated to ‘@<Clear...@>’ if no other module name begins with the five letters ‘Clear’. Module
names must otherwise match character for character, except that consecutive blank spaces and/or tab marks
are treated as equivalent to single spaces, and such spaces are deleted at the beginning and end of the name.
Thus, ‘@< Clear the arrays @>’ will also match the name in the previous example.

We have said that a module begins with ‘@ ’ or ‘@*’, but we didn’t say how it gets divided up into a
TEX part, a definition part, and a code part.

4.4 The definition part

The TEX part ends and the definition part begins with the first appearance in the module of one of a
set of commands. These are distinguished by the attribute that they do not produce compilable code but
rather tell one or the other processor to do or remember something. Those commands will be explained in

24 — The definition part —

detail later; briefly, they are:

@d — Define an “outer macro” whose definition will be copied to the very beginning of the
tangled output file.

@f — Format an identifier to behave like some other identifier.

@l — Specify TEX text for FWEAVE to output at the beginning of the limbo section.

@m — Define an “inner” or “WEB macro” to FTANGLE.

@v — Tell FWEAVE how to “overload” an operator.

@W — Tell FWEAVE how to “overload” an identifier.

@# — Begin a WEB preprocessing command such as @#if.

4.5 The code part

“The code part begins
with the first appear-
ance of ‘@a’ or ‘@<’.”

The definition part ends and the code part begins with the first appearance of ‘@a’ or ‘@<’. The latter
option ‘@<’ stands for the beginning of a module name, which is the name of the module itself. An equals sign
(=) must follow the ‘@>’ at the end of this module name; you are saying, in effect, that the module name stands

for the code text that follows, so you say ‘〈module name 〉 = code
text’. Alternatively, if the code part begins with ‘@a’ instead of
a module name, the current module is said to be unnamed. Note
that (generally) module names cannot appear in the definition
part of a module, because the first ‘@<’ in a module signals the

beginning of its code part. Any number of module names might appear in the code part, however, once it
has started.

(Actually, in FWEB module names can appear in the definition part in certain circumstances. First, a
module name may appear immediately after a format command; see the discussion of ‘@f’ below. Second,
module names may appear in FWEB macro definitions if they are begun by ‘#<’ instead of ‘@<’; see the
discussion of macros below. Finally, module names may appear inside of the vertical bars that signify a shift
into code mode.)

4.6 How TANGLE makes compilable programs out of modules

“There should be at least one
unnamed module, otherwise
there will be no output.”

The general idea of TANGLE is to make a compilable program (or programs, if one is mixing languages)
out of these modules in the following way: First all the code parts of unnamed modules are copied down,
in order; this constitutes the initial approximation T0 to the text of the program. (There should be at least
one unnamed module, otherwise there will be no output.) Then all module names that appear in the initial
text T0 are replaced by the code parts of the corresponding modules, and this substitution process continues
until no module names remain. Then all macros defined by ‘@m’ are replaced by their equivalents, according
to certain rules that are explained later. The resulting code may have pieces in any or all of the sev-

eral supported languages C, C++, Fortran, Ratfor,
and TEX. This code is run through an output driver
appropriate for the language in question; the driver
writes files with the appropriate compiler extension—
‘.c’, ‘.cpp’ (‘.c++’ for UNIX), ‘.for’ (‘.f’ for UNIX),

‘.rat’ (‘.r’ for UNIX), or ‘.x’—and syntax. For example, the Fortran–77 output driver ensures that state-
ments begin in column 7 and are correctly continued if they extend beyond column 72. All comments will
have been removed from these programs except for the verbatim comments (either begun explicitly by ‘@/*’
or ‘@//’ or implicitly selected by the command-line option −v) and the meta-comments delimited by ‘@(’
and ‘@)’, as explained below, and except for the module-number comments that point to the source location
where each piece of the program text originated in the WEB file.

— How TANGLE makes compilable programs out of modules — 25

“If the same name has been given to
more than one module, the code text
for that name is obtained by putting
together all of the code parts in the
corresponding modules.”

If the same name has been given to more than one module, the code text for that name is obtained
by putting together all of the code parts in the corresponding modules. This feature is useful, for exam-
ple, in a module named ‘Global variables’, since a C programmer can then declare global variables in
whatever modules those variables are introduced, but be sure that they will all be grouped together at the

beginning of the code. A similar application
arises in Fortran when one is describing
and defining common declarations. When
several modules have the same name, WEAVE
assigns the first module number as the num-
ber corresponding to that name, and it in-
serts a note at the bottom of that module
telling the reader to ‘See also sections so-

and-so’; this footnote gives the numbers of all the other modules having the same name as the present one.
The code text corresponding to a module is usually formatted by WEAVE so that the output has an equiv-
alence sign in place of the equals sign in the WEB file; i.e., the output says ‘〈module name 〉 ≡ code text’.
However, in the case of the second and subsequent appearances of a module with the same name, this ‘≡’
sign is replaced by ‘+≡’, as an indication that the code text that follows is being appended to the code text
of another module.

The previous paragraph is in Knuth’s original words. Note that he uses “module” and “section” inter-
changably. A more precise distinction might have been to use “section” for the distinct numbered entities
that begin with ‘@ ’ or ‘@*’, and “module” for the concatenations of all sections with the same names. Then
one could say things like “The unnamed module consists of sections 1, 2, and 5.” In any event, the user will
soon get used to how things work. In this article, we have generally chosen to retain Knuth’s original usage
because it makes it easier to quote just what Knuth said.

As TANGLE starts and leaves modules, it writes down the line number of the original WEB file. When
the language is C, this is done in the form of the C preprocessor #line command. This means that when
the compiler gives you error messages, or when you debug your program, the messages refer to line numbers
in the WEB file, rather to ones in the C file. In most cases, you can even forget about the C file altogether.
For other languages, the ‘#’ character is changed to a comment character. Unfortunately, in Fortran and
Ratfor there is no compiler feature analogous to #line that resets the line number, so for those languages
compiler error messages will refer to the output file, not the WEB file.

4.7 How WEAVE makes a TEX file containing documention

The general idea of WEAVE is to make a TEX file from the WEB file in the following way: The first line of
the TEX file will generally be output as ‘\input fwebmac.sty’; this will cause TEX to read in the macros
that define FWEB’s documentation conventions. (If you don’t want this line to be first for some tricky reason,
turn it off with the command-line option ‘−w’. However, you must then say yourself ‘\input fwebmac.sty’
somewhere in limbo.) Next may be inserted special TEX material generated automatically by the ‘@l’ or
‘@v’ commands; see below. The next lines of the file will be copied from whatever TEX text is in limbo before
the first module. Then comes the output for each module in turn, possibly interspersed with end-of-page
marks. Finally, WEAVE will generate a cross-reference index that lists each module number in which each
code identifier appears, and it will also generate an alphabetized list of the module names, as well as a table
of contents that shows the page and module numbers for each “starred” module.

4.8 Starred (major) modules

What is a “starred” module, you ask? A module that begins with ‘@*’ instead of ‘@ ’ is slightly special
in that it denotes a new major group of modules. The ‘@*’ should be followed by the title of this group,
followed by a period. Such modules will always start on a new page in the TEX output, and the group title

26 — Starred (major) modules —

will appear as a running headline on all subsequent pages until the next starred module. The title will also
appear in the table of contents, and in boldface type at the beginning of its module. Caution: Do not use
TEX control sequences in such titles, unless you know that the fwebmac macros will do the right thing with
them. The reason is that these titles are converted to uppercase when they appear as running heads, and
they are converted to boldface when they appear at the beginning of their modules, and they are also written
out to a table-of-contents file used for temporary storage while TEX is working; whatever control sequences
you use must be meaningful in all three of these modes.

Starred sections have associated level numbers, where 0 denotes the most significant level, 1 denotes a
subsection, 2 denotes a subsubsection, and so on. You can indicate the level number in several ways. First,
if the command ‘@*’ is not immediately followed by a digit, then the level is 0. (This was the only possibility
in the original WEB design.) Next, if ‘@*’ is followed by a positive digit, then that digit indicates the level.
(Be default, that digit must be ≤ 4.) Thus, you can say

@* MAJOR. (The level is 0.)
@*3 Subsubsubsection. (The level is 3.)

Note that entries are made in the table of contents for all starred sections, including those whose level is
greater than 0.

Level numbers are processed by fwebmac macros, not by code hard-wired into FWEAVE. The level number
is supplied as an argument to various fwebmac macros, and one can redefine those macros to achieve various
special effects. For example, entries in the table of contents are formatted by the macro \WZ (which is defined
inside the table-of-contents macro \Wcon), whose first argument is the level number n. By default, the entry
is just indented by n ems. However, it is straightforward to achieve more sophisticated effects (such as
various fonts or case) by enhancing the definition of \WZ to include an \ifcase construction. (See how this
is done in fwebman.tex for the table of contents for this manual.) Similarly, by default major sections get a
page break in the woven output, whereas subsections do not; however, that can also be changed by redefining
the fwebmac macro \Wsectionbreak.

The TEX output produced by WEAVE for each module consists of the following: First comes the module
number (e.g., ‘\WM123.’ at the beginning of module 123, except that ‘\WN’ appears in place of ‘\WM’ at the
beginning of a starred module). Then comes the TEX part of the module, copied almost verbatim except as
noted below. Then comes the definition part and the code part, formatted so that there will be a little extra
space between them if both are nonempty. The definition and code parts are obtained by inserting a bunch
of funny-looking TEX macros into the source program; these macros handle typographic details about fonts
and proper math spacing, as well as line breaks and indentation.

(The original WEB employed control sequences such as ‘\M’ instead of ‘\WM’. This makes the tex file
somewhat shorter and more readable and makes the input phase of TEX run a tiny bit faster. However, it
seems undesirable to deny the user most of the single-character upper-case control sequences; the present
FWEB opts for user convenience.)

4.9 Code mode

When you are typing TEX text, you will probably want to make frequent reference to variables and
other quantities in your code, and you will want those variables to have the same typographic treatment
when they appear in your text as when they appear in your program. Therefore the WEB language allows
you to get the effect of source code editing within TEX text, if you place ‘|’ marks before and after the code
material. For example, suppose you want to say something like this while documenting Fortran code:

The integer variable itype is used in such statements as if(itype 6= m) . . .

— Code mode — 27

The TEX text would look like this in your WEB file:

The |integer| variable |itype| is used in such statements as |if(itype != m)|. . .

Note that the WEB file contained the construction ‘!=’ instead of Fortran–77’s standard (and archaic) ‘.ne.’.
In fact, you could have typed either, but WEB gives you the flexibility to type the more modern symbols if
you wish, thereby helping you to write clearer code. The options will be explained in detail later; as much
as possible, they follow the conventions for C. Also, observe that either construction is woven into the more
meaningful symbol ‘6=’.

Incidentally, the cross-reference index that WEAVE would make, in the presence of documentation like this,
would include the current module number as one of the index entries for itype , even though itype might not
appear in the code part of this module. Thus, the index covers references to identifiers in the explanatory
comments as well as in the program itself; you will soon learn to appreciate this feature. However, the
identifiers integer, if , and m would not be indexed, because WEAVE does not make index entries for reserved
words or single-letter identifiers. Such identifiers are felt to be so ubiquitous that it would be pointless to
mention every place where they occur.

Although a module begins with TEX text and ends with code text, we have noted that the dividing line
isn’t sharp, since code text can be included in TEX text if it is enclosed in ‘|...|’. Conversely, TEX text
also appears frequently within code text, because everything in comments (i.e., between ‘/*’ and ‘*/’, or
between ‘//’ and the next newline) is treated as TEX text. Furthermore, a module name consists of TEX
text; thus, a WEB file typically involves constructions like ‘if(x == 0) @<Empty the |buffer| array@>’ where
we go back and forth between code and TEX conventions in a natural way.

In the original WEB design, a module name (@<. . .@>) was not allowed between the vertical bars, because
the first occurrence of the name signified the beginning of the code part. Beginning with version 1.30, this
restriction has been removed. Thus, one can include in his TEX documentation statements like “See section
|@<A@>| for . . . ”. Since code mode is allowed inside module names, it is now also possible to have module
names within module names, as in “@<A = |@<B@>|@>”. (Obviously, it’s possible to abuse this flexibility.)

4.10 Fortran demo program

To summarize and illustrate some of what has just been said, here is an (incomplete) example of
a Fortran program that is intended to read some data, process it, and graph the results. This uses
several features that have not yet been explained, namely macro definition, preprocessor commands, and
format commands, but these are either fairly obvious and/or can be ignored for now. This example tries to
demonstrate how one should liberally use named modules to enhance the logical structure of each module
and to keep the length of each module quite short, and how to use vertical bars to intersperse code mode
with TeX’d documentation.

@z --- demo1.web ---

This file is part of FWEB. It and its woven output demo1.tex is included
into the user manual fwebman.tex.

Author: J. A. Krommes
Version: 1.23
Date: April 1, 1992

@x---

28 — Fortran demo program —

\def\WEB{\.{WEB}} % A TeX macro definition in limbo.

@n/ @% The slash tells Fortran to recognize ’//’ as the start of a short
@% comment rather than the conventional concatenation symbol.

@* DEMO. This example demonstrates the use of named modules, and some other
features of~\WEB.

@#ifndef N
@m N 100 /* If you define this macro from the command line by

saying ‘‘\.{-mN=200}’’, that definition will
override this one. */

@#endif

@a
program main
@<Common declarations@>
@<Read data@>
@<Process data@>
@<Graph results@>
end

@ Accreting and inserting |common| declarations is an interesting use of
named modules.

@f @<Com...@> common

@<Com...@>=
real a(N)
common a

@ Possibly after many more modules that aren’t shown here, we get to code
related to graphics. Here we accrete more information into the common
declarations. The discretized abscissa data is held in the array~|xx|; the
ordinate is in~|yy|.
@<Com...@>=

real xx(N), yy(n) // Example: |call curve(xx,yy,N,1)|
common/graphs/ xx,yy

@* INDEX.

FWEAVE typesets this example as follows.

1. DEMO. This example demonstrates the use of named modules, and some other features of WEB.

@#ifndef N•
@m N• 100 /∗ If you define this macro from the command line by saying “−mN=200”, that definition

will override this one. ∗/
@#endif

program main •

29

〈Common declarations 2 〉
〈Read data 0 〉
〈Process data 0 〉
〈Graph results 0 〉

end

2. Accreting and inserting common declarations is an interesting use of named modules.

@f 〈Common declarations 2 〉 common

〈Common declarations 2 〉 ≡
real a(N1)
common a

See also section 3.

This code is used in section 1.

3. Possibly after many more modules that aren’t shown here, we get to code related to graphics. Here
we accrete more information into the common declarations. The discretized abscissa data is held in the
array xx ; the ordinate is in yy .

〈Common declarations 2 〉 +≡
real xx (N1), yy (n) // Example: call curve (xx , yy , N1, 1)
common /graphs/ xx , yy

4. INDEX.

(Index and remaining material skipped.)

(Page break skipped.)

30

4.11 Modules versus functions

Clearly the concept of WEB modules leads to great flexibility and readability in the construction of
source codes. However, modules can also be misused or, in particular, overused, and these difficulties are
not uncommon for beginning programmers in WEB.

4.11.1 When to use named modules

“Named modules should be used when the
overhead of a function call is unacceptable,
such as, for example, in a computationally
bound inner loop.”

The problem is that although in many ways modules are functionally quite similar to functions or
subroutines, they are not identical. Of course, modules do not take arguments, but that is not so much
the point. Of more concern is that it is in principal possible to create a very large code with just one main
program (consider the above example), even though no section is more than about a dozen lines long, just
by nesting named modules to arbitrary levels. That this is undesirable is usually emphasized when one

attempts to debug such a code;
he may find that it is not easy
to set a breakpoint at a module,
whereas had each module been a
function call one could have set
many breakpoints and obtained
a detailed picture of the control

flow. Also, many compilers have limitations on the maximum length of a function. A partial solution to
this is discussed in a later subsection on debugging, but it is nevertheless true that one should often use
function calls instead of modules. Named modules should be used when the overhead of a function call is
unacceptable, such as, for example, in a computationally bound inner loop. They also find an important use
in making constructions such as large switch statements readable; each case of the switch can be a separate
module. However, very large blocks of code, especially in outer sections of the program, should probably
be accessed with function calls, if possible. Note, though, that certain blocks of code, such as common
declarations in Fortran, cannot be replaced by function calls. For such cases, the use of named modules is
almost always desirable.

As an example of this discussion, it would actually be better to code the main program of the preceding
example as follows:

program main
@<Common declarations@>
call input
call process
call graph
end

Since the main program is not inside a critical inner loop, the slight extra overhead of the subroutine calls
will be imperceptible, and one can easily set a debugging breakpoint at each of the fundamental subroutines
input , process , and graph . A named module is properly used here to insert the common declarations, which
cannot be replaced by a subroutine call.

♣ 4.11.2 Self-documentation and cross-referencing for named modules and identifiers

One of the great virtues of employing named modules is that the names are self-documenting. For
example, it is much more illuminating to see “〈Check that θ lies in the range −π ≤ θ < π; issue a warning
message otherwise 98 〉” than to have to remember what the statement “call check ” does. Furthermore, in
the original WEB design it was not immediately obvious where check was defined. One had to turn first to
the index, look up check , then turn back to the desired section. The extra step of accessing the index is
unnecessary with module names, which have the relevant section number built in.

— Self-documentation and cross-referencing for named modules and identifiers — 31

However, beginning with FWEB version 1.20, certain identifiers such as function names and macro def-
initions also carry the section name in which they were defined, displayed as a subscript—e.g., check 98.
Although this does not solve the problem of self-documentation, it does expedite finding one’s way around
the code. This mechanism is discussed further in the section on “Forward referencing” below.

In fact, it’s possible to the virtues of both self-documentation and function calls if one is willing to do
a bit of extra typing. Consider the following:

@<Check that θ lies in the range $-\pi \le \theta < \pi$;
issue a warning message otherwise@>=

call check

With this trick, the documentation shows clearly what is really happening, but one can still set a breakpoint
at check for convenient debugging.

4.11.3 WEB programming and UNIX

In summary, both function calls and named modules can be used to good advantage in WEB programming.
If they are used properly, the resulting product can be amazingly easy to understand and maintain.

“WEB and UNIX are
not in conflict.”

Nevertheless, the possibility of indiscriminate use of modules has led some programmers, particularly
those used to UNIX, to suggest that WEB programming is a step backwards and defeats the utility of other
tools such as the make utility. Those programmers will delegate each
function to a separate file, then use the make utility to keep them
updated as necessary. However, although this keeps the amount of
compiling to a minimum, this extreme limit can also be criticized on
the grounds that it is very difficult to maintain a sensible, coherent documentation, which was the primary
goal of the WEB system. More reasonably, the ideal solution lies somewhere between the two extremes.
Generally it is reasonable and efficient to combine at least several functions into one source file. Furthermore,
all but the very shortest functions can benefit from being broken into named modules, and common WEB
macros can be easily included with each separate file. WEB and UNIX are not in conflict; they both provide
powerful tools that can be simultaneously applied to complicated programming problems. Both systems
provide the programmer with a great deal of power. It is up to him to use that power wisely and with
discipline. As Knuth admits, the users of WEB must be sophisticated, but they reap significant rewards in
return.

5. The PHASES of WEB

It is not necessary to know in great detail just how WEB accomplishes its various tasks in order to use it
effectively. However, to fully understand some of the material to follow, especially topics related to macro
processing, it is necessary to appreciate that WEB processes its input in several distinct phases: two for
TANGLE; three for WEAVE. These phases are explained briefly here.

First, we must remark that the WEB processors are best viewed as consisting of three parts: an input
driver; the processor proper; and an output driver. Each source language has (at least in principle) a distinct
input driver. The role of the input drivers is to preprocess the incoming text into a uniform syntax that can
be understood by the processor proper. For example, idiosyncratic commenting styles such as Fortran–
77’s column 1 convention are converted by the input driver to the standard C style that the innards of the
processors understand. For WEAVE, the output driver is common to all languages; it creates the tex file. For
TANGLE, the output driver is more or less the inverse of the input driver; it creates c, for, rat, or tx files.
In the following discussion, “input” is best thought of as the input to the processor proper, or equivalently
as the preprocessed output of the input driver.

32 — Phase 1 —

5.1 Phase 1

For both processors, phase one involves tokenization of the input. If the input is TEX material, it is
skipped by TANGLE or absorbed essentially unchanged by WEAVE. Code material is broken up into identifiers,
numerical constants, character strings, etc., and these are represented by special codes. For ease in working
with WEB macros, the concept of identifier is generalized somewhat from the syntax of any of the supported
source languages: identifiers are character sequences of arbitrary length that contain either an alphabetic
character (A−Z or a−z), a digit (0−9), an underscore (’_’), a dollar sign (’$’), or, when the language is
neither C, C++, nor Fortran–90, a per cent sign (’%’); they may not begin with a digit. Case is always
significant. Thus, examples of unique identifiers are

a, A, UPPER_and_lower_case, i5, SYS$TEST, $1, _reserved, %loc

Avoid defining macros or C identifiers that begin with an underscore; such identifiers may be used internally
by the system. Dollar signs or (generally) per cent signs are permitted since some compilers use them to
identify extensions to the standard languages. It is common to enter the source code entirely in lower case,
thereby reserving upper case for possible use in macro definitions. In particular, the reserved words of C or
Fortran, such as for or dimension, are understood only in lower case.

“Avoid defining macros or C
identifiers that begin with an
underscore.”

When an identifier or module name is recognized, both TANGLE and WEAVE store it in a table, along with
its special code. Otherwise, however, the two processors do different things in phase one. TANGLE stores

all of the tokenized code, filing it into the appropriate
(unnamed or named) module. It also memorizes macro
definitions. WEAVE, on the other hand, does not store
the code during phase one. Rather, it merely processes
any format (@f) definitions or operator overload (@v)

commands (both explained later) and constructs a cross-reference table for the identifiers and module names.
This preliminary pass is required in order that forward references to named modules and certain identifiers
can be resolved.

5.2 Phase 2

During phase two, TANGLE outputs the code it has stored. As explained earlier, it begins with the
contents of the unnamed module. If at any point it encounters a reference to a named module, it takes a
detour to dump out the contents of that module. Since modules may contain references to other modules,
and such references can be nested to arbitrary depth, the output routine is recursive. As text is output,
each identifier is examined to see whether it has been defined as a WEB macro. If so, the macro is expanded;
that expansion procedure is also recursive. In the Ratfor mode, certain identifiers such as for or switch
have special significance. These are not macros, exactly; rather, they are special keywords signifying that
special actions should be taken on the text that follows. When one of these keywords is recognized, a special
statement translation function is invoked. The input to that function is the raw output of TANGLE. The
function may request further output, possibly storing up text and outputting it in a different order, possibly
inserting additional statements such as goto into the output. The ultimate output from the statement
translator will be the Fortran equivalent of the original Ratfor construction. Macros and module names
will have been expanded properly during that output.

Thus, at the end of phase two of TANGLE all of the code will have been output in the appropriate order,
in a form acceptable to a language compiler. (See the example in Appendix D.)

Phase two of WEAVE is more complicated. For each module, WEAVE reads the source file again. It copies
the TEX material to the output essentially unchanged. It tokenizes the code and stores it along with the
cross-reference information that it collected during phase one. At the end of the module, it then analyzes
the code hunting for constructions it understands, such as expressions, loops, entire functions, etc. These are

— Phase 2 — 33

processed and output into a series of TEX macros that will typeset the code in a useful, visually appealing
way. (See the examples in Appendices B and E.)

5.3 Phase 3

TANGLE has no phase three.

Phase three of WEAVE sorts the cross-reference information, and writes out the index, alphabetized list
of module names, and the table of contents. In order to expedite advanced editing and other tasks, both
the index and list of module names are written to separate files, which by default are named INDEX.tex and
MODULES.tex. (These can be changed with the style file; see below.)

♣ 6. LANGUAGES

This version of FWEB supports a variety of source languages: Fortran (both Fortran–77 and Fortran–
90), Ratfor (both Ratfor–77 and Ratfor–90; to be explained shortly), C, C++, and TEX. (A future
version may support the language MAKE, defined to be the syntax of UNIX make files.) These languages can
be intermixed within one WEB run. In the simplest situation the programmer will use just one language.
However, it is not uncommon to code the outer, control part of a large program in, say, the C language while
writing the inner, computationally bound routines in Fortran. In such situations, FWEB’s language facilities
are quite useful, since it enables one to maintain the documentation for the entire code in one unified source
file.

6.1 Selecting a language

It is very simple to tell WEB which language is in effect at any point.

6.1.1 Language abbreviations

Each language has an abbreviation that can be used to identify it. These are as follows:

C* — ’c’
C++* — ’c++’
Fortran–77* — ’n’
Fortran–90* — ’n9’

MAKE — ’k’
Ratfor–77* — ’r’
Ratfor–90* — ’r9’
TEX — ’x’

(Strictly speaking, only the first character is the abbreviation; any subsequent text is an optional argument, as
discussed in more detail below. Also, note the ‘n’ for fortraN; an ‘f’ conflicts with the format command ‘@f’.)
Each of the starred languages can be invoked by its own command-line option or control code (these are
explained below in more detail). For example, C can be invoked from the command line by the option ‘−c’,
and from within the web source by ‘@c’. Other languages, such as TEX or (in the future) MAKE, must be
invoked by the general language command ‘−Ll’ or ‘@Ll’, where l is one of the language symbols listed above.
(Case is significant; ‘−l’ means something entirely different.) For example, one can invoke the TEX language
by ‘@Lx’. This general command also works for the starred languages, so that ‘@n’ is equivalent to ‘@Ln’.

6.1.2 Global language

FWEB has the concept of a global language. The global language is defined to be the language in force when
the first module is encountered; namely, at the very end of the limbo stage. It is used as the starting language
of the unnamed module and of the TEX parts of each section. The default global language is Fortran–77,
a reluctant concession to the physics world. However, it is not recommended that you use Fortran–77 for

34 — Global language —

new code, as you will lose a good deal of the statement-processing abilities of FTANGLE. First, you should
consider switching to C or C++, which are choices superior to Fortran for many applications. However,
if you choose to write in a Fortran dialect, then it is strongly recommended that you use Ratfor, as
described elsewhere in this document. Your code will be easier to write (it will be logically clearer and will
involve fewer keystrokes), the result will be substantially more readable, and, therefore, you will ultimately
be more productive.

“It is not recommended
that you use Fortran–
77 for new code.”

One can override the default global language of Fortran–77 in two ways. First, although it is not
recommended except for special situations, one can set it from the command line by using one of the options

‘−c’, ‘−r’, ‘−n’, or ‘−Ll’. Second, you can insert one of the lan-
guage switching commands ‘@c’, ‘@r’, ‘@n’, or ‘@Ll’ anywhere in
the limbo section. Note that if you have such an explicit language
command in your file, it will override anything that was said on
the command line. (You will be warned.) The best practice is to

put the global language command at the very beginning or the very end of the limbo section. (If you put it
at the beginning, it must at present follow any @z. . .@x ignorable commentary.) If you’re programming only
in Fortran–77, you don’t need the @n command. However, as a matter of style, and for compatibility with
future releases, it’s best to always insert a language command explicitly.

6.1.3 Changing languages within modules

All modules, both named and unnamed, have a language. The TEX part of each section will begin in
the global language. Now although language doesn’t matter for TEX text, it does matter if you shift into
code mode by using vertical bars. Unless told otherwise, code between vertical bars will be in whatever
language is currently in force (generally, this will be the global language). If, however, you want that code
to be interpreted according to some other language, you can put a language command immediately after
the opening vertical bar, as in ‘|@n real a(0:n)|’ or ‘|@r repeat {i=f(i);} until(i > 10);|’; that
language switch will be local to the barred material.

Except for this local use of language commands, it is safest (because of certain restrictions in the
Fortran mode) and logically and visibly clearest that language commands begin in column 1, on a line by
themself.

You can also place a language command anywhere in the TEX part, not just between bars, to reset the
language for the rest of that part, but this is neither recommended nor usually necessary.

“You can change languages in
the unnamed module, but that
change is local to one section.”

When the command ‘@a’, which signifies the start of the unnamed module, is encountered (either for the
first or for subsequent times), the language reverts to the global language. You can change languages in the

unnamed module, but that change is local to one
section; it is cancelled by the next ‘@*’ or ‘@ ’.
FTANGLE sorts out the languages and deflects the
code to the appropriate output files. FWEAVE
prints the language commands as a marginal note,

and it identifies the language of any module name not in the global language with a superscript, as in
‘@<C code@>’C.

“The code parts of named modules
inherit the language in force when
that name was first encountered.”

The code parts of named modules inherit the language in force when that name was first encoun-
tered. That language attribute propagates
through all levels of nesting, so that if you
have a named module in, say, the C lan-
guage, all named modules referenced for the
first time in that module will automatically

— Changing languages within modules — 35

be interpreted in C; you don’t need to preface each of those (possibly many) modules with an explicit ‘@c’.

However, if, for example, the global language is Fortran, there must be at least one ‘@c’ somewhere in
your file in order to mix in any C routines at all. The most painless way to do this is to switch languages in
the unnamed module. Put a language command just before a reference to a named module that you want
to be interpreted in C. That one command is all you need to have everything connected with that named
module also be understood to be in C.

When the language is Fortran–77, begin all ‘@’ commands in column 1. This restriction is imposed in
order to help simplify the job of the Fortran input driver, which converts the column-oriented syntax of
traditional Fortran to the free-form syntax that the innards of the WEB processors understand. It’s not a
bad programming style in any event.

6.2 Demo program with two languages

As an example, here’s how you might handle a main program in Fortran and some subroutines written
in C, all of which are here put into the unnamed module.

@z --- demo2.web ---

This file is part of FWEB. It and its woven output demo1.tex are
included into the user manual fwebman.tex.

Author: J. A. Krommes
Version: 1.23
Date: April 1, 1992

@x---

\def\FWEB{\.{FWEB}} % A tex macro definition in the limbo section.

@n/ @% Set the global language to Fortran--77, and allow short comments.
@* MIXING LANGUAGES. In \FWEB, languages can be mixed with a minimum of
effort.
@a

program main /* In Fortran, a \&{program} statement should always
be used. */

call CRTN // We’ll actually do the work in a C~routine.
end

@c @% Temporarily change the language of the unnamed module to C.
@<C code@>; // Link into the web a named module in~C.

@ This is the start of the next section. At this point, the language has
reverted to the global language of Fortran. However, after the equals sign on
the next line the language is~C until the next section is encountered.
@<C code@>=
void CRTN(void)
{
/* The code parts of the following named modules will be understood to be
in~C, since that is the current language when those names are first
referenced. */
@<Compute@>;

36 — Demo program with two languages —

@<Graph@>;
}

@* INDEX.

FWEAVE typesets this example as follows. Note the marginal notation @Lc, which marks the language
change ‘@c’. Also notice how module names not in the global language are superscripted with a language
symbol.

1. MIXING LANGUAGES. In FWEB, languages can be mixed with a minimum of effort.

program main • /∗ In Fortran, a program statement should always be used. ∗/
call CRTN // We’ll actually do the work in a C routine.

end

〈C code 2 〉C; // Link into the web a named module in C.@Lc:

2. This is the start of the next section. At this point, the language has reverted to the global language
of Fortran. However, after the equals sign on the next line the language is C until the next section is
encountered.

〈C code 2 〉C ≡
void CRTN •(void)
{ /∗ The code parts of the following named modules will be understood to be in C, since that is

the current language when those names are first referenced. ∗/
〈Compute 0 〉;
〈Graph 0 〉;
}

This code is used in section 1.

3. INDEX.

(Index and remaining material skipped.)

(Page break skipped.)

When the definition of module @<C code@> is encountered, FWEAVE will properly format it in C. FTANGLE
will also do the right thing, spitting the main program out into a FOR file but the @<C code@> into a C file.
Furthermore, the modules @<Compute@> and @<Graph@> will also be properly interpreted in C, the language
that they inherit from @<C code@>.

37

6.3 Language commands in the definition part

“Identifiers also have
language attributes.”

Language commands may also be inserted in the definition section, and are sometimes necessary. This
situation arises because identifiers also have language attributes; this includes the special cases of reserved
words and intrinsic functions, and it implies that formats and
outer macros (see below) are interpreted according to one partic-
ular language. Although possibly a bit complicated, this allows
one to handle the important case where an identifier is a reserved
word in one language but not in another. For example, dimension is a reserved word in Fortran and
Ratfor, but not in C. The only time when you have to worry about this explicitly is when you’re format-
ting a new identifier with ‘@f’. (Formatting is explained below.) You must be in the language in which you
intend that identifier to be used. This means you may have to switch languages in the definition section,
even if the identifier you’re formatting is used in a named code section immediately below whose language
is already known. This is necessary because modules start off in the global language and the language of
the named module isn’t known until the module name is encountered, after the definition section. Had one
been thinking about multiple languages when the WEB system was first designed, he might have devised a
somewhat more elegant scheme, but it’s too late now. In practice, the present scheme does not seem to lead
to too many annoyances.

Two built-in WEB functions, _LANGUAGE and _LANGUAGE_NUM, are sometimes useful in writing conditional
macros. See the discussion about built-in functions below for their definition. The WEB built-in function
_LANGUAGE (built-in functions are explained below) expands to either ‘_C’, ‘_CPP’, ‘_N’, ‘_N90’, ‘_R’, ‘_R90’,
or ‘_X’, depending on the language currently in effect.

♣ 6.4 Optional arguments to language commands

“Language control codes may always
be optionally followed by text en-
closed by square brackets.”

Some of the language commands may have optional arguments. For example, Fortran–90 is treated as
a dialect of the fundamental language Fortran. It can be invoked by the commands ‘−n9’ or ‘@n9’. Here the
text “9” is the optional argument. An other
example of such a command is ‘@r9’, which
sets the language to Ratfor–90. The lat-
ter means that Ratfor syntax is under-
stood along with Fortran–90 keywords,
and that the Ratfor is translated into Fortran–90 rather than Fortran–77. All the possible arguments
relating to languages are detailed in the section below on command-line options, and in Appendix L.

The preceding examples are special cases of a more general mechanism. Language control codes may
always be optionally followed by text enclosed by square brackets. One may put inside the square brackets
(almost) any option that may be put on the command line, allowing parameters to be reset at each language
change. As a useful shorthand, if a language control code is followed immediate by text (non-white space)
that is not begun by a left bracket, the text is automatically prefaced by a hyphen and the control code,
then enclosed by brackets. That is,

@ntext ≡ @n[−ntext]

so we see, for example, that
@n/ ≡ @n[−n/]

(It may be interesting to know that C++ is handled in this same way—i.e., “@c++ ≡ @c[−c++]”, although
one will generally not need to be concerned with this.) Parameters in force for a given language are saved
when leaving that language and restored when returning to it. Thus, one can mix modules with different
dialects of Fortran, as in

@n9
@

38 — Optional arguments to language commands —

@A
@<Fortran--90 stuff@>
.
.

@n7
@<Fortran--77 stuff@>

@ The code part of this section will be in the global language
of Fortran--90.
@<Fortran--90...@>=

.

.
@ This section will be in Fortran--77.
@<Fortran--77...@>=

.

.

Although it would sometimes be convenient, one cannot at present use shorthand such as ‘@n9&’; you
must say ‘@n9[−n&]’. This restriction is necessary because some arguments expect additional characters to
follow. Thus, the form ‘@n9&’ is, according to the rules above, equivalent to ‘@n[−n9&]’, so the ampersand
would be interpreted as an (invalid) subargument to “−n9”.

Certain options such as macro definitions are forbidden as optional parameters following a language
code. These are specified in Appendix L.

The bottom line about languages is that if one uses only one, one needs to do nothing more than place
one language command somewhere in the limbo section. If one mixes languages, one needs to place at least
one additional language command somewhere in the unnamed module; one has to be slightly more alert, but
not very much so. The intent is that languages should work the way one expects them to, without having
to do much of anything.

♣ 7. MACROS

“Say ‘YES’ instead of ‘1’, or
‘EPS’ instead of ‘1.0e-6’.”

Macro processing—definition of shorthand, readable symbols for otherwise obscure, tedious, or repet-
itive constructions—is one of the most effective ways to enhance one’s coding productivity and the ul-

timate readability of a code. For example, virtually
no numerical constants should appear explicitly in a
well-written source code; they should be defined sym-
bolically in terms of macros instead. Say ‘YES’ instead

of ‘1’, or ‘EPS’ instead of ‘1.0e−6’. If later you decide that ε should be 10−7 instead of 10−6, you need to
change just the single macro definition line rather than to edit many lines of the source code; furthermore, a
well-chosen symbolic name carries much more meaning than a raw number. The C language has a built-in
preprocessor, and that is one of the major virtues of C. Unfortunately, Fortran lacks a macro preproces-
sor. It does contain the parameter statement. However, that statement is highly restrictive: its scope is
restricted to each individual subroutine, and arguments are not allowed. Since often more flexible macro
processing is useful, many people adopt the strategy of running their Fortran code through a preprocessor
such as UNIX’ m4. This extra processing step is annoying at the very least, and also requires one to learn
the syntax of the preprocessor. Although these steps cannot be entirely avoided, their difficulty can be
minimized. Thus, FWEB has its own built-in macro preprocessor. This is patterned after the ANSI C prepro-
cessor, so that users who are either already familiar with C or who are using FWEB to program in both C and
Fortran are presented with a syntax that is essentially language-independent. In practice, this turns out
to be an important consideration. The design and operation of the C preprocessor are also arguably more
convenient than m4 for many applications, although this is certainly a matter of taste to some extent.

— WEB macros — 39

♣ 7.1 WEB macros

WEB macros are de-
fined by ‘@m’.

WEB macros, sometimes called “internal” or “inner” macros, are defined by the command ‘@m’. Temporar-
ily, let us assume that these definitions are made in the definition section (as they should always be, except
for special considerations described below). In general, WEB macros are
expanded when the code is being output in phase two. The exception
to this is when a macro is encountered in a WEB preprocessor statement
(beginning with ‘@#’; see below); then, it is expanded immediately. As
defined for ANSI C, there are two macro forms: “object-like,” and “function-like.”

7.1.1 Object-like macros

Object-like macros have no arguments; they have the form

@m identifier replacement-text [optional C-style comment]

Here and elsewhere, replacement-text is an arbitrary string of symbols (except that module names are not
allowed). The replacement-text may be continued on subsequent lines. Unlike the C preprocessor, which
requires continued lines to end with a backslash, no backslashes are needed (or allowed) for macros con-
tinued in the definition section. The reason for this is that the end of the definition can be determined
from the context; it occurs when the next definition (‘@m’ or ‘@d’), format command (‘@f’), preprocessor
command (‘@#’), limbo text command (‘@l’), operator overloading command (‘@v’), identifier overloading
command (‘@W’), unnamed module command (‘@a’), module name (‘@<’), or new module command (‘@*’
or ‘@ ’) is encountered. The definition of identifier is memorized during phase one. Then, whenever the
identifier is encountered as the code text is being output in phase two, it is replaced by the replacement-text
(which is then rescanned for further macro substitutions).

Simple examples of object-like macros are

@m NO 0 // An object-like macro (having no arguments).
@m YES 1 // It is conventional to use 1 for true, 0 for false.
@m PI 3.14159 // Most constants should be given readable symbolic names.
@m ARG_LIST x,kx,ky,kz
@m DCL_ARGS real x;

integer kx,ky,kz // Notice how easily this macro was continued.
@m BLANK // A null macro, with no replacement text.

Object-like macros are closely related, though not identical, to Fortran’s parameter statement. The
differences are that a WEB macro is known throughout the entire code and will appear in expanded form
in the tangled output, whereas a parameter declaration is local to a subroutine and is expanded by the
Fortran compiler, rather than by TANGLE. This means that your tangled output may be more readable if
you use parameter statements instead of WEB macros. However, although this may be adequate in simple
cases, it will often not be a viable option. For example, to effectively use the preprocessor facility to be
described shortly one must use WEB macros. Furthermore, one can supply arguments to WEB macros, a very
useful feature that we describe now.

7.1.2 Function-like macros

The syntax of function-like macros is

@m identifier(argument-list) replacement-text [optional C-style comment]

The argument-list is a comma-separated list of parameter names. (The list may be empty.) If the argument-
list is terminated by an ellipsis (. . .) instead of a parameter name, the macro is allowed to have a variable

40 — Function-like macros —

number of arguments (unlike ANSI C, which permits only macros with a fixed number of arguments). In
simple cases things work the way one would expect: the actual arguments are determined and the parameters
in the replacement-text are replaced by those arguments. The general mechanism is slightly complex and is
explained below. First, however, here are simple examples of function-like macros. (In some of the examples
to follow, the result of the macro expansion is shown in a comment, enclosed by single left and right quotes.
These quotes are not to be confused with Fortran’s character strings; they would not be part of the actual
macro expansion.)

@r
@* FUNCTION-LIKE MACROS.
@m MULT(a,b) ((a)*(b)) // A macro with 2 args. a and b are dummies.
@m EAT(x) // Gobble up the argument.

@f LOOP for
@m LOOP() do i=0,N;

do j=0,N

@A
z = MULT(x-5,y); // Expands to ‘z = ((x-5)*(y));’.
if(z < 0.0) return NO; // Uses the object-like macro |NO| defined above.
LOOP()

{. . . }

Several remarks can be made about the previous examples. First, a standard remark: the parentheses
in the replacement text of MULT are absolutely essential; consider what would have happened if a had
not been parenthesized. Second, one may ask why LOOP was defined as a function-like macro with no
arguments instead of as an object-like macro. FTANGLE would create the same expanded code in either case.
However, it is useful to define things as we did in order to help FWEAVE format the macro properly. The
format command tells FWEAVE to treat LOOP in the same way that it treats for. In Ratfor the keyword
for expects a parenthesized expression to follow; our definition of LOOP accomodates that. Thus, in the
output it will actually appear in boldface, and the body of the LOOP will be properly indented.

♣ 7.1.3 Extensions to WEB macro syntax

There are two special (and partly experimental) variants of the ‘@m’ command. The construction ‘‘@m* . . . ’’
means that the macros is allowed to be recursive. (However, recursive macros are not implemented in the
present version.) The construction ‘‘@m[letters] . . . ’’ says that this macro is associated with automatic
insertion material. See the subsequent discussion of Ratfor for more details.

♣ 7.1.4 Stringizing

“Several special tokens beginning
with ‘#’ may appear in the replace-
ment text of WEB macros.”

Several special tokens beginning with ‘#’ may appear in the replacement text of WEB macros. The
most important of these are ‘#’ and ‘##’, which are borrowed from the ANSI C preprocessor. In the ANSI

usage, the token ‘#’ (“stringize”) must ap-
pear before a macro parameter (dummy ar-
gument). It and the parameter will be re-
placed by a string literal (appropriate for
the language in force at the moment of ex-

pansion) constructed out of the corresponding actual (unexpanded) argument. (In Fortran, strings are
delimited by single quotes; in Ratfor and C, they are delimited by double quotes.) For the simplest possible
example,

@r
@* STRINGIZING.

— Stringizing — 41

@m S(s) #s
@A
S(Hello); // Expands to ‘"Hello";’.
@n

S(Hello) // In Fortran, the same macro expands to ’Hello’.

What happens when the argument to a stringize operation is already a string? The answer, consistent
with ANSI C, is that the original quotes are escaped appropriately and the whole thing is surrounded by
quotes. Therefore, "hello" stringizes to "\"hello\"" in C. This may not be what you want; see the
discussion of the #* operator below.

♣ 7.1.5 Making single- and double-quoted strings

If one stringizes a parameter in C, the parameter will always be enclosed in double quotes. In cases
involving manipulations of single characters, one may instead desire single quotes. To stringize a parameter
and force it to be enclosed in a particular kind of quote, use the #’ or #" commands, which are extensions
to ANSI. Thus, if in C one defines ‘‘@m A(c) #’c’’, then “A(x)” expands to “’x’”.

♣ 7.1.6 Token pasting

The token ‘##’ (“paste”) merges together the things on either side of it. If possible, a new identifier is
created. For example, pas##te becomes the new identifier paste; however, nothing effectively happens if
one says ‘pas##(’. Note that the token-pasting operation can create new identifiers that may themselves be
macros; these will be expanded when the result is rescanned. For a simple example,

@* PASTING.
@m PASTE(a,b) a##b
@m paste 1
@A
PASTE(pas,te) // Expands to ‘1’.

♣ 7.1.7 Macro expansion

Macro expansion is intrinsically recursive, and one must be aware of the order of expansion of various
objects. The complete expansion of a macro proceeds through several steps. The intent is that the procedure
emulate that of the ANSI C preprocessor.

“Macro expansion is in-
trinsically recursive.”

First, the identifier is recognized and the expected number n of arguments is determined. If the identifier
is object-like, a parenthesized, comma-delimited list of actual arguments is expected (except that if n = 0,
there should be no arguments inside the parentheses). It is an
error if the parentheses aren’t found or if the actual number of
arguments does not agree with the original definition. Within the
parentheses, commas protected by balanced parentheses do not
count in determining the end of the argument. Thus, the second argument to the three-argument macro call
‘MACRO(a,(b,c),d)’ is ‘(b,c)’.

Next, the replacement text associated with the macro is examined. If that text contains instances of
parameters preceded by ‘#’, both ‘#’ and the parameter are replaced by a string built out of the actual
argument (which is not expanded). If there are parameters preceded or followed by ‘##’, those parameters
are replaced by their corresponding actual arguments; again, these arguments are not expanded. Otherwise,
parameters are replaced by the actual arguments after those arguments have been exhaustively scanned for
further macro expansions.

42 — Macro expansion —

After argument substitution, any paste operations are performed. Then the result is rescanned for any
further macros, which will be, in general, expanded. Rescanning continues until nothing was expanded on
the last pass. For example, given the definitions

@c
@m A 1
@m B 2
@m AB 3
@m C(a,b) a + a##b + #b

the macro call C(A,B) becomes after argument substitution and pasting ‘1 + AB + "B"’; this is rescanned
to yield the final result ‘1 + 3 + "B"’. Note that macros inside strings are not expanded, and that macro
rescanning does not simplify numeric expressions such as 1 + 3. (Such simplifications can be accomplished
by the _EVAL built-in function described below.)

In one important situation macros are not expanded. If a macro is being expanded and its name is
encountered again during that expansion, then it is not expanded. This prevents various kinds of infinite
recursion, the simplest candidate being ‘@m A A’—this expands to ‘A’, not an infinite loop. Also, consider the
previous example of PASTE(a,b) and experiment to find out what happens when you say ‘PASTE(PAS,TE)’.
(This construction is illegal.)

@c
@ Here are further examples of stringizing and token-pasting:

@m P(s) #s = s // Displays the result of a macro expansion.
@m VAR(i) var##i // Makes a new identifier name.
@m RECURSE(a,b) a##b(a,b) // Possibility for recursion here.
@m X 1
@m Y 2
@m Z ZZ
@m XY Z
@A
P(VAR(2)) // -> ‘"VAR(2)"=var2’
P(RECURSE(X,Y)) // -> ‘"RECURSE(X,Y)"=ZZ(1,2)’
P(RECURSE(RE,CURSE)) // -> ‘"RECURSE(RE,CURSE)"=RECURSE(RE,CURSE)’

Note that the last example did not get hung in an infinite loop.

The macro facilities that have been described so far are intended to emulate those of ANSI C. A
wide variety of tasks can be accomplished with them. Although in the following paragraphs we describe
various FWEB extensions to the ANSI C preprocessor, it is recommended that you employ these only as a last
resort. The sparser the constructions and features that you deal with, the less likelihood there will be for
programming errors.

43

7.1.8 Including a comma in a macro argument

To include a comma in a macro ar-
gument, use the ‘#,’ token.

Since the arguments of macros are delimited by commas, it is not immediately apparent how to introduce
a comma as part of a macro argument. To
do so, use the ‘#,’ token. For example,

@m A(x,y) [x][y]
@m B(x) A(x)
@a
B(3#,2) // -> ‘[3][2]’

Had one tried here to say “B(3,2)”, he would have elicited an error message, since B is defined with only
one argument.

7.1.9 Concatenating strings

The FWEB macro preprocessor
concatenates adjacent strings.

In ANSI C, adjacent strings, possibly separated by white space, are concatenated on input. Thus,
“"a" "bc"” is equivalent to “"abc"”. FWEB does
not do such concatenation when reading WEB source
code; however, the FWEB macro preprocessor does
do so. Thus, the expansion of the macro defini-
tion ‘‘@m A "1""23"’’ will be “123”. This facility is useful because the preprocessor does not expand macros
inside quoted strings. Thus, with

@c
@
@m PW sexylady
@m MSG "The password is ’"_STRING(PW)"’."

MSG expands into “"The password is ’sexylady’."”. This feature should be particularly useful in For-
tran or Ratfor for easily constructing readable error messages.

♣ 7.1.10 Quoting macros

In some situations, it is desirable to prevent a macro from being expanded. Enclosing a macro with
special characters to prevent expansion is sometimes called “quoting” the macro. In other preprocessors
such as m4, often left and right square brackets are used to prevent expansion; each time a pair of brackets is
encountered, the outer brackets are stripped off. For example, with the definition ‘@m N 10’ the Fortran
source statement ‘[N] = N’ would expand to ‘N = 10’. The m4 preprocessor provides the changequote
command to set the quoting characters. No such quoting facility exists in ANSI C, and experience shows
that one is generally better off without it. For example, the previous example is better handled with the
facilities of FWEB by recalling that the macro processor is case-sensitive while Fortran is not, so one could
simply say ‘n = N’. However, in a few situations quoting is necessary or convenient. For example, it is difficult
to include a comma unprotected by parentheses in a macro argument without quoting it. Unfortunately,
the number of special characters available in FWEB as candidates for quote characters is severely limited;
C has usurped almost all of them (including brackets, in particular) for its own purposes. Presently, in FWEB
one level of quoting can be accomplished by enclosing the text that is not to be expanded with left single
quotes—for example, ‘‘N‘ = N’. (This style of programming is definitely not recommended.) As another
example, consider a C example that aborts by printing the name of a buffer that was overrun by a string
print operation. The example defines a three-argument macro SPRINTF, whose last argument is intended to
actually be a comma-delimited list of arguments. Left quotes can be used to force that list to be treated
as one argument (although see the discussion of variable arguments below for a better way). The example
also illustrates the stringizing operation and an appropriate usage of outer macros (explained below) vs. WEB
macros.

44 — Quoting macros —

@c
@
@d N 1000
@m SPRINTF(buf_name,nmax,args)

if(sprintf(buf_name,args) >= nmax) overflow(#buf_name)
@A
char temp[N];
SPRINTF(temp,N,‘"x = 0.2e\n",x‘);

In general, if you encounter a situation in which you think you need to quote something, pause and think
again; very often there’s a better way.

♣ 7.1.11 Passing quoted strings unchanged through stringize

As noted, when the single token ‘#’ is followed by a macro parameter, the parameter is made into a
string. When ‘#’ is followed by something other than a macro parameter, other actions are taken by FWEB.

Sometimes you would like an existing quoted string to be passed unchanged through the stringize
operation. This can be accomplished with the #* operator. Thus, consider

@c
@* STRINGIZING REDUX.
@m S(s) #s
@m T(s) #*s
@A
S("hello"); // -> ‘"\"hello\"";’.
T("hello"); // -> ‘"hello";’.
@n

S(’hello’) // -> ’’’hello’’’.
T(’hello’) // -> ’hello’.

♣ 7.1.12 Automatic statement numbering

“Numeric statement labels
are unreadable anachronisms.”

For Fortran programmers, the most important of the extensions is related to automatic statement
numbering. There are two distinct possibilities, both begun by ‘#:’. The construction ‘#:0’ expands at the

time the definition is being stored (in phase one) to a
unique statement number. That same number will be
used in all expansions of that macro throughout the
program. Thus, it is possible to completely abandon

numeric statement labels in Fortran simply by “declaring” alphanumeric labels as WEB macros, as in the
following example:

@n
@* STATEMENT LABELS.
@m START #:0
@m DONE #:0
@a

program main
START: continue
DONE: end

Note that alphanumeric labels must be followed by a colon, just as in C. If you are a Fortran programmer,
it is strongly encouraged that you make use of this mechanism. Numeric statement labels are an unreadable
anachronism.

— Automatic statement numbering — 45

If ‘#:’ is followed by a positive integer n, it expands into a unique statement number (the current
automatic statement number plus n) at the time the macro is being expanded (in phase two). That number
can appear more than once in the macro’s replacement text. It will expand into the same statement number
during a given expansion of the macro, but will generate a different unique number in each subsequent
expansion. This feature is useful in defining macros such as error procedures that contain labelled code. For
example,

@n
@m CHECK(i,err_num) if(i >= 0) goto #:1;

call errprint(err_num);
return;

#:1 continue@;

(Of course, this particular example could have been accomplished without statement numbers at all by using
an if . . . end if construction.)

The starting value nnnnn of the automatic statement number can be set by the command-line option
‘−:nnnnn’. Any user statement number must be less than that value. (FWEB does not check that this
restriction is obeyed.) Again, proper use of the ‘#:0’ and ‘#:n’ options should entirely eliminate the need
for explictly-defined user statement numbers in Fortran. Note: Automatic statement numbers are not
intended to replace if-, case-, or do-construct names in Fortran–90. For example, in the legitimate
Fortran–90 construction

iterate: do
...

end do iterate

the label iterate should not be declared as an automatic statement number.

♣ 7.1.13 Preventing macro expansion

Next, we have the “don’t expand” option ‘#!’. As stated earlier, usually actual macro arguments are
exhaustively expanded before they are substituted into macro replacement text. To prevent this, preface a
macro parameter by ‘#!’. Consider, for example,

@c
@* PREVENTING MACRO EXPANSION.
@m A 1
@m S(s) #s
@m R(expr) S(expr)
@m Q(expr) S(#!expr)
@A
S(A) // -> ‘"1"’
R(A) // -> ‘S(1)’ -> ‘"1"’
Q(A) // -> ‘S(A)’ -> ‘"A"’

♣ 7.1.14 Module names in macro definitions

Occasionally one may want to include a module name as part of a macro definition. The original design
of WEB precluded this possibility, since encountering an ‘@<’ construction while in the definition section
signaled the start of a named code section. Therefore, within a macro definition the special construction
#<. . .@> may be used to represent a module name. Thus, you can make definitions such as

@m SHORTHAND #<First stuff@>@; #<Last stuff@>

46 — Module names in macro definitions —

Of course, you lose the readability of the module names in the code proper if you do things this way.
Generally, the module name would be only a small part of a much longer macro definition.

♣ 7.1.15 Macros with variable numbers of arguments

WEB macros may have a variable
number of arguments.

We now discuss macros with variable numbers of arguments. These are indicated by an argument list
that ends with an ellipsis (...). Certain
built-in functions such as IFCASE accept
a variable number of arguments. You can
also define them yourself, using some spe-

cial tokens beginning with ’#’ to help.

The construction ‘#0’ expands into the number of variable arguments (those arguments that replace the
ellipsis). Note that an empty argument is not the same as no arguments. For example, #0 counts as follows:

@m A(...) #0
@a
A => 0
A(x) => 1
A() => 1
A(x,y) => 2
A(x,) => 2
A(,y) => 2
A(,) => 2

The construction ‘#n’, where n > 0, expands into the nth variable argument (counting from 1).

The constructions ‘#{0}’ and ‘#{n}’ are just like ‘#0’ and ‘#n’ except that the argument inside the
braces may be an macro expression [anything that you could put inside @#if(. . .)] that is known at output
time. This is often useful in conjunction with the _DO built-in macro. For example,

@n9
@
@m BFORALL(nmin,nmax,mmin,mmax,...)

forall(i=nmin:nmax,j=mmin:mmax) #{I}(i,j) = #{I+1}(j,i)
@a
_DO(I,1,6,2)

{
BFORALL(1,5,0,20,v1,v2,v3,v4,v5,v6)
}

The construction ‘#[0]’ is just like ‘#{0}’ except that it counts the fixed arguments as well. The
construction ‘#[n]’ is just like ‘#{n}’ except that the counting begins with the first fixed argument. Thus,
in the above call to BFORALL, one has #0 = 6, #{0} = 6, #[0] = 10, #[2] = 5, and #[6] = #{2} = v2.

Finally, the construction ‘#.’ expands into a comma-separated list of all the variable arguments.

As examples,

@m V(x,y,...) x + y + f(#0,#.) + #3
@m V1(x,y,...) x + y _IFCASE(#0,,+g(#.))
@a
V(a,b,x1,x2,x3) => a + b + f(3,x1,x2,x3) + x3
V1(a,b) => a + b

— Macros with variable numbers of arguments — 47

V1(a,b,c) => a + b + g(c)

The V1 example shows that the conditional builtins can often be used to advantage in conjunction with
variable arguments.

We can use variable arguments to reconsider the previous example of the SPRINTF macro:

@m SPRINTF(buf_name,nmax,...)
if(sprintf(buf_name,#.) >= nmax) overflow(#buf_name)

@a
char temp[N];
SPRINTF(temp,N,"x = 0.2e, y = 0.2g\n",x,y); // 2 fixed args, 3 variable ones.

This works just fine. However, a special feature of this example is that valid syntax demands that there be
at least one variable argument (the string template). Suppose instead we had defined

@m SPRINTF(buf_name,nmax,strng,...)
if(sprintf(buf_name,strng,#.) >= nmax) overflow(#buf_name)

Now there’s potential difficulty when there are no variable arguments. For example, one might expect
“SPRINTF(temp,N,"hello")” to expand to “if(sprintf(temp,"hello",) . . . ”; however, the missing ar-
gument is invalid C syntax. Since this kind of construction seems to arise fairly frequently, we have the
following special experimental rule: if #. is empty and it immediately follows a comma in the macro expan-
sion, the comma is deleted. (Whether this is a good idea remains to be seen. More elaborate alternatives
are possible; complain if you don’t like this.)

♣ 7.1.16 Debugging macros

If one wishes to debug an errant macro, there are several possibilities. First, one could simply dump its
current expansion into the output file. For example,

@m DUMP(...) [#.]
@a
DUMP(A,B(1),C(x,y,z))

writes a comma-separated list of the expansions of three macro calls, surrounded by brackets. Alternatively,
one can write information to the terminal with the built-in function _DUMPDEF. The format is the same as
above; just replace DUMP by _DUMPDEF. For each macro call in its argument list, _DUMPDEF writes two lines.
The first is a representation of the original macro definition; the second is its current expansion.

♣ 7.2 Outer macros

To defer macro expansion
to an external preproces-
sor, use the ‘@d’ command.

As we have said, WEB macros are expanded by TANGLE as it creates the compilable output file during
phase two. This means that the output file, which is what you will actually be debugging, need not be
very readable if the macros were at all sophisticated (and,
therefore, very useful). For Fortran programming, one
has no choice. However, for C programming it is desirable
to defer macro expansion to the C preprocessor so that your
output file remains readable. This can, of course, be done
with no special effort just by using the C preprocessor #define command as part of your code fragment.
Usually, you should insert these in the code section of the module in which they are first used so that the
flow of the logic is clearest. However, what you usually really want is for your preprocessor definitions to
appear at the top of your file, no matter where you actually defined them. (There are exceptions to this.) To
help you achieve this effect while maintaining logical clarity, the WEB system supports the concept of “outer

48 — Outer macros —

macros”. These are defined by the command ‘@d’, which is allowed in the definition section only. WEB does
not expand these; rather, it just collects them and copies them at the start of phase two to the beginning of
the output file in a format appropriate for the relevant language compiler. For symmetry, the command ‘@u’
is also provided to undefine an outer macro.

The format of outer macros depends on the language in force. If the current language is C, the outer
macros should, of course, be in the format appropriate to the C preprocessor; an outer C definition of the
form ‘@d A 1’ will appear in the beginning of the C output file as ‘#define A 1’. Otherwise, the outer
macro should be in the format appropriate to the m4 preprocessor. In languages other than C, the definition
‘@d (B,2)’ will appear in the beginning of the output file as ‘define(B,2)’. (With the advent of FWEB’s
macro processor, the need for outer macro definitions in languages other than C should virtually disappear.)

For example, when the language is C, the statements

@
@d A 1
@d B 2

@
@u A
@d A 2

will be output as follows:

#define A 1
#define B 2
#undef A
#define A 2

A C program maintained with WEB should almost exclusively contain the outer macro, ‘@d’ commands.
The internal, ‘@m’ commands should be used only when the WEB system provides a macro feature not included
in the C preprocessor. Those features mostly include stringizing and token pasting (included in the ANSI
C standard, but not in many extant compilers). If you are using an ANSI C compiler, your need for WEB
macros will be slight, although a few of the extensions such as #! or variable arguments may prove useful.

♣ 7.3 Deferred macros

Returning now to the internal WEB macros, their order of evaluation requires further discussion. It
is important to understand that all text, including macro definitions, is collected, tokenized, and stored
during TANGLE’s phase one. However, with certain exceptions (involving the preprocessor) to be described,
no macros are actually expanded during phase one. The reason for this is that the actual source text in
which the macros are embedded and on which they must operate is not known until all the text has been
collected and placed into the proper modules. Therefore, it is during phase two, when the completed code
text is output, that macros are expanded. However, in the original design of WEB this led to an annoying
difficulty—namely, WEB macro definitions could be retroactive.

The situation arises as follows. In the original design, macros were allowed only in the definition section
of a module. Since all such macros definitions are collected during phase one, they are all known by the
time code is output during phase two. (Effectively, they are all placed at the top of the unnamed module.)
Thus, a definition made in the definition section of, say, module 100 could lead to a macro being expanded
in module 1 if the code in module 1 contained a reference to that macro name. Although this is usually the
desired effect, it may not be in all cases. Consider, for example, the following example (see the discussion of
preprocessor commands, below):

@ Here is a peculiar example of retroactive macro definition.

— Deferred macros — 49

@m A 1
@#if(A==1)

x = A;
@#else

x = B;
@#endif

@ Another section.
@m A 2
.
.

Here the generated code will be “x = 2;”, not “x = 1” or “x = B;”. Note also that since the sections,
hence the definition parts, are not required to appear in any particular order, the order of encountering WEB
macro definitions is somewhat indefinite. This can lead to confusion and hard-to-understand bugs if macros
are redefined and sections are subsequently moved around.

Don’t define WEB macros in
the code part unless you ab-
solutely have to.

For complete flexibility, therefore, FWEB introduces the notion of deferred macros. Deferred macros are
nothing more than WEB macros defined (again with ‘@m’) in the code section rather than in the definition
section. A deferred macro definition, although it is stored away in a safe place during phase one, becomes
known to the WEB macro processor only at the point in the code where the definition is made, when the
code is being output during phase two. Thus, the order in which the deferred macro definition is made
is unambiguous (it is determined by the intrinsic structure of the code, not by the order in which things
were explained) and the deferred definition cannot be
inadvertently expanded retroactively. Remembering
the previous discussion of C preprocessing, we see a
complete analogy: deferred WEB macros are analogous
to the use in C of #define; both are used in the code
section. All definitions made in the definition part behave similarly in that they are placed at the beginning
of the appropriate place: outer macro definitions (‘@d’) are placed at the beginning of the output file; WEB
macro definitions in the definition part (‘@m’) are effectively placed at the beginning of the unnamed module.

Most of the time, it will be adequate to define a WEB macro in the definition part, thereby placing it at
the beginning of the unnamed module, and it is recommended that you do so whenever possible. Reserve
deferred macro definitions for those relatively rare instances when the order of defining the macro really does
matter.

Although deferred @m commands work as specified, presently preprocessor commands (see below) such
as @#if or @#undef do not work as one might expect when referring to deferred macros. Presently, such
commands are executed during phase one (on input), whereas the deferred macros become known only
during phase two (on output). Luckily, there is an an alternative way of handling preprocessing during
output, namely to use built-in functions such as _IF. See the discussion of built-ins below.

♣ 7.4 Language dependence of macros

WEB macros are by and large not sensitive to language when they are being memorized, and with a
few exceptions they will expand in the same way no matter what language is current during output. (An
example of an exception is the behavior of the stringizing operation, which must build a string using either a
single or double quote depending on the language. Another example is the _ROUTINE built-in function which
at presently is defined only for Ratfor.) Generally such uniform expansion is desirable. For example, here
is how one can supply a macro definition in C and a parameter statement in Fortran with a common
value:

50 — Language dependence of macros —

@n
@ Web macros are known to all languages.
@m NN 100 // One can affect all languages by changing this one number.
@c
@d N NN
@A

parameter(N=NN) // A fragment of a Fortran code.
@c
@<C functions@>@;
@ A simple C routine.
@<C...@>=
f()
{
return N;
}

If language-sensitive behavior is desired, it can be achieved by using the _LANGUAGE built-in function in
conjunction with an _IFELSE, or the _LANGUAGE_NUM built-in in conjunction with an _IFCASE. See further
discussion below.

WEB macros can be de-
fined from the command
line with the option ‘-m’.

WEB macros can also be defined from the command line by using the command-line option ‘−m’. (See the
detailed explanation in the section about command-line options.) Command-line macros are processed at

the beginning of the first definition section. Defining macros
from the command line is an efficient way to customize a
code without re-editing it. For example, you can supply
fixed array bounds to a Fortran program employing one
of the two equivalent statements

FTANGLE test -mN=1000
FTANGLE test -m"N 1000"

which is equivalent to saying ‘@m N 1000’ at the beginning of the first definition section, then including
statements such as ‘integer x(0:N)’ in your code. The facility is particularly useful in conjunction with
the FWEB preprocessor, to be described next.

51

♣ 7.5 Preprocessing

A common situation arises when one is designing a code to run on more than one machine. One might
want to define a macro with machine-dependent values, or one might want to selectively include one or
another piece of code. In addition to macro definitions, WEB has a complete preprocessing language to help
in this respect.

“The WEB preproces-
sor is patterned after
that for ANSI C.”

The WEB preprocessor is patterned after that for ANSI C. All preprocessing commands begin with ‘@#’.
As in ANSI C, they need not, in general, begin in in column 1
(they must do so, at present, in Fortran’s fixed-format mode).
Unlike ANSI C, however, there may be no white space between ‘@#’
and the command name. (WEB interprets an isolated ‘@#’ as a
command to insert a blank line.) In C and Ratfor they may be
continued to subsequent lines by using a backslash; in Fortran, they are presently restricted to end on the
same line (including any optional comment). They are

@#define macro name replacement text
@#undef macro name
@#ifdef macro name
@#ifndef macro name
@#if expression
@#elif expression
@#else
@#endif

The ‘@#define’ command is entirely equivalent to ‘@m’. One can undefine a macro definition with ‘@#undef’.
(All previous definitions are completely lost; definitions are not stacked.) ‘@#ifdef’ and ‘@#ifndef’ test
whether a macro is or is not defined. (These commands are special cases of ‘@#if’; see the discussion of the
‘defined’ operator below.) The ‘@#if. . .@#elif. . .@#else. . .@#endif’ construction evaluates expression,
which must consist of symbols known to the preprocessor at the current point of the input scan, then takes
action depending on whether expression is true (nonzero) or false (0). All preprocessing commands may
appear in either the definition part or the code part. In the definition part, FTANGLE will not process macro
definitions that are between the false part of the preprocessor conditionals. In the code part, FTANGLE will
not store or output code that is between the false part. The conditionals may be nested.

Note that all preprocessor commands, including in particular those in the code section, are expanded
during phase one. This is a design flaw (maybe it will be corrected someday) that means that the preprocessor
commands will not work correctly with deferred macros, which become known only during phase two. If
you need to use deferred macros with preprocessor commands, use the built-in forms of the preprocessor
commands such as _IF. Built-ins are discussed below.

Use of the WEB preprocessor is entirely analogous to that of C. If you are a C programmer, you will need
the WEB preprocessor commands relatively rarely; operations on your source code are usually better done
with the C preprocessor. If you are a Fortran programmer, however, you should find the preprocessor
facility extremely useful.

It is conventional to end long preprocessor constructions as follows, to enhance the quality of the
documentation:

@#if(CRAY)
. . .
@#endif // |CRAY|

52

♣ 7.6 Expression evaluation

The expression in constructions such as @#if expression is evaluated by a built-in expression evaluator
that can also be used for other purposes, such as in macro expansion. Its behavior is again motivated by
expression evaluation in ANSI C; it is not quite as general, but should be more than adequate. It supports
both integer and floating-point arithmetic (with type promotion from integer to floating-point if necessary),
and the ANSI ‘defined’ operator. Operators with the highest precedence (see table below) are evaluated
first; as usual, parentheses override the natural order of evaluation. The unary operator ‘defined’ has the
highest precedence; all the other unary operators have the next highest (and equal) precedence; then come
the binary operators. When the operator exists in C, the action taken by FWEB is precisely that that the
C compiler would take. Arithmetic is done in either long or double variables, as implemented by the
C compiler that compiled FTANGLE. (This was the easy choice, not necessarily the most desirable one.)

The operators, listed from highest precedence to lowest, are as follows:

Unary operators:
defined — ‘defined’ is a unary operator that acts on identifier tokens. ‘defined id’ or

equivalently ‘defined(id)’ evaluates to 1 (true) if the identifier is defined
as a WEB macro; to 0 (false) otherwise. The construction ‘@#if defined A’
works the same way as @#ifdef A, but you can use ‘defined’ in expressions,
as in

@#if defined(A) || defined(B).

(The parentheses around the macro names are optional.) With the advent of
‘defined’, the WEB preprocessor statements @#ifdef and @#ifndef become
redundant, but are often useful shorthands.

- — Unary minus.
! — Logical NOT. !expression evaluates to 0 if expression is nonzero, and evaluates

to 1 if expression is 0.
~ — One’s complement of an integer. For example, ~0 = −1.

Binary operators:
^^ — Exponentiation (all languages). 2^^3 = 8.
^, ** — Exponentiation (Fortran or Ratfor).
*, /, % — Multiplication, division, and modulus: a % b means a mod b; for example, 5 % 3

= 2.
+, - — The usual plus and minus.
<< — a << b means shift integer a left b bits. 1 � 3 = 8.
>> — As above, but right-shift. 7 � 2 = 1.
<, <=, >, >= — Evaluates to 1 if the inequality holds, to 0 otherwise. E.g., (2.0 < 3.0) evaluates

to 1.
==, != — a==b (a!=b) evaluates to 1 (0) if a equals b; evaluates to 0 (1) otherwise.
& — Bitwise AND. The truth table is 0b1100 & 0b1010 = 0b1000.
^ — Bitwise EXCLUSIVE OR (C). (For Fortran, use ‘.xor.’.) The truth table is

0b1100 .xor. 0b1010 = 0b0110.
| — Bitwise OR. The truth table is 0b1100 | 0b1010 = 0b1110.
&& — Logical AND. a && b evaluates to 1 if both a and b are true (nonzero).
|| — Logical OR. a || b evaluates to 1 if either a or b are true.

Note in particular the use of the single caret, which is language-dependent: it is an exponentiation operator
for Fortran (just as in TEX), but the EXCLUSIVE OR operator for C. Also, note that the bitwise operators
should almost never be used. For logic, almost always you will be using ==, !=, &&, and ||.

— Expression evaluation — 53

The preprocessor commands are “active” only for FTANGLE. FWEAVEwill format them in a reasonable way,
but you can’t, for example, comment out some active WEAVE operation such as ‘@f’ with ‘@#if. . .@#endif’.
Furthermore, you can’t use preprocessor commands to comment out the ‘@i’ include statement. (Include
statements are processed by the input driver, so the ‘@i’ command never gets to the innards of the WEB
processors. A single ‘@i’ command can be commented out with ‘@%’, since ‘@%’ is also processed by the input
driver.)

Here are some suggested uses for the preprocessing facility. To comment out code, say

@#if(0) // You can also say ‘‘@#if 0’’.
code // This text will not appear in the tangled output.

@#endif

To conditionally define a macro, say something like

@m CRAY // You might define this macro from the command line.

@#ifdef CRAY
@m CRAY 1
@m VAX 0

@#else
@m CRAY 0
@m VAX 1

@#endif // |defined CRAY|

@#if CRAY
@m INIT cray code

@#else
@m INIT vax code

@#endif // |CRAY|

To conditionally select a block of code, say something like

program main
@#ifdef CRAY

@<Cray stuff@>
@#else

@<Vax stuff@>
@#endif // |defined CRAY|

end

♣ 7.7 Built-in macro functions

“FWEB contains a small num-
ber of built-in functions.”

In certain circumstances a macro function is desired that cannot be accomplished by a user definition,
or is so ubiquitous that it seems useful to save the user the trouble of defining it himself. Therefore,
for enhanced flexibility, FWEB contains a small number
of built-in functions. Each of these functions begins
with an underscore and is fully in upper case. These
functions behave just like WEB macros. Therefore, do
not define any macros of your own that begin with underscores, even if they don’t correspond to the name
of a built-in function. This restriction is intended to prevent conflict with certain auxiliary macros used
internally by WEB in the course of expanding its built-ins.

The following list describes the built-in functions in a (somewhat) logical order. They are summarized
alphabetically in Appendix L.

54 — EVAL —

♣ 7.7.1 EVAL

The built-in function _EVAL evaluates its argument using the preprocessor expression evaluator described
above. (If an error is encountered during the evaluation, a message is printed and the argument is returned
without any evaluation.) For example,

@m A 2
@m B 3
@A
_EVAL(defined A && defined(B)) // ‘1’
_EVAL(A + 5.0*B) // ‘17.0’ (Note the promotion to floating point.)
_EVAL(A==B) // ‘0’
_EVAL(A==1 || A==2) // ‘1’
_EVAL(x) // ‘x’
array[_EVAL(B+1)] // ‘array[4]’

The last example above shows a common usage of _EVAL, namely in providing more readable tangled code.
That is, although many C compilers accept the construction array[3+1], in some circumstances it may be
more meaningful to see array[4] while you’re debugging.

♣ 7.7.2 DEFINE, M, IFDEF, IFNDEF, UNDEF

A built-in form of deferred macro definition is achieved via _DEFINE or _M. These two names are syn-
onyms; they are used by enclosing in parentheses all the text that would normally follow an ‘@m’, such
as

_M(N 5) // Equivalent to ‘@m N 5’.
_M(X(a,b) ((a)-(b)))

A subtlety occurs with a definition of the form “_M(foo (bar))”. Because spaces are removed early in
the tokenization process, this definition is equivalent to “@m foo(bar)” (a one-argument macro with null
replacement text) instead of what one probably intended, “@m foo (bar)” (a zero-argument macro). To get
the latter effect, say “_M(foo=(bar))”.

The companion macros _IFDEF, _IFNDEF, and _UNDEF are also provided. The syntax of the first two
is, e.g, _IFDEF(id,true_text,false_text). Remember, these are macros, so their arguments must be
enclosed in parentheses—e.g., _UNDEF(X).

♣ 7.7.3 DO

A powerful means of repetitively defining a macro is provided by _DO. The syntax is

_DO(I,Imin,Imax[,dI])
{
text
}

This command is FWEB’s version of the Fortran do loop. It behaves as though one said “do I =
Imin, Imax[, dI] {text}”, where the equals sign means a macro definition. The loop index should not
be used as a WEB macro for any other purposes, since its previous definition will be destroyed.

(For symmetry, there ought to be a FOR statement, but that’s not in place yet.)

— INCR, DECR — 55

♣ 7.7.4 INCR, DECR

The macros _INCR and _DECR increment or decrement by 1 a macro that expands to a number. For
example, if the WEB macro N expands to 5, then _INCR(N) redefines N to be 6. These are included for
convenience; they are defined in terms of _M and _EVAL.

♣ 7.7.5 IF

The conditional _IF(expr,true_text,false_text) expands to true_text if expr is true, or to false_text
otherwise. Note that in almost all situations the preprocessor commands @#if. . .@#else. . .@#endif provide
a better, more readable alternative to _IF; use this built-in only as a last resort. One case in which you must
use _IF is when expr contains a deferred macro.

♣ 7.7.6 ABS, MAX, MIN

A few other constructions built out of _IF have been included for convenience: _ABS(a), _MAX(a,b),
and _MIN(a,b).

♣ 7.7.7 IFCASE

The _IFCASE macro provides conditional evaluation based on the value of a control integer. It is
analogous to TEX’s \ifcase macro or to Fortran’s computed goto. The format is

_IFCASE(m,case_0,case_1,. . .,case_n,default)

Here m is an expression that evaluates to an integer in the range 0 ≤ m ≤ n, and the macro expands into
the text case_m. If m is not in the above range, then the default text is returned. (This is an example of a
macro that uses a variable number of arguments.)

♣ 7.7.8 IFELSE

The m4-like conditional _IFELSE(macro1,macro2,true_text,false_text) expands each of macro1 and
macro2, then does a character-by-character comparison. If the results are identical, true_text is returned,
otherwise, false_text is returned. Whenever possible use @#if instead. Again, if macro1 or macro2 involve
a deferred macro, you must use _IFELSE.

♣ 7.7.9 LEN

The macro _LEN(s) interprets its argument as a character string (without expanding it if it is a macro)
and returns the length of that string. For example, if you say ‘‘@m N 56’’, then _LEN(N) −> 1. Note that
the string does not need to be in quotes; that’s done for you. As a more complicated example, here’s one
way to create a self-counted Hollerith string:

@m HOL(s) _LEN(#!s)##H###!s // HOL(abc) -> ‘3Habc’

Note that we had to be alert for the possibility that the argument to HOL might inadvertently be a macro
name, so we prevented expansion with the #! operator.

♣ 7.7.10 POW

The exponentation macro _POW(x,y), which expands x and y and returns xy, is included for convenience;
it is equivalent to _EVAL((x)^^(y)).

56 — TRANSLIT —

♣ 7.7.11 TRANSLIT

The macro _TRANSLIT(s,from,to) interprets each of its arguments as strings (without expanding
anything). Then s is modified by replacing any of the characters found in from by the corresponding
characters in to . If to is shorter than from , then the excess characters in from are deleted from s .
As a limiting case, if to is empty, then all the characters in from are deleted from s . For example,
_TRANSLIT(s,aeiou,12345) replaces the vowels in s by the corresponding digits, and _TRANSLIT(s,aeiou,)

deletes all the vowels. The backslash may be used to escape a character, as in ANSI C. For example,
_TRANSLIT("a\"\\d","d\\a\"","D,A’") translates into ‘ A’,D’. Here we had to explicitly enclose strings
involving ’\"’ in double quotes in order to avoid a complaint about an unterminated string.

♣ 7.7.12 A

The macro _A is the built-in equivalent of the @’ or @" command. The construction _A(’x’) functions
essentially the same as the command “@’x’”, and “_A("xyz")” is essentially the same as @"xyz". (We say
“essentially” because the @’ and @" commands are expanded on input, whereas the built-in function _A

is expanded on output.) The need for such a built-in is evident from the following example, in which the
quantity to be converted to ASCII is constructed via macro expansion:

@m OCTAL(n) OCTAL0(\@&n)
@m OCTAL0(n) _A(#’n) // OCTAL(123) -> _A(’\123’) -> 0123.

Here one couldn’t say something like “@m OCTAL(n) @’n’” for two reasons: first, @ commands are expanded
on input; second, the n parameter wouldn’t be expanded because it’s inside a quoted string. (Do you
understand the function of the @& command in the definition of OCTAL?)

♣ 7.7.13 STRING

The macro _STRING(macro) expands its argument, then makes a string out of it (using the #* operator).
That is, it provides one extra level of expansion over the basic stringize operation. Compare, for example,
the following expansions:

@c
@m A 1
@m S(s) #s
@A
S(A) // ‘"A"’
_STRING(A) // ‘"1"’

This macro is included for convenience, as the user can define it himself.

♣ 7.7.14 UNQUOTE, P

For certain special effects, one has the _UNQUOTE built-in function (formerly called “_VERBATIM”). If one
says “_UNQUOTE("string")”, the macro returns string without the surrounding quotes. For example, this
provides a way of getting the special character ’#’ into the output from within a macro. For example, the
following macro creates C preprocessor keywords:

@m PP(keyword) _UNQUOTE("#")##keyword

For the user’s convenience, the macro _P is a synomym for _UNQUOTE("#"). However, there is a subtlety
here. Do you understand why if one says

@m QQ(keyword) _P##keyword

— UNQUOTE, P — 57

one gets the following?

PP(define) // -> ‘#define’
QQ(define) // -> ‘_Pdefine’

To answer this question, carefully study the rules about macro expansion and pasting. The proper way of
defining QQ is to protect _P with left quotes:

@m QQ(keyword) ‘_P‘##keyword

♣ 7.7.15 L, U

Occasionally it is useful to change the case of a string parameter to a macro. This can be accomplished
by means of the built-in functions _L (change argument to lower case) and _U (change to upper case). The
arguments to these functions must be quoted strings; they return the case-converted string, also quoted. For
example, “_L("ABC")” returns “"abc"”.

The built-in functions ‘ L’ and ‘ U’
change the case of their arguments.

An application in which such actions might be useful concerns mixed programming in C and Fortran.
Suppose that in one’s C program the Fortran functions to be called had been distinguished by writing
them in upper case. The code is sup-
posed to be portable, and on at least
one machine the case-sensitive linker
understands things just as they are.
However, suppose that on some other machine the Fortran library was compiled by a compiler that pro-
duced lower-case names—and, for good measure, had appended an underscore to the name. (This is precisely
what happens on Sun workstations.) Here is how to macro up the situation to make everyone happy:

@c
@ In the \WEB\ program \Fortran\ functions will be in upper case,
C functions will be in lower case.
@#if VAX

@m F(name) name
@#else

@m F(name) _UNQUOTE(_L(#name))##_ // Stringize, convert to l.c.,
remove quotes, append ’_’.

@#endif
@a
cfcn();
F(FORFCN)(); // Either |FORFCN()| or |forfcn_()|, depending on machine.

♣ 7.7.16 COMMENT

The macro _COMMENT(string) generates a comment in the output file. This is useful for macro def-
initions in which comments are desired; the usual C-style comments are stripped off as the definition
is being absorbed. Thus, in C, the definition ‘@m TEST a;_COMMENT("Hello, world")b;’ expands into
‘a;/* Hello, world */b;’. Note that the string argument must be in quotes. (Actually, this is essential
only when the argument contains commas; otherwise, the commas will be interpreted as argument delimiters
and an error message about the wrong number of arguments will ensue. However, it is good practice to
always use the quotes.) If you had wanted the comment to be on a separate line, you could have inserted
newlines into the string, as in "\nHello, world\n". In Fortran, the comment is automatically put on a
separate line.

58 — ASSERT —

♣ 7.7.17 ASSERT

Error mechanisms are provided by several macros, _ASSERT and _ERROR. The _ASSERT(expression)
macro evaluates expression. If that expression is false, an error message is sent (to both the terminal and the
output file) and processing is aborted immediately. This feature, motivated by ANSI C, is intended to help
one verify certain conditions that must be true in order for processing to proceed. For example, suppose you
always intended to define the macros N1 and N2 from the command line. To make sure you didn’t forget,
you could say at the beginning of your code

ASSERT(defined N1 && defined N2)

Like all of the built-ins, _ASSERT is expanded on output, during processing of the code part. It will have
no affect if it appears in the definition part.

♣ 7.7.18 ERROR

The _ERROR(string) macro sends string to the standard error message facility, but does not abort.
Thus, _ERROR("That didn’t work") generates an error message giving the line number and the file in which
the macro was expanded. Note that the string argument must be in quotes.

♣ 7.7.19 DUMPDEF

The _DUMPDEF built-in is used for debugging WEB macros. It takes an arbitrary number of macro calls,
separated by commas, as in

_DUMPDEF(A,B(1),C(x,y,z))

where it is assumed that A, B, and C are macros with 0, 1, and 3 arguments, respectively. For each macro,
two lines are written to the terminal. The first is a representation of the original macro definition, the second
is the expansion.

♣ 7.7.20 LANGUAGE, LANGUAGE NUM

The two built-in functions _LANGUAGE and _LANGUAGE_NUM provide ways of endowing a WEB macro with
a language attribute. The _LANGUAGE macro expands into an identifier (not a macro, unless you define
it yourself) such as ‘_C’. (See the table below.) It is intended to be used in an _IFELSE statement. The
_LANGUAGE_NUM macro expands into an integer (see the table below) and is intended to be used as the first
argument to an _IFCASE.

Language LANGUAGE LANGUAGE NUM
C C 0
C++ CPP 1
Fortran–77 N 2
Fortran–90 N90 3
Ratfor–77 R 4
Ratfor–90 R90 5
TEX X 6

For example, here is a way of defining a macro to be the “natural” lower array index in either of C or
Fortran, assuming that one programs in only those two languages.

@m LOWER _IFELSE(_LANGUAGE,_C,0,1)

— LANGUAGE, LANGUAGE NUM — 59

If you also sometimes use C++, however, you need a three-way switch; the simplest way of achieving that is
to use _LANGUAGE_NUM:

@m LOWER _IFCASE(_LANGUAGE_NUM,0,0,1)

This macro still isn’t ideal, however. It returns an explicit value for the languages C, C++, and Fortran–77,
but would return nothing for any other language. If you started to use Fortran–90 someday, you’d get
into trouble, and this kind of error can be hard to track down. It’s best to be very explicit:

@m LOWER _IFCASE(_LANGUAGE_NUM,0,0,1,1,1,1,0)

♣♣ 7.7.21 STUB

If a reference to an undefined module is encountered, it is replaced automatically by a call to the
built-in _STUB, with the module name as argument. The form of the call is language-dependent. Thus,
if the module @<Absent@> is never defined, then a reference to @<Absent@> will tangle to the expansion
of “_STUB(Absent)”, which in C is by default “{missing_mod("Absent");}”. In Fortran, the same
reference would tangle to “call nomod(’Absent’)”. If you don’t like the default actions, you can redefine
_STUB yourself with @m. The purpose of this macro is to help one compile and debug a code that is not fully
developed.

♣ 7.7.22 GETENV, HOME

The built-in _GETENV(ENV) returns the value of the environment variable ENV , using the C library
call getenv . The built-in _HOME is equivalent to _GETENV(HOME).

♣ 7.7.23 VERSION

The built-in _VERSION expands into a string containing the WEB version number, such as "1.13".

♣ 7.7.24 MODULE NAME, SECTION NUM

Two built-ins provide information about where one presently in the web. _MODULE_NAME expands to the
name of the current module that is being expanded; _SECTION_NUM is the number of the current section.

♣ 7.7.25 MODULES, SECTIONS

Two built-ins provide some statistics about the structure of the program being tangled or woven. _MOD−
ULES expands into an integer that is the total number of independent module names, plus 1 for the unnamed
module. _SECTIONS expands into the maximum section number, as WEAVE would compute it. These numbers
could be used as array bounds for various esoteric purposes. For an example of the use of these macros, see
the demo program breakpt.web.

♣ 7.7.26 DATE, DAY, TIME

Finally, there are various date and time macros that expand into strings containing the relevant infor-
mation: _DATE, _DAY, and _TIME. These macros are intended primarily for internal use; they are used in
generating the comments output at the beginning of the tangled output and at the end of the woven output.
However, they are available to the user as well. These macros expand as follows:

DATE → "August 15, 1989"

DAY → "Monday"

TIME → "23:59"

60 — DATE, DAY, TIME —

The built-in functions are summarized alphabetically in Appendix L.

♣ 8. OVERLOADING OPERATORS and IDENTIFIERS

For special effects in the woven output, there are special commands to help one change the appearance
of operators and identifiers.

♣ 8.1 OVERLOADING OPERATORS

One can change the printed
appearance of an operator
with the ‘@v’ command.

A feature common to both C++ and Fortran–90 is operator overloading, the ability to extend or re-
define the definition of an operator such as ‘.FALSE.’ or ’=’. Fortran–90 even allows one to define new

“dot” operators—for example, one might define the oper-
ator “.IN.” to test for inclusion in a set. In a nontrivial
extension of the original design, FWEAVE allows one to define
how overloaded operators should appear on output—for ex-
ample, it is much more readable to read “if(x ∈ set)” than

“if(x .IN. set)”. Indeed, this feature can be used even when the language does not permit overloading in
order to customize the appearance of the woven output.

The ‘@v’ control code is used to change the appearance of an operator. The format is

@v new_operator_symbol_or_name "TEX material" old_operator

This means “Display the new operator according to the TEX material, but treat it like the old operator—e.g.,
unary or binary—for formatting purposes. The quoted TEX material is treated just like a C string, so for
example if you want to include a backslash you must escape it with another backslash. For example, we can
make an equals sign display on output as a large left arrow by saying

@v = "\\Leftarrow" =

Then, if you say “x = y;”, it will display as “x ⇐ y;”. Two Fortran examples are

@v .FALSE. ".FALSE." .FALSE.
@v .IN. "\in" +

which makes the operator .FALSE. display as “.FALSE.” instead of the default F (but still behave in the
default way—i.e., like an ordinary expression), and makes the operator .IN. display as “∈” (and behave like
a binary operator).

This feature can go a long way toward enhancing readability of the woven output, particularly when
operators are actually being overloaded. It can also lead to arbitrarily bizarre output that no-one else will
understand. As usual, restraint is advised.

Examples of operator overloading can be found in the sample C++ and Fortran–90 code in Appendix E.

— OVERLOADING OPERATORS — 61

♣ 8.2 OVERLOADING IDENTIFIERS

One can change the printed
appearance of an identifier
with the ‘@W’ command.

Although operator overloading is quite useful, it does not allow one to change the appearance of iden-
tifiers. In its most general form, such a facility becomes
quite complicated; one must endow FWEAVE with a macro-
processing facility analogous to that of FTANGLE. This has
not been done yet (probably it will be someday). In the
meantime, one has the command ‘@W, which provides a re-
stricted form of such a facility. This command, new with version 1.30, is experimental, and not firmly
established. Changes in usage and/or syntax may be made in future versions.

The most general form of the ‘@W command is

@W identifier "replacement text"

This means: Replace any references to identifier in the woven output with the replacement text.

A more restrictive form is

@W identifier \newmacro

which replaces references to identifier with a call to \newmacro. (Note that there are no quotes in this form.)

The shortest form is

@W identifier .

which replaces references to identifier with a call to \identifier. For example, the identifier x normally
appears in woven output as “\Wshort{x}”. If one says

@W x .

one will instead get the macro reference “\x”, which could be defined to give a variety of special effects.

It should now be clear how the previous “call integrate” example was formatted. One simply said

@n
@
@W alpha .
@W beta .
@W fM "f_\\rm M"
@a

call integrate(x,alpha,beta,fM)

One of the important uses of this facility is to expedite special formatting of array references. This
subject is discussed separately below in the section on “Special array formatting,” where an example is
given.

9. RATFOR

Closely related to macro preprocessing is the notion of statement translation. In statement translation,
FWEB recognizes a special keyword or construction that is not part of the source language, and automatically
translates that construction into valid compilable code. It is a more general operation than macro expansion,
although it reduces to that in the simplest cases.

62 — RATFOR —

“Ratfor provides modern control
flow statements..., so [one] can do
structured programming properly.”

In the present version of FWEB, statement translation is active only when the language is Ratfor.
The Ratfor language was introduced by Kernighan and Plauger in Software Tools as a tool for explain-
ing good programming practice; it is also a
vastly superior way of writing understand-
able Fortran code. In their words, “bare
Fortran is a poor language indeed for pro-
gramming or for describing programs. So
we have written all of our programs in a
simple extension of Fortran called ‘Ratfor’ (short for Rational Fortran). Ratfor provides modern control
flow statements. . . , so we can do structured programming properly. It is easy to read, write, and understand,
and readily translates into Fortran. . . or similar high-level languages.” Unfortunately, extant Ratfor pro-
cessors essentially convert the new statements into pre-Fortran–77 code, with many goto’s, so the resulting
code can be somewhat messy and hard to read. If your code worked perfectly the first time, this would not
be an issue since you would never have to see the Fortran file. However, if it is necessary to work with a
debugger (and it very frequently is!), then it is the generated Fortran code at which one will be looking.
It is desirable to make that code as readable (and as efficient) as possible.

Thus, FTANGLE has been taught the Ratfor language and, by default, will translate it directly to
Fortran code. Translations into both Fortran–77 and Fortran–90 are supported.

(Certain existing codes use a now-archaic mode of FTANGLE in which Ratfor code was just TANGLEd
into a RAT file that was intended to be passed through a separate Ratfor processor. This mode has died;
it should not be used for new codes. To tell FTANGLE to not translate Ratfor statements, you must use the
command-line option ‘−q’.)

The syntax of the Ratfor language understood by FWEB is as C-like as possible. It features the following:

• The syntax is totally free-form.

• Declarations and statements are ended by semicolons. (An auto-semi mode can fill these in for
you; see below.)

• Program units should be begun by either the program, subroutine, function, or blockdata
statement. Use program main instead of an unnamed main program; the latter may confuse
FWEAVE.

• The body of the subroutine is delimited by braces (as are groups of statements that form the
bodies of keywords such as else or do).

• Functions are declared in the same way as the “old” style of argument declaration in C. (There
is no concept of function prototyping.) Thus, the outline of a Ratfor function is

function f(x,y)
real x,y;

{}

(Actually, as far as the Fortran code that is generated is concerned, it makes no difference
whether the function arguments are declared before or after the opening brace. However, it is
useful logically and typographically to set them off as suggested.)

• No end statement should be used; that is filled in automatically when FTANGLE processes the
closing brace.

— RATFOR — 63

• Function values can be returned with a return statement of the form ‘return expression;’.

• Numeric statement labels, if used, should be followed by a colon.

• Comments should be C-style: ‘/*. . .*/’ or ‘//. . . ’.

• When one is inside a recognizable program, subroutine, function, or blockdata unit, the
built-in function ROUTINE expands to the name of the program unit. (This is true only for
Ratfor; FTANGLE is not so intelligent in the other languages.)

• The special operators ‘++’, ‘−−’, ‘+=’,‘−=’, ‘*=’, and ‘/=’ are allowed in restricted places; see the
discussion in the section “Additional features.”

• Ratfor character strings must be enclosed in double, not single, quotes (consistent with C,
but unlike Fortran–77). As in C, single characters enclosed by single quotes are interpreted
as character constants and are translated into the ASCII integer equivalent; for example,
’a’ → 97.

Thus, an example of a Ratfor function is as follows:

@r/
@m ERROR call error(_ROUTINE)
@a
real function f(x)

real x; // We should have $x \ge 0$.
{
real y;

if(x >= 0) y = sqrt(x);
else

{
ERROR;
y = 0.0;
}

return y;
}

Ratfor statements can be easily “stacked”. For example, the following is valid Ratfor:

if(do_it)
for(i=1; i<100; i *= 2)

while(k < i)
do j=0,k;

a(i,j,k) = 1.0;

Note the simplicity of the construction: no end statements are required to terminate the loops.

An important notion in the C language whose essence is retained in Ratfor is the compound statement.
Here, a compound statement is any group of statements delimited by braces. Compound statements may be
used wherever a simple statement may be. Thus, in the above example any or all of the last four lines could
be replaced by a compound statement—for example,

if(do_it)
{

64 — RATFOR —

x = dx;
for(...)

while(...)
do ...

{
a...;
b...;
}

x *= alpha;
} // |do_it|

Here, as in C, the use of braces creates a quite concise and readable code.

“It is truly remarkable how much
heated debate can result from such
trivial questions as whether braces
are better than begin and end...”

[Some people disagree. Indeed, again quoting Kernighan and Plauger, “It is truly remarkable how
much heated debate can result from such trivial questions as whether braces are better than begin and

end. . . ” In this regard, it is very important
to observe that in many situations neither
braces nor keywords are required to termi-
nate loops; loops whose bodies are simple
statements terminate automatically, just as
in C. The principle argument that appears
to be raised against braces is that if they

enclose long blocks of code they can get lost or misplaced. However, note that at the user’s discretion braces
can be labelled (the previous example shows one possible style); furthermore, such long blocks are strongly
discouraged by the philosophy and design of WEB. As you know by now, the proper use of named modules
leads to a programming style in which no modules need be longer than, ideally, about a dozen lines. For
modules that short, it’s very difficult to lose braces; rather, the braces tend to enhance the logical structure
and we believe that they are more pleasing to, and more readily captured by, the eye than verbose keywords.
In any event, our design goal of syntactical consistency with C is obviously better achieved by using braces
rather than keywords. Therefore, within the framework of the present philosophy, keywords such as end do
or end while seem to represent a definite step backwords and are not used.]

9.1 Ratfor–77 commands

Here are the Ratfor constructions recognized and expanded by TANGLE. In the following, the construc-
tion {. . . } stands for either an arbitrary number of statements enclosed by braces (a compound statement),
or a simple statement terminated by a semicolon. (Recall that the Ratfor syntax is free-form, so the
newlines and spacings in the examples are inserted entirely for readability.)

9.1.1 if

The if statement looks exactly like that of C (the else clauses are optional):

if(condition)
{. . . }

else if(another condition)
{. . . }

else
{. . . }

There may be multiple else if’s. Functionally, this statement is identical to Fortran’s if . . . then. . . else if
. . . then. . .else. . . end if construction (into which it is expanded), but the keywords have been abolished.

— if — 65

The simple Fortran if , such as ‘if(x < 0.0) x = 0.0;’, is a special case of the general construction. For
simplicity, Ratfor also expands this into an ‘if ...then...endif ’.

9.1.2 while

The while statement is also equivalent to that of C:

while(condition)
{. . . }

The condition is checked. If it is true, the body of the while is executed. Then the process repeats. If the
condition is false, control passes to the first statement after the body of the while. This means that if the
condition is false initially, the loop is not executed even once.

9.1.3 for

The for statement is equivalent to that of C. It is a souped-up version of the while that includes
initialization and reinitialization:

for(initialization; condition; reinitialization)
{. . . }

The initialization (which must be a single Fortran statement; C programmers beware!) is performed. The
condition is tested. If it is false, processing terminates. If is is true, then the body of the for is executed. At
the bottom of the loop, the reinitialization (which must also be a single Fortran statement) is performed;
then the condition is tested again and the processing iterates. For example,

for(i=0; i<10; i++) a(i) = i;

is equivalent to Fortran–90’s

do i=0,9
a(i) = i

end do

However, it is important to note that for arbitrary bodies even this simple for is not equivalent to the
Fortran do, since Fortran does not allow one to tamper with the loop index within the loop but there
is no such restriction in Ratfor or C. Therefore, the construction is translated into an if and a goto; no
attempt is made to optimize it into a do. Ratfor programmers working with vectorizing compilers should
employ do’s instead of simple for’s for critical loops.

9.1.4 repeat—until

The repeat–until construction executes the body before the condition is tested, so it is guaranteed to
be executed at least once; it corresponds to the do–while construction of C:

repeat
{. . . }

until(condition);

Unlike the corresponding loop in C, the until clause is optional. If it is omitted, one gets an infinite loop that
must be broken out of by a break or goto. That loop is equivalent to C’s while(1) {...} or Fortran–90’s
do {...}.

66 — do —

9.1.5 do

The Ratfor do statement is fundamentally Fortran’s:

do index=lower,upper[,increment]
{. . . }

or

do index=lower,upper[,increment];
simple statement;

Functionally, these are equivalent to

for(index=lower; index<=upper; index += increment)
{. . . }

but the do may be implemented more efficiently by the compiler. Note the semicolon after increment in the
second example. This is annoying, as it looks different than the syntax for the for statement. Unfortunately,
the standard Fortran syntax is simply incompatible here with the uniform Ratfor syntax. (If a simple
statement follows the do, some terminator is required in order to separate the increment from the beginning
of the statement. The carriage return at the end of the physical line cannot be used because the syntax is
free-form.) If you would like to make things look more symmetric, you could define a WEB macro:

@m DO(i,min,imax) do i=imin,imax;

or, more simply and also more generally,

@m DO(i,...) do i=#.;

[If you are using the auto-semi mode (see below), you should omit the semicolon; it will be inserted for you.]
Note that the Ratfor syntax makes multiple do loops look very clean; neither braces nor end keywords
are required in the following example:

do i=1,10;
do j=1,10;

a(i,j) = 0.0;

9.1.6 break, next

In the bodies of the above loops (if statements are not loops), the special commands break and next
are allowed. The break command exits the loop immediately. The next command is functionally equivalent
to the continue statement of C. Following Kernighan and Plauger, “next goes to the condition part of a
while, do, or until, to the top of an infinite repeat loop, and to the reinitialize part of a for.” (Note that
other statement processors may implement this statement differently.)

Only one level of looping can be broken out of by break. This restriction is deliberate, not funda-
mental. A break n statement, though very feasible to code, is not allowed partly because C does not and
partly (equivalently?) because it is felt that its presence would make certain coding errors more likely. To
conveniently break out of several levels of looping, use goto; this is one of its few legitimate uses [4].

9.1.7 switch

Finally, we have the switch statement, again functionally equivalent to that of C:

switch(expression)

— switch — 67

{
case integer expression:

.

.
break; // Use this to prevent falling through to the next case.

.
// More case statements.

.
default:

.

.
break; // Optional here, but still a good idea.

}

The expression is evaluated at run time and converted to an integer. If any of the listed cases correspond
to that integer, control is passed there. Otherwise, if the optional default statement is present, control is
passed there. (It is not necessary that the default be last in the switch.) Otherwise, the entire switch
body is skipped.

Use break to termi-
nate a case.

The arguments of the cases should be or expand to single integers. Lists of cases, as in ‘case 2−5:’, are
not allowed. If the cases are all pure numbers or macros known at TANGLE time, then in certain circumstances
the Ratfor–77 switch will be implemented using a computed goto.
This will occur if the list of cases is sufficiently dense, with few gaps,
or if the number of cases is sufficiently large, provided the spread in
the case values is not too great. Otherwise, in Ratfor–77 the switch
is expanded into a series of if statements. In this case, if the switch is lengthy, it will pay to put the most
frequently expected case first. In Ratfor–90 the switch is translated into a “select case” construction.

More precisely, the decision of whether to use a computed goto is based on three parameters—r, m,
and s. Let the number of cases in the switch be n and the spread of case values, plus 1, be ∆v. The
computed goto is chosen if both n > m and ∆v < s or, failing that, if ∆v/n ≤ r. By default, m = 5,
s = 128, and r = 2.0. If you absolutely don’t want the computed goto for some reason (maybe because it
doesn’t vectorize), use r = 0.0. These parameters can be set by the user through the command-line option
“−rg”. The format is, for example, “−rgm5s128r2.0”. The m, s, and r keyletters may appear in any order,
or may be absent. (Now that the style file exists, these parameters should really be defined there. That will
be done at some point.)

In the switch, the break statements are optional. If they are missing, control just continues to the
next case. This is in accord with C’s behavior, but is in disagreement with the original Ratfor design.

Note that a next statement appearing inside a switch has nothing to do with that switch. (The
switch is not a loop.) Rather, it is related to whatever loop encloses the switch.

Here is an example of a switch. It assumes that the single character c has been read. It should be
either ‘y’ or ‘n’, in either upper or lower case. If it is ‘y’, the execute subroutine is called; if it is ‘n’, nothing
is done; if it is anything else, an error routine is called. Note how the lower-case cases fall through to the
upper-case ones, and how the break statement is used to terminate the processing of a group of cases.

switch(ichar(c)) // Use intrinsic function to return integer value.
{
case ’y’:
case ’Y’:

call execute;

68 — switch —

break;

case ’n’:
case ’N’:

break;

default:
call error(c);
break;

}

♣ 9.2 Ratfor–90 commands

In Ratfor–90, additional constructions are supported. In general, where Fortran–90 has a compound
construction that ends with an end statement, such as type person. . .end type person, Ratfor abol-
ishes the end statement and encloses the statements with braces. It will expand the construction into valid
Fortran–90, including the optional labelled form of the end statement, such as end module. Further-
more, Fortran–90 allows optional symbolic labels on such compound constructions. Ratfor–90 permits
these as well, as in

test: if(x)
{. . . }

This construction will be expanded into code that ends with “end if test”. Such symbolic labels should not
be declared with the automatic statement numbering facility; that is, do not say ‘‘@m test #:0’’.

9.2.1 module

The module statement is analogous to the class statement of C++:

module module name
{. . . }

As an example,

module work_arrays
{
integer n;
real, allocatable, save :: A(:), B(:,:), C(:,:,:);
}

9.2.2 type

The type statement is analogous to the struct statement of C:

type type name
{. . . };

As an example,

type line
{
real, dimension(2,2) :: coord; // x_1, y_1, x_2, y_2.
real :: width; // Line width in centimeters.
integer :: pattern; // 1 for solid, 2 for dash, 3 for dot.

— type — 69

};

Note the terminating semicolon, which is consistent with the struct statement of C and C++.

9.2.3 interface

The interface statement is Fortran–90’s way of overloading operators or procedures. The correspond-
ing Ratfor statement has one of the three following forms:

interface procedure name
{. . . }

interface operator(operator)
{. . . }

interface assignment(assignment operator)
{. . . }

As an example,

interface operator(*)
{
function boolean_and(b1,b2)

{
logical :: boolean_and(size(b1));
logical, intent(in) :: b1(:), b2(size(b1));
}

}

9.2.4 where

The where statement is supported (the else clause is optional):

where(condition)
{. . . }

else
{. . . }

9.2.5 contains, private, sequence

The keywords contains, private, and sequence should be followed by colons; for example,

subroutine outer
{
...

contains:
subroutine inner(b)

{...}
}

♣ 9.3 Additional features of Ratfor

A few additional topics are useful to discuss.

70 — Ratfor’s automatic comments —

♣ 9.3.1 Ratfor’s automatic comments

As FWEB translates Ratfor statements, it typically writes comment lines to the output file to help one
correlate the source statement with the translated output. (Look at some sample output for examples.) If
one wishes to suppress such comments, he may use the command-line option ‘−k’. See the detailed description
under ‘Command-line options’.

♣ 9.3.2 Automatic insertion material

It is often desirable to include common material at the beginning of each program unit, such as the
phrase “implicit none”. Since Ratfor is aware when a program unit begins, it is feasible to automate
such insertions. The material to be inserted is indicated by a special notation that extends the syntax of a
WEB macro definition, as follows:

@m[ctrl-list] macroname macro text

Here the characters in the ctrl-list between the square brackets signify for which kind of program unit the
material is to be inserted; they may be one or more of the following:

b — block data
f — function
i — interface
m — module
p — program
s — subroutine
* — All of the above.

Thus, if you say

@m[pfs] AUTO implicit none

the text “implicit none will be inserted on the lines immediately following every program, function, and
subroutine declaration. (There is at present no way to prevent this insertion for a particular program unit;
it is either all or none.)

At present, you cannot stack automatic material for a particular program unit. Thus, after the state-
ments

@m[pfs] AUTO1 implicit none
@m[f] AUTO2 implicit integer[i-n]

functions will begin with the text “implicit integer[i−n]” while the main program and subroutines will
begin with “implicit none.” (In the future, such stacking may be allowed.)

Note that there is nothing special about the macro names used in these extended definitions. Thus, in
the above example one could have replaced AUTO1 by X and AUTO2 by Y and achieved precisely the
same effect.

♣ 9.3.3 Semicolons

We now return to the issue of semicolons. It is highly recommended that the complete free-form syntax,
with semicolons as statement terminators, be used for all new code. However, it is recognized that an
intermediate step may expedite conversion of existing Fortran codes. One can initiate an auto-semi
mode with the command-line option ‘−;’. In this mode, the expected Ratfor syntax is midway between
Fortran’s and C’s.

— Semicolons — 71

The auto-semi mode is almost free-form syntax, except that carriage returns end statements when the
line is not “obviously continued”. By definition, a statement is obviously continued if it ends with any of the
following characters between double quotes: “+−*={}^&|(:><,”. In this case, WEB just goes on to the next
line and continues to read. Otherwise, the input driver terminates the statement with a semicolon, then
ships it off to the innards of WEB. (This clarifies why the character ’}’ is part of the previous list: “Obviously
continued” really means “don’t end this line with a semicolon.”) Continuation can be forced by ending a line
with a backslash; the backslash is discarded. (For compatibility with previous Ratfor implementations, a
trailing underscore will also continue a line except when it is part of an identifier; however, its use is definitely
not recommended.) One implication of these rules is that in the auto-semi mode no semicolon should end
the first line of a do; say

do i=1,n
a(i) = i

(Neither statement is obviously continued; the input driver will supply semicolons for both.)

According to these rules, lines such as ‘for(...)’ will be terminated by a semicolon. In free-form
syntax, such a semicolon would be incorrectly interpreted as a null statement. In the auto-semi mode,
however, a special check is made for such a supplied semicolon, which is discarded if present. Thus, the
Ratfor syntax behaves consistently in both syntax modes.

In the auto-semi mode, an additional commenting style is allowed: anything between ‘#’ and the end of
the line denotes a comment. This is changed by the input driver into a standard C-style comment. However,
it is recommended that this Ratfor commenting style be avoided; it will probably be allowed to die with the
next major release.

♣♣ 9.3.4 FWEB sans Ratfor

Ratfor is a self-contained subset of FWEB. It is possible to create FWEB processors that do not contain
most of the code associated with Ratfor and are therefore smaller. This may be relevant for users of
personal computers. See the installation notes in INSTALL_FWEB.tex for more information.

Once again, it is recommended that if you are a Fortran programmer you seriously consider Ratfor.
It will make your life simpler and your documentation superior.

The Ratfor commands are summarized in Appendix L.

10. ADDITIONAL LANGUAGES

In addition to the principal supported languages of C, C++, Fortran, and Ratfor, several other
languages are supported at various levels of experimental development:

10.1 TEX mode

“FWEB offers restricted
support for tangling and
weaving TEX code.”

As an experiment, FWEB offers restricted support for tangling and weaving TEX code. This provides a
superior way of maintaining and documenting TEX input files, for example macro packages such as fwebmac.
One selects the TEX language with the command ‘@Lx’. FTANGLE
will write its TEX-language output into a file with the exten-
sion .sty; that can be overridden by the style-file option “suf−
fix.TEX”. FWEAVE will, as usual, create a file with the extension
.tex. As an example, fwebmac itself is now maintained with
FWEB. FTANGLE has been used to create the “executable” (i.e., TEX-compatible) file fwebmac.sty from the

72 — TEX mode —

master file fwebmac.web. This explains why FWEAVE’s tex output files begin with the command “\input
fwebmac.sty” instead of just “\input fwebmac”. The latter would incorrectly read in fwebmac.tex, which
is FWEAVE’s output intended for typesetting.

In TEX mode, TEX-like comments (begun with ’%’, or more precisely begun with any character whose
category code is 14) are displayed in the standard C-style format, except that if the last character on the line
is ’%’ it is displayed as is. If several adjacent lines consist solely of TEX-like comments, they are concatenated
into one long comment.

Actual spaces in the source are displayed as ’ ’, with two exceptions. First, tabs in the source are
turned into invisible spaces. Second, spaces after multi-character control sequences are also printed as
invisible spaces. If this is not done, the output tends to become extremely dense with the ’ ’ symbol.

Note that a full-featured implementation of WEB processing for TEX is quite difficult because TEX can,
for example, change category codes on the fly from within very complicated macro constructions. A truly
general WEB for TEX should probably be completely integrated into TEX itself. This daunting possibility
is far beyond the scope of the present FWEB project. However, it is possible to give FWEB some help and
thus deal with a variety of circumstances. In particular, one can force FWEB to change the category code
of a character. When FWEB starts up, it has assigned default category codes to each ASCII character—for
example, the default category code of ’\’ is 0; that of ’A’ is 11; that of ’%’ is 14. To change the category code,
say in the definition section

@f ‘TEXchar new_cat_code

where here, as when changing category codes in TEX, TEXchar has one of the forms ‘c’, ‘\c’, or ‘^^c’, c being
a visible ASCII character. For example, the command

@f ‘! 14

will make the exclamation point also function as a comment character.

At this early stage of development, the only thing that is guaranteed is that fwebmac.sty will be created
correctly from fwebmac.web. Feel free to experiment with FWEB’s TEX language, but don’t expect perfection
yet. However, suggestions are welcome.

A sample of woven output from the TEX mode may be found in fwebmac.tex, which is typeset in
Appendix F.

10.2 MAKE mode

Someday FWEB may also understand the syntax of UNIX make files.

11. CONTROL CODES

We have seen several magic uses of ‘@’ signs in WEB files, and it is time to make a systematic study of
these special features. A WEB control code is a two-character combination of which the first is ‘@’. (The only
exceptions are the three-character combinations ‘@/*’ and ‘@//’.)

Here is a complete list of the legal control codes. (Some of these codes can be changed by the user,
although this is not recommended; see the section below on the style file.) The abbreviations L, T , C,
M , Co, S, and/or H following each code indicate whether or not that code is allowable in limbo (L), in
TEX text (T), in code text (C), in module names (M), in comments (Co), in strings (S), and/or in change
files (H). A bar over such a letter means that the control code terminates the present part of the WEB file;

— CONTROL CODES — 73

for example, L means that this control code ends the limbo material before the first module. (A shorter
summary of the control codes is presented in Appendix L.)

11.1 @@ (the character ’@’)

[Co, L, M, C, S, T] A double @ denotes the single character ‘@’. This is the only control code that is
legal in comments and in strings. For example, to get the output ‘"Is there a missing @z?"’, one must
type in the WEB source file ‘"Is there a missing @@z?"’. This is also one of the few control codes that is
legal in limbo (the only others being the language commands ‘@c’, ‘@r’, ‘@n’, and ‘@Ll’, and the ignorable
commentary commands ‘@z’ and ‘@x’.)

11.2 @| (literal vertical bar [TEX text])

[Co, T] In TEX text, this affords a way of inserting the vertical bar ‘|’. This is particularly useful within
LaTEX’s verbatim environment. For example,

\begin{verbatim}
Consider the expression @|x != y@|.
\end{verbatim}

Without the @s, WEAVE would translate the bars and the enclosed material into the TEX macros appropriate
for code mode.

In code text, this command is instead an optional line break in an expression. See the discussion below.

11.3 @ (begin unstarred module)

[L, C, T] This denotes the beginning of a new (unstarred) module. A tab mark or end-of-line (carriage
return) is equivalent to a space when it follows an @ sign.

11.4 @* (begin a starred module)

[L, C, T] This denotes the beginning of a new starred module, i.e., a module that begins a new major
group. The title of the new group should appear after the ‘@*’, followed by a period. This title will be
entered in the table of contents. As explained above, TEX control sequences should be avoided in such titles
unless they are quite simple. When WEAVE and TANGLE read an ‘@*’, they print to the terminal an asterisk
followed by the current module number, so that the user can see some indication of progress. The very first
module should be starred.

If the group title is immediately followed by a non-negative integer n, the title is considered to be of
level n, where n = 0 corresponds to a major section, n = 1 corresponds to a primary subsection, and so on.
The fwebmac macros can be defined to treat these levels in different ways—for example, the appearance of
a subsection entry in the table of contents can be modified by appropriate macro definitions.

11.5 @A (begin code part of unnamed module)

[C, T] The code part of an unnamed module begins with ‘@A’ (or ‘@a’; see below). (This is a change
from the original WEB, which used ‘@p’ (for Pascal) and from CWEB, which used ‘@c’. In designing FWEB, it
was felt most logical to reserve these commands for actually switching into a particular language; this is an
operation distinct from beginning the unnamed module.) This causes TANGLE to append the following code
to the initial program text T0 as explained above. The WEAVE processor does not cause an ‘@A’ to appear
explicitly in the TEX output, so if you are creating a WEB file based on a TEX-printed WEB documentation
you have to remember to insert ‘@A’ in the appropriate places of the unnamed modules.

74 — @a (begin code part of unnamed module; mark first non-reserved word) —

11.6 @a (begin code part of unnamed module; mark first non-reserved word)

[C, T] Equivalent to ‘‘@A@[’’. That is, the first non-reserved word following the ‘@a’ will be marked as defined
in this module. This convention helps circumvent the forward-referencing problem; see the discussion about
“Forward references” below.

11.7 @b (insert breakpoint command)

[C] When the debugging mode is turned on (which means when the _BP macro has been defined from the
command line; see discussion below), the ‘@b’ command means insert a breakpoint command. When
debugging is off, this command is ignored.

11.8 @c (set language to C)

[L, C, T, H] The ‘@c’ command means set the current language to C. It does not mean begin the unnamed
module, as it did in Levy’s CWEB. (See the detailed discussion of language commands for more information.)

11.9 @c++ (set language to C++)

[L, C, T, H] The ‘@c++’ command means set the current language to C++.

11.10 @D (define outer macro)

[C, T] Definitions of outer macros begin with ‘@D’ (or ‘@d’; see below), followed by the code text for
the macro syntax appropriate for the language currently in force. These definitions must be made in the
definition part, which consists of any number of macro definitions (beginning with ‘@d’ or ‘@m’), format
definitions (beginning with ‘@f’), preprocessor commands (beginning with ‘@#’), limbo text definitions (be-
ginning with ‘@l’), operator overloading instructions (beginning with ‘@v’), identifier overloading instructions
(beginning with ‘@W’), and language commands, intermixed in any order.

For Fortran, the syntax should be that for the m4 preprocessor; for C, it should be that of the C pre-
processor. For Ratfor, outer macros should never be used, since TANGLE’s macro-processing capabilities are
intended to provide a self-contained means of getting directly from the WEB source to compilable Fortran.
Outer macros are simply copied to the beginning of the appropriate output file. If the text of the macro
contains an identifier that is a WEB macro, that macro will be expanded.

The companion command ‘@u’ undefines an outer macro.

11.11 @d (define outer macro; mark macro name defined)

[C, T] Equivalent to ‘‘@D@[’’. See discussion about “Forward references” below.

11.12 @f (format identifier)

[C, T] Format definitions begin with ‘@f’; they cause WEAVE to treat identifiers or module names in a
special way when they appear in code text. The general form of a format definition is ‘@f’ l r, followed by an
optional comment, where l is an identifier or a module name and r is an identifier; WEAVE will subsequently
treat l as it currently treats r. The formatting is language-specific; it only applies to identifiers used in the
language in force at the point the format statement is encountered. This feature allows a WEB programmer
to invent new reserved words and/or to unreserve some reserved identifiers. Note that module names can be
formatted. By default, module names are interpreted as expressions. However, sometimes you use them in

— @f (format identifier) — 75

other contexts, such as replacing a bunch of type specifications. In this situation, you should say something
like “@f @<Common blocks@> common”.

An extension of the ‘@f’ command is used when the language is TEX to change the category code of a
character. The format is ‘‘@f’ `TEXchar new cat code’. See the discussion of TEX mode for more details.

11.13 @i (include a file)

[webfile] The web file itself can be a combination of several files. When WEAVE or TANGLE are reading a file
and encounter the control code ‘@i’ at the beginning of a line, they interrupt their reading and start reading
the file named after the ‘@i’, much as the C preprocessor does when it encounters an #include line. After
the included file is done, they go back to the next line of the original file. The file name following ‘@i’ can
be surrounded by double quotes or not; it should be made up of visible ASCII characters only, not including
double quotes. Include files can nest, with level 0 being the primary level associated with the source WEB file.
Optionally, a second file name also may be given. Just as on the command line, this names the change file
associated with the new include file. This name is in effect for all higher levels of nesting, but is forgotten
when the include file ends and control reverts to the next lower level. If no change file is specified at any
level, the one in effect at the time of the include continues to be used. Automatic file-name completion is
done when the command-line option ‘−e’ is in effect; otherwise, you must give the complete name of the file,
including extensions such as ‘.web’.

FWEAVE will print the name of the current include file at the beginning of each section. However, note
that there is no need that a file included by ‘@i’ consist of a complete module. Include files may be included
anywhere, in either the TEX part, the definition part, and/or the code part; they may, in principle, consist of
arbitrary fragments of code. Whenever possible, however, it is best to stick to complete modules for included
files.

By default, include files are searched for in the current directory. However, if the environment variable
FWEB INCLUDES is defined, then its contents are interpreted as a colon-delimited list of paths to be
searched for the include file. (The same format as UNIX’ PATH variable is used.) In addition, whether or
not that variable is defined, one can append to the include path list by means of the ‘−I’ command-line
option.

(The following is rendered obsolete by the previous paragraph; the feature will probably be deleted
in a future release.) File names in ‘@i’ commands may begin with a prefix followed by a colon, as in
“LN:file_name”. The intention is that LN behaves like a logical name under VMS. In fact, under VMS LN is
just left alone. However, under UNIX LN is assumed to be an environment variable and is expanded. Thus,
if one says “setenv LN /fweb” then “LN:file_name” will expand to “/fweb/file_name” (note that the
last slash was inserted automatically). This mechanism is intended to enhance portability of WEB sources
between various operating systems.

11.14 @I (optionally include a file)

[webfile] This command is like ‘@i’, except that in special cases FWEAVE will not process it completely. The
special cases are when the command-line options ‘−i’ or ‘−i!’ are used. In particular, when ‘−i’ is in effect,
files included via ‘@I’ will be processed but not printed in the woven output. (This helps save trees.) See
the description of the command-line options below for more information about this experimental feature.

11.15 @L (set language)

[L, C, T, H] The command ‘@Ll’ sets the language to l, where l ∈ {c, n, r, x}. Optional arguments to this
command enable one to invoke C++, Fortran–90, or Ratfor–90. See the detailed discussion of languages

76 — @L (set language) —

above.

11.16 @l (specify limbo text)

[C, T] This command specifies limbo text. It must be followed by a double-quoted string, in which special
characters are escaped just as in C. The contents of that string are written out verbatim by FWEAVE just
before the limbo section is copied to the output. Thus, if there was just one limbo text command of the form

@l "\\def\\greeting{Hello}\n\\def\\done{Goodbye}"

the output tex file would begin with the lines

\input fwebmac.sty
% --- Limbo text definitions from @l ---
\def\greeting{Hello}
\def\done{Goodbye}

Note the use of C-like escape sequences such as ‘\\’ or ‘\n’.

11.17 @M (define a WEB macro)

[C, T] The ‘@M’ (or ‘@m’; see below) command denotes a WEB macro. WEB macros have exactly the same
syntax as C macros (including arguments), but they are expanded when FTANGLE outputs the code. Just
as in C, the construction is expanded again and again until nothing remains to be expanded. [The ANSI C
constructions ‘#’ (“stringize”) and ‘##’ (“token paste”) are supported, as are certain extensions such as the
ability to handle variable numbers of arguments.] On input, the preprocessor understands all macros that
have been defined up to the current point in the file, so they can be used in statements such as ‘@#if(MACRO)
block of code @#endif’ to selectively reject or retain fragments of code. Usually, @m commands should appear
in the definition section, but they are also permitted in the code section, where they are called deferred
macros. See the section on ‘Macros’ for more details.

11.18 @m (define a WEB macro; mark macro name defined)

[C, T] Equivalent to ‘‘@M@[’’. See the discussion about “Forward references” below.

11.19 @n (set language to Fortran)

[L, C, T, H] The ‘@n’ command means set the current language to Fortran. (See the more detailed
discussion of language commands for more information.) One may question the choice of symbol here.
Unfortunately, ‘f’ was already in use, denoting formatting; hence, we use the last letter of the language name:
fortraN, C, ratfoR. With no argument, Fortran–77 is selected. The command ‘@n9’ selects Fortran–90.

11.20 @O (open new output file with global scope)

[C] The ‘@O’ command changes the name of the output file for tangled code, during the output in
phase 2. At present, it may appear only in the code section. White space is skipped after the ‘@O’. The next
run of non-white characters is interpreted as a complete file name, including extension. Any remaining text
on the line is skipped. The upper-case form of this command has global scope—that is, the name change
remains in effect until the next ‘@O’ command, if any. (The lower-case form has local scope and is probably
more useful; see below.) At present, this command has no effect for FWEAVE. The purpose of this command
is to allow very large codes to be tangled into several output files in cases where the compiler may have
limitations on the size of the source file it can process.

— @O (open new output file with global scope) — 77

Note that since ‘@d’ commands are collected during phase 1, they are at present oblivious to any ‘@O’ or
‘@o’ commands; ‘@d’ definitions will always be written into the first file open for a particular language. (In
the future, this may be generalized.)

11.21 @o (open new output file with local scope)

[C] The ‘@o’ command changes the name of the output file for tangled code, during the output in
phase 2. The rules are the same as for the ‘@O’ command described above, except that ‘@o’ has local scope.
That is, the command behaves in the same way as does a local language change: output is diverted to the
new file for the duration of the current section only. When the next section begins, output reverts to the
global output file, as known at the beginning of the first module. The purpose of this command is to generate
several different kinds of files from a single source file. For example, let the WEB file be called test.web.
Then one could say

@c
@ Demonstration of the \.{@o} command.
@a
@o test.h
int i; // This code goes into \.{test.h}.
@ The next code goes into \.{test.c}.
@a
main()
{}

11.22 @r (set language to Ratfor)

[L, C, T, H] The ‘@r’ command means set the current language to Ratfor. With no argument,
Ratfor–77 is selected. The command ‘@r9’ selects Ratfor–90. (See the detailed discussion of language
commands for more information.)

11.23 @u (undefine an outer macro)

[C, T] This command undefines an outer macro. It should be used in the definition part only. See the
discussion of ‘@d’ for more discussion.

11.24 @v (overload an operator)

[C, T] The ‘@v’ command allows one to give FWEAVE information about operator overloading, an im-
portant feature of both C++ and Fortran–90. The syntax of this command is “@v new_op "replacement
TEX text" old_op” and is described in detail in the section on “Operator overloading” above.

11.25 @W (overload an identifier)

[C, T] The ‘@W’ command allows one to change the appearance of identifiers. This command has sev-
eral variants: “@W identifier "replacement TEX text"”, “@W identifier \newmacro”, and “@W identifier .”.
These are described in detail in the section on “Identifier overloading” above.

11.26 @x (terminate commentary section; begin old material in change file)

[L, H] This terminates the opening commentary section of a file. See the discussion of ‘@z’ below.

This command is also used in change files to begin the old material; see the separate discussion of change
files.

78 — @y (terminate old material in change file) —

11.27 @y (terminate old material in change file)

[H] This is used in change files to terminate the old material and to begin the new material. See the
separate discussion of change files.

11.28 @z (begin commentary section; end changed material)

[L, H] If a file begins with ‘@z’ in its very first two positions, everything up to and including a line beginning
with ‘@x’ is skipped. This feature allows one to insert commentary such as date, author, etc. that will not
be printed or otherwise processed.

This command is also used in change files to end the changed material; see the separate discussion of
change files.

11.29 @’ (convert character to ASCII integer)

[C] A construction of the form “@’c’” converts the single character c to an integer representing
its ASCII value. The character can be represented in any of the standard forms: for example ’a’, ’\141’,
and ’\x61’ are all equivalent. In C and C++, the character is converted into octal—e.g., @’a’ → 0141. In
the Fortran-like languages it is converted into an integer of base 10—e.g., @’a’ → 97.

11.30 @" (convert string to ASCII)

[C] A construction of the form “@"c1c2 . . . cn"” converts each character in the string to an integer
representing its ASCII value, returning a construction appropriate for initializations in the current
language. In C or C++, the result is a string with the characters replaced by the appropriate octal values—
e.g., @"a\376b\n"→ "\141\376\142\12". For Fortran-like languages, the implementation is experimental
and subject to change. Presently, it works as follows. First, the ‘@’ is stripped away, leaving the string. If
the value of the style-file field ASCII_fcn is the null string, then the string is unchanged. If ASCII_fcn is
not null, this field is used as the name of a function to be called with the ASCII string as argument. Thus,
the default value of ASCII_fcn is "ASCIIstr". Unless this is changed in the style file, then in Fortran the
command “@"a\376b\n"” will tangle to “ASCIIstr(’a\376b\n’)”.

11.31 @[(mark next identifier as defined here)

[C, H] This command has two uses. First, if it appears in a change file in the first two positions of the line,
it signifies a shift into code mode; see the separate discussion of change files.

Otherwise, it says that the next non-reserved identifier should be marked as being defined in this section.
Identifiers thus marked are subscripted in the woven output with the number of the section in which they
were defined. Usually, the identifier is a function name. When FWEAVE’s syntax analyzer recognizes a function
in phase 2, it marks the function name automatically. However, only subsequent references to that function
are marked. Additional mechanisms exist to handle the problem of forward referencing. For example, the
commands ‘@a’, ‘@d’, and ‘@m’ issue implicit ‘@[’s. See the more detailed discussion about “Forward references
to identifiers” in the section on “Additional Features” below.

11.32 @] (shift out of code mode)

[H] This command also has two uses. If it appears in a change file in the first two positions of the line, it
signifies a shift out of code mode; see the separate discussion of change files.

(Otherwise, its use is experimental and not supported yet.)

— @‘ (reserved) — 79

11.33 @‘ (reserved)

[C, H] This command is experimental. Please do not use.

11.34 @< (begin a module name)

[C, T] A module name begins with ‘@<’ followed by TEX text followed by ‘@>’; the TEX text should not
contain any WEB control sequences except ‘@@’, unless these control sequences appear in code text that is
delimited by |...|. The module name may be abbreviated, after its first appearance in a WEB file, by giving
any unique prefix followed by ‘...’, where the three dots immediately precede the closing ‘@>’. No module
name should be a prefix of another. Module names may not appear in the definition part of a module
(since the appearance of a module name ends the definition part and begins the code part). There are two
exceptions to this last rule: first, a module name may appear immediately after an ‘@f’ command, thereby
allowing module names to be formatted. Second, you may use the construction #<. . . @> in a WEB macro
definition to stand for a module name.

11.35 @/* (begin long verbatim comment)

[C] This denotes a long verbatim comment (terminated by ‘*/’). The idea is that while TANGLE generally
throws away all comments, stripping down the output to a bare minimum, retaining some comments in
the output may be helpful for debugging purposes. Therefore, one is allowed to preface ordinary C-style
comments with an ‘@’; such comments will be passed through to the output. For C, the comment is literally
just passed along; nothing else happens. For the other languages, care is taken to generate a valid comment
line. This is particularly annoying for Fortran–77, which does not have the notion of a trailing comment.
There, trailing verbatim comments are moved to the next line (essentially the inverse of what the input driver
does). Incidentally, module numbers are automatically inserted as verbatim comments into the program, in
order to help correlate the outputs of WEAVE and TANGLE (see Appendix C). To make all comments verbatim,
use the command-line option ‘−v’ or put the command ‘+v’ into your .fweb file.

11.36 @// (begin short verbatim comment)

[C] A short verbatim comment (terminated by an end-of-line).

11.37 @% (ignorable comment)

[L, T, C] Ignorable comments are FWEB’s analogs to TEX comments: Everything from the ‘@%’ command
to and including the next newline is ignored, for both FWEAVE and FTANGLE. Thus, this comment does not
appear as part of the FWEAVE’s typesetting, in either the TEX, definition, or code part. It can be useful for
hiding text that might be used in conjunction with special editors. It can also be used to suppress unwanted
newlines that sneak into module definitions. Those generally begin and end with a newline, as indicated:

@<. . .@>=newline
.
.

last line of modulenewline

Especially in Fortran-77, those newlines may prevent the use of the module name as a component of a
longer line, for example as an argument list of a function:

function f(@<Args@>)

To ensure that this example tangles correctly, say

80 — @% (ignorable comment) —

@<Args@>=@%
a,b,c@%

11.38 @? (compiler directive)

[C] This command begins a one-line compiler directive. FTANGLE constructs an output line by first
outputting the contents of the style field cdir_start.l, where l is the identifier character for the current
language. Then it copies everything between the ‘@!’ and the next newline. Consider the C language as
an example. By default, cdir_start.C is set to "#pragma ". Then the command ‘‘@?help’’ is output as
“#pragma help”.

11.39 @! (compiler directive)

[C] This is an obsolete form of ‘@?’. It differs in the way that the text following the command is processed.
For ‘@!’, that text is just treated as one big string. For ‘@?’, the text is broken up into tokens. The advantage
of this is that argument substitution can occur when ‘@?’ is used in a WEB macro definition.

11.40 @((begin meta-comment)

[C] The beginning of a “meta-comment,” i.e., commented-out code-section material that is supposed to
appear in the output file, is indicated by ‘@(’ in the WEB file. (Place this command in column 1.) Note
that the behavior of this command has been changed beginning with version 1.30. For both
processors, this command provides a verbatim channel directly to the output; it behaves as a generalized
comment. Its operation is controlled by several style-file parameters. For FTANGLE, these are meta.top.l,
meta.prefix.l, and meta.bottom.l, where l is a language symbol such as ‘N’ for Fortran. By default,
these are defined to generate valid comments for each particular language. For example, the C defaults are
meta.top.C = "/*", meta.bottom.C = "*/", and meta.prefix.C = "". If they are defined in the style
file, then the body of text between ‘@(’ and ‘@)’ is preceded by the contents of meta.top and followed by
the contents of meta.bottom. Each line of the body of text will begin with the contents of meta.prefix.
Experiment with an example to see just what happens. For FWEAVE, the parameters are meta.begin and
meta.end; these are defined by default to set up appropriate verbatim environments to surround the body of
text. For example, in LaTEX (when the ‘−PL’ option is used) they bracket the text with \begin{verbatim}

and \end{verbatim}.

This command may be useful when converting pre-existing Fortran codes with comments designed
without regard for TEX’s conventions. The verbatim environments will not destroy vertical alignment, nor
will they complain about the use of special symbols such as ’$’. However, please use this command only
as a last resort. For pretty alignments, use TEX’s alignment features (e.g., \halign) inside a standard WEB
command. If you want to temporarily comment out a section of code, it is best to use the preprocessor
commands ‘@#if’ and ‘@#endif’.

11.41 @) (end meta-comment)

[C] The end of a “meta-comment” is indicated by ‘@)’. (Place this command in column 1.)

11.42 @{ (suppress breakpoint comment)

[C] In debugging mode (which means when the _BP macro has been defined from the command line; see
discussion below), this command is used to replace the opening brace of a module, and means to suppress
the default insertion of a breakpoint command just after that brace. This is necessary in C code when the
brace is followed by declaration statements. To insert the breakpoint later, use ‘@b’ at the desired location.

— @& (join two items) — 81

11.43 @& (join two items)

[C] The @& [join] operation causes whatever is on its left to be adjacent to whatever is on its right, in the
code output. No spaces or line breaks will separate these two items. However, the thing on the left should
not be a semicolon, since a line break might occur after a semicolon. (See also the ‘@+’ command.)

The join operation should be distinguished from the macro processor’s paste operation (##). Pasting
abuts two things, then retokenizes the result to obtain a single new identifier. Joining simply prevents a space
from appearing between two objects on output. The difference can be very significant in macro processing,
where the new identifier that results from the paste might be a macro subject to further expansion. In
general, the join operation should not be used within WEB macro definitions.

11.44 @^ (index entry in Roman type)

[C, T] The “control text” that follows, namely everything up to the next ‘@>’, will be entered into the
index together with the identifiers of the program; this text will appear in Roman type. For example, to put
the phrase “system dependencies” into the index, you can type ‘@^system dependencies@>’ in each module
that you want to index as system-dependent. A control text must end on the same line of the WEB file as it
began. Furthermore, no WEB control sequences are allowed in a control text, not even ‘@@’. (If you need an
‘@’ sign you can get around this restriction by typing ‘\AT!’.)

11.45 @. (index entry in typewriter type)

[C, T] The “control text” that follows will be entered into the index in typewriter type; see the rules
for ‘@^’, which is analogous.

11.46 @9 (user-defined index entry)

[C, T] The “control text” that follows will be entered into the index in a format controlled by the TEX
macro ‘\9’, which the user should define as desired; see the rules for ‘@^’, which is analogous. The reference
would be made as follows: @9wildcard reference@>. If you wanted your wildcard reference to appear
in sans serif type, you would define \9 like this: \def\9#1{{\tenss#1}}. (In earlier versions of WEB, this
command was called ‘@:’. However, that is now the pseudo-colon, and although @9 may not look as pretty,
it should be easier to remember.)

11.47 @t (format control text)

[C] The “control text” that follows, up to the next ‘@>’, will be put into a TEX \hbox and formatted along
with the neighboring program. This text is ignored by TANGLE, but it can be used for various purposes within
WEAVE. For example, you can make comments that mix code and classical mathematics, as in ‘size < 215’,
by typing ‘|size < @t2^{15}@>|’. A control text must end on the same line of the WEB file as it began,
and it may not contain any WEB control codes.

11.48 @= (verbatim control text)

[C] The “control text” that follows, up to the next ‘@>’, will be passed verbatim to the program.

82 — @ (underline index entry) —

11.49 @ (underline index entry)

[C, T] The module number in an index entry will be underlined if ‘@_’ immediately precedes the identifier
or control text being indexed. This convention is used to distinguish the modules where an identifier is
defined, or where it is explained in some special way, from the modules where it is used. A reserved word
or an identifier of length one will not be indexed except for underlined entries. An ‘@_’ is implicitly inserted
by WEAVE when an identifier is being defined or declared—for example, when WEAVE recognizes a function, or
in type specification statements such as integer i, j. It is also inserted implicitly just after @d, @m, and @f.
Because of these implicit insertions, one should rarely need to use @_ explicitly.

11.50 @- (delete index entry)

[C] An identifier that immediately follows an ‘@−’ will not appear in the index.

11.51 @, (insert a thin space)

[C] This control code inserts a thin space in WEAVE’s output; it is ignored by TANGLE. Sometimes you need
this extra space if you are using macros in an unusual way, e.g., if two identifiers are adjacent.

11.52 @/ (line break)

[C] This control code causes a line break to occur within a program formatted by WEAVE; it is ignored by
TANGLE. Line breaks are chosen automatically by TEX according to a scheme that works most of the time,
but sometimes you will prefer to force a line break so that the program is segmented according to logical
rather than visual criteria. Caution: ‘@/’ should be used only after statements or clauses, not in the middle
of an expression; use ‘@|’ in the middle of expressions, in order to keep WEAVE’s parser happy.

11.53 @| (optional line break in expression [code text])

[C] In code text, this control code specifies an optional line break in the midst of an expression. For
example, if you have a long condition between if and then, or a long expression on the right-hand side of
an assignment statement, you can use ‘@|’ to specify breakpoints more logical than the ones that TEX might
choose on visual grounds.

In TEX text, this command is instead a literal vertical bar. See the discussion above.

11.54 @# (line break plus white space)

[C] This control code forces a line break, like ‘@/’ does, and it also causes a little extra white space to
appear between the lines at this break.

WEB automatically inserts this extra space between functions, between external declarations and func-
tions, and between declarations and statements within a function. Furthermore, this command is essentially
equivalent to a blank line in your source file, unlike the original convention of WEB. You should have to use
this command very rarely, since blank lines are so much easier and prettier looking in the source file. It is
good practice to insert blank lines liberally in your source file anyway for readability. For example, it usually
looks best if you set off things like if statements by blank lines.

Note that ‘@#’ is also the prefix for the preprocessor commands. No confusion arises, however; WEB interprets
things like @#endif as single units.

— @+ (cancel line break) — 83

11.55 @+ (cancel line break)

[C] This control code cancels a line break that might otherwise be inserted by WEAVE. For example, you
might use this to force two statements to appear on the same line, as in the Fortran line

a = b; @+ c = d

It is ignored by TANGLE.

11.56 @; (pseudo-semicolon)

[C] This control code, sometimes called a pseudo-semi, is treated like a semicolon, for formatting purposes,
except that it is invisible. You should use it, for example, after a module name when the code text represented
by that module name represents a complete statement, since in the absence of an explicit format statement
WEAVE thinks module names are just expressions.

Some examples of the use of pseudo-semis are in order. The principal use of them is after module names
in certain situations. Consider the following situation:

@c
@ Here is an example of the use of pseudo-semicolons.
@A
if(debug) @<Test@>@; // Use pseudo-semi here because @<Test@> ends with ’}’.
else @<Compute@>; // Use semi here because @<Compute@> does NOT end with ’;’.

@
@<Test@>=
{. . . }
@
@<Comp...@>=
x = 1.0@; // Ends with a pseudo-semi so WEAVE will format it properly.

The goal is to simultaneously fool WEAVE into thinking that you have written down a complete statement
and to avoid introducing a spurious semicolon where it doesn’t belong. In particular, it would be wrong
(and would lead to a compiler error about an unmatched else) to follow @<Test@> with a semicolon instead
of a pseudo-semi, because the definition of @<Test@> is already syntactically complete.

You may also need pseudo-semicolons to terminate macro definitions that are not complete statements
(but become one when they are terminated by a semicolon in actual use). Some users feel annoyed at typing
such pseudo-semis; they feel they should be inserted automatically. Unfortunately, they are not always
necessary, and inserting extra ones will typically at least insert an extra blank line in the output, possibly
worse. Nevertheless, the command-line option ‘−m;’ has been provided; this will append a pseudo-semi to
all WEB macro definitions. However, use of this option is not recommended.

11.57 @e (pseudo-expression)

[C] The philosophy of the pseudo-expression is similar to that of the pseudo-semi. The pseudo-expression
is treated like an expression (an identifier is a simple expression) for formatting purposes, except that it is
invisible. It finds use in certain macro constructions that the syntax analyzer would not otherwise recognize.
For example, in C the analyzer has the rules *expr → expr and (expr) → expr, but it doesn’t understand the
construction ‘(*)’, which occurs only very rarely in ordinary C syntax (in certain casts) but certainly might
appear in unusual macro usage. The cure is to use the pseudo-expression; WEAVE will be happy if you say
‘(*@e)’.

84 — @: (pseudo-colon) —

11.58 @: (pseudo-colon)

[C] The pseudo-colon is philosophically similar to both the pseudo-semicolon and the pseudo-expression:
It’s treated just like a colon, except that it’s invisible. It is useful in formatting certain case constructions.
For example, consider

@<Special cases@>=
case 1:
case 2@: @;

The pseudo-colon is used so that one can later say “@<Special cases@>:” when the module name is actually
used. The pseudo-semicolon is used to terminate the module so that the syntax analyzer can understand
the entire construction as a statement and thus format it properly.

“WEAVE’s built-in formatting method
is fairly good, but it is incapable of
handling all possible cases...”

The last eight control codes (namely ‘@,’, ‘@/’, ‘@|’, ‘@#’, ‘@+’, ‘@;’, ‘@e’, and ‘@:’) have no effect on the
program output by TANGLE; they merely help to improve the readability of the TEX-formatted code that is out-

put by WEAVE, in unusual circumstances. WEAVE’s
built-in formatting method is fairly good, but it
is incapable of handling all possible cases, be-
cause it must deal with fragments of text involv-
ing macros and module names; these fragments
do not necessarily obey the syntax of the source

languages themselves. Although WEB allows you to override the automatic formatting, your best strategy
is not to worry about such things until you have seen what WEAVE produces automatically, since you will
probably need to make only a few corrections when you are touching up your documentation.

Because of the rules by which every module is broken into three parts, the control codes ‘@d’, ‘@f’, ‘@l’,
‘@v’, and ‘@a’ are not allowed to occur once the code part of a module has begun. Note that ‘@m’ is allowed
(unlike in the original WEB design); it signifies a deferred macro definition.

The WEB control codes are summarized in Appendix L.

♣ 12. ADDITIONAL FEATURES and CAVEATS

Here we collect a miscellany of features, warnings, and suggestions.

12.1 Extended character sets

In Knuth’s original memo, this remark was about extended character sets. See the documentation for
common.web for more information.

12.2 It’s best to use ASCII characters

If you have an extended character set, all of the characters listed in Appendix C of The TEXbook can
be used in strings. But you should stick to standard ASCII characters if you want to write programs that
will be useful to all the poor souls out there who don’t have extended character sets.

12.3 Numerical constants

Hexadecimal, octal, and binary constants are allowed in all languages, generalizing the C-style format
(which does not allow binary constants). The syntax is 0xhhh for hexadecimal, 0ooo for octal, or 0biii for
binary. Here hhh stands for a sequence of hexadecimal digits (0–9 and A–F), ooo stands for a sequence of

— Numerical constants — 85

octal digits (0–7), and iii stands for a sequence of binary digits (0 or 1). Of course, C already recognizes
hexadecimal and octal constants, so for C these are just passed through to the output unchanged. In the
other cases, the constants are converted (during tokenization in phase one) to the appropriate integer. For
example, in Ratfor or Fortran each of 0xF, 017, and 0b1111 is replaced by 15.

12.4 Special assignment and increment operators

In Fortran and Ratfor, the post-increment operators ‘++’ and ‘−−’ and the compound assignment
operators ‘+=’, ‘−=’, ‘*=’, and ‘/=’ are allowed in restricted contexts—namely, in simple assignment state-
ments. These operators translate as follows, where x is anything allowed on the left-hand side of an equals
sign—for example, a subscripted expression:

x++; // -> ‘x = x + 1;’
x--; // -> ‘x = x - 1;’
x += expr; // -> ‘x = x + (expr);’
x -= expr; // -> ‘x = x - (expr);’
x *= expr; // -> ‘x = x*(expr);’
x /= expr; // -> ‘x = x/(expr);’

They are very useful at increasing the readability of your code. They can also be used in the Ratfor for
statement. For example,

for(i++; i<100; i*= 5)

They cannot, however, be used in ways such as ‘a(k++) = b(i++);’, even though the analogous construction
in C is both legitimate and often highly valuable. Furthermore, one must say ‘i++’, not ‘++i’, even though
these would be identical in C when used stand-alone. If one does not want these constructions to be
recognized, he may turn them off by the command-line option ‘−+’.

12.5 Strings

Strings are delimited by single quotes (Fortran), double quotes (C and Ratfor), or (in the case of
certain built-in functions), by parentheses. In order to continue quoted strings to another line, all lines but
the last must end with a backslash (just as one would define a lengthy C macro). Parenthesized strings
should not be explicitly continued, unless the command-line option ‘−(’ is used.

By default, the continuation of the string begins in column 1 of the next line. Fortran–90 introduces
a different convention, in which the continuation of the string may begin in an arbitrary column, but must
be preceded by the same continuation character (an ampersand in Fortran–90) that was used at the end
of the previous line. This is neither required nor allowed in FWEB’s default continuation mode. However, if
the Fortran–90 convention is desired, it may be turned on by the command-line option ‘−\’. When turned
on, it operates for all languages, not just Fortran–90. As an example, the following two lines of code are
equivalent, both dealing with the string "12345".

@n9[-n&]
@ The global language is Fortran--90, with free-form syntax.
FWEB’s default continuation convention is used.
@A
x = "123&
45"
// Now tell \FWEB\to use Fortran--90’s continuation convention.
@n9[-n& -\]
x = "123&

&45"

86 — Breaking long strings —

12.6 Breaking long strings

FWEAVE will break very long strings if necessary after embedded commas, or after every so many char-
acters. When it does so, it inserts a backslash; this generally causes no confusion.

12.7 Breaking TEX output lines

The TEX file output by WEAVE is broken into lines having, by default, at most 80 characters each. The
algorithm that does this line breaking is unaware of TEX’s convention about comments following ‘%’ signs
on a line. When TEX text is being copied, the existing line breaks are copied as well, so there is no problem
with ‘%’ signs unless the original WEB file contains a line more than eighty characters long or a line with code
text in |...| that expands to more than eighty characters long. (You may not be likely to create such lines
yourself, but certain processors that create WEB code automatically have been known to generate such long
lines.) Such lines should not have ‘%’ signs. If you run into trouble here, you might try increasing the length
of the output line by using the command-line option “−yllnn”, where nn < 255.

12.8 Comments

In all languages, the preferred commenting style is that of C or C++: /*...*/ can be extended across
newlines; //... is terminated by a newline. In principle, these can be placed anywhere; however, see
suggestion a) in the following item. Note that standard Fortran uses the ‘//’ operator for concatenation.
Therefore, in FWEB the short comment is not recognized unless the one of the command-line options ‘−n/’
(Fortran), ‘−r/’ (Ratfor), or ‘−/’ (both Fortran and Ratfor) is used. To allow both concatenation
and short comments, the operator ‘\/’ has been introduced as an alternative symbol for concatenation.
Also, Fortran–90 introduces the exclamation point to begin a single-line comment. However, this conflicts
with FWEB’s standard use of the point for the logical NOT. By default, therefore, FWEB will not recognize the
exclamation point as related to comments in Fortran–90 unless one of the command-line options ‘−n!’,
‘−r!’, or ‘−!’ is used; it will, however, always recognize the construction ‘!!’ as the beginning of a short
comment. Thus, each of the following four lines produces the same output for both FTANGLE and FWEAVE.

@n9[-n& -!]
@
@A
x = y // z ! This is a comment.
x = y // z !! This is a comment.
@n9[-n& -n/]
x = y \/ z // This is a comment.
x = y \/ z !! This is a comment.

12.9 Translation of code text

Code text is translated by a “bottom up” procedure that identifies each token as a “part of speech”
and combines parts of speech into larger and larger phrases as much as possible according to a special
grammar that is explained in the documentation of WEAVE. It is easy to learn the translation scheme for
simple constructions like single identifiers and short expressions, just by looking at a few examples of what
WEAVE does (see the following paragraph), but the general mechanism is somewhat complex because it must
handle much more than code itself. Furthermore the output contains embedded codes that cause TEX to
indent and break lines as necessary, depending on the fonts used and the desired page width. For best results
it is wise to adhere to the following restrictions:

a) Comments in code text should appear only after statements or clauses; i.e., after semicolons, after
reserved words like then and do, or before reserved words like end and else.

— Translation of code text — 87

b) Don’t enclose long code texts in |...|, since the indentation and line breaking codes are omitted
when the |...| text is translated from code to TEX. Stick to simple expressions or statements.

One can watch the translation in action by using the option ‘−2’ on FWEAVE’s command line. This will
send to the terminal a detailed list of the actions FWEAVE takes while combining parts of speech into phrases.
For example, the simple C program

main()
{
x = y;
}

will produce output something like the following:

Tracing after l. 8 (language = C):
121: *expr +expr+ +{+ expr... =="\{" "\\{x}"
5: *+expr+ +{+ expr... =="\{" "\\{x}"
1: *+fn_decl+ +{+ expr +binop+... =="\\{x}" "="
3: *+fn_decl+ +{+ +expr+ ;... =="\\{x}" ";"
6: +fn_decl+*+{+ +stmt+ +}+ -ignore- =="\}" "[force]"
131: *+fn_decl+ -stmt+ -ignore- \"[force]${}[[5]]$[force]${}[[15]]
$[force]${}[[10]]" "[force]"
71: *+function- -ignore- =="\\{main}" "[force]"
0: *+function- =="\254" "\\{main}"

Each line begins with the number of the rule that was just executed. For example, rule 121 recognizes the
combination ‘()’ as an expression, and rule 71 recognizes that a function declaration (‘main()’) followed by a
complete statement (‘{. . . }’) is a function. The asterisk indicates the starting point for the next search for a
matching rule. The leading and trailing plus and minus signs indicate whether that particular part of speech
begins or ends with math mode (plus) or ordinary text mode (minus). The last two quoted expressions on
a line are strings whose contents are the current translations of the last two explicit parts of speech shown
on the line. (Some of the details of the printed expressions are really intended for the developer of FWEB
and need not be explained here.) If all goes well, the last line will consist of a single part of speech such as
function ; however, if there is a rule missing or incorrect or if the source code syntax is invalid, the final line
may consist of a multitude of unreduced parts of speech. Option ‘−1’ will print only such unreduced scraps.
Such debugging can be turned on selectively by the commands ‘@1’ or ‘@2’, and turned off again by ‘@0’.
(The ‘@0’ should be placed in a section separate from the other debugging commands.)

12.10 Code within vertical bars

Comments and WEB macro definitions are not permitted in |...| text. After a ‘|’ signals the change
from TEX text to code text, the next ‘|’ that is not part of a string or control text ends the code text. Thus,
you can say “|@c x || y|” but not “|@c x | y|”. To handle the intent of the last example, you may say
“|@c x ||| y|”.

12.11 Braces in comments

A comment must have properly nested occurrences of left and right braces, otherwise WEAVE will try to
balance the braces to keep TEX from fouling up too much. Unfortunately, the scanning mechanism that is
used here is optimized for speed, not perfection, so WEAVE will complain about the legitimate construction
“/* ...$\{$... */”, for example. You may need to introduce TEX macros to avoid such warnings.

88 — Reserved words —

12.12 Reserved words

Reserved words of the individual languages, such as int or double precision must appear entirely in
lowercase letters in the WEB file; otherwise their special nature will not be recognized by WEAVE. You could,
for example, have a macro named DIMENSION and it would not be confused with Fortran’s dimension.

12.13 Fortran keywords

However, Fortran also has another class of words, namely keywords such as BLOCKSIZE or ‘ERR that
are used only inside I/O statements. In Fortran and Ratfor, the upper-case versions of these words are
treated as reserved and will be formatted in a special way that makes the I/O statements look appealing.

12.14 Formatting identifiers

The @f feature allows you to define one identifier to act like another, and these format definitions are
carried out sequentially. However, a given identifier has only one printed format throughout the entire
document (and this format will even be used before the @f that defines it). The reason is that WEAVE

operates in two passes; it processes @f’s and cross-references on the first pass and does the output on the
second. (Note that in C one has the possibility of defining additional types via the typedef command. This
essentially acts like an implicit ‘@f’.)

12.15 Formatting module names

In fact, as we have already stated, one can also format a module name. By default, module names are
interpreted as expressions, but this is not always what is desired. For example, one can say

@f @<Common blocks@> common

and the parser will understand the use of @<Com...@> as a type specification. Only the first slot of @f is
allowed to be a module name; the second slot must always contain an identifier.

12.16 New reserved words

You may want some @f formatting that doesn’t correspond to any existing reserved word. In that
case, WEAVE could be extended in a fairly obvious way to include new “reserved words” in its vocabulary.
For example, WEAVE has already been taught to understand the identifier Real as an intrinsic function in
Fortran. Note that a way of teaching WEAVE your own formats without recompiling is to include via @i a file
including those format commands.

12.17 Special array formatting

Both Fortran and C have a somewhat vanilla-flavored syntax for array elements—e.g., f(i,j) or
f[i][j]. In some physics applications certain indices are preferred—e.g., they might be covariant or
contravariant—-and it is useful to see this explicitly in the woven output. Also, some users are annoyed
(with good reason) by the dual use of parentheses in Fortran to denote both function calls and array ele-
ments; they prefer to see something like f[i,j] for a Fortran array element. Several features are available
to help in this regard.

Usually the parentheses (Fortran) or brackets (C) denoting array elements are just passed through to
the output by both FTANGLE and FWEAVE. However, when the ‘−W[’ option is used, FWEAVE inserts a special
call to the TEX macro \WXA , with the array elements as arguments. By redefining the behavior of \WXA, a
variety of special effects can be achieved. To be more precise, one shouldn’t generally modify the definition

— Special array formatting — 89

of \WXA itself, which is rather complicated; rather, one should redefine \WARRAY, which is called by \WXA. See
the following example.

Redefining \WARRAY affects all array references. An even more general possibility is to use the ‘@W’ com-
mand to overload specific identifiers in different ways. See the description of ‘@W’ and the following example.

1. ARRAY PROCESSING. This example demonstrates two ways of beautifying array references in
Fortran and C. Parenthesized references can be overloaded with the ‘@W’ command, as follows:

@W x \x // Replace references to x by the macro \x.
@W y \y

@W z \z

@l "\\def\\x(#1){x^{#1}}" // Contravariant index.
@l "\\def\\y(#1){y_{#1}}" // Covariant index.
@l "\\def\\z(#1,#2){z^{#1}{}_{#2}}" // Mixed indices.

2. Bracketed array references are activated by the ‘−W[’ command. (In Fortran FTANGLE always auto-
matically replaces brackets by parentheses.) One can redefine the \WARRAY macro to get special effects.

@l "\\let\\WARRAY\\WSUB" /∗ Subscript bracketed indices. (\WSUB is defined in fwebmac.web.) ∗/

90

3. In the following test, carefully note the difference in type size between the results of parenthesized
subscripts and bracketed ones. To fully understand why this occurs, study the definition of the \WXA macro
in fwebmac.web.

program main •

/∗ Test of overloaded identifiers. ∗/
xi

yj

zi
j

/∗ Bracketed indexing. ∗/
Ai

Bj par

Cindex ,j par

Dindex j par+1
E1+2∗i

/∗ Brackets aren’t active inside strings. ∗/
’a[b]c(d)’

end

/∗ Now, an example from C. ∗/@Lc:
a1,2,k; // In the source, this is “a[1][2][k]”.

4. INDEX.

(Index and remaining material skipped.)

(Page break skipped.)

12.18 Forward references to identifiers

We have learned that FWEAVE makes two passes through the source file in order to handle forward
references to module names—i.e., the situation in which a module name is used before it is defined. It is
desirable to extend this feature to various identifiers such as function names and macros. The convention is
to automatically subscript such identifiers with the number of the module in which they are defined. (The
format can be changed by refining the fwebmac macro \WIN; see below.) If the identifier has been defined in
the current section, then the numerical subscript is replaced by a small bullet.

Implementing such a mechanism poses a difficult problem in general. For example, function names are
processed by FWEAVE’s syntax parser during phase 2, so unless some special action is taken only function
references occurring after the definition will be subscripted—in other words, forward referencing would not
work. The most straightforward way of solving this problem would be to make two passes through the
parser; however, this has been rejected as being too slow. Nevertheless, some partial solutions can be given.

First, one can force FWEAVE to understand that an identifier is a function name by prefacing it with the
command ‘@[’. This command is executed during phase 1; it marks the name as being defined in the current
module. Actually, it marks the first identifier it can find that is not already known to be a reserved word, so
the ‘@[’ may occur at the very beginning of a function declaration. This allows a further convenience. By

— Forward references to identifiers — 91

default, the command ‘@a’ is equivalent to ‘‘@A@[’’, where ‘@A’ begins the unnamed module but does nothing
else. (Previously in this manual, we have used ‘@a’ to begin the unnamed module; we now see that that was
a little white lie.) Thus, the following three function definitions are completely equivalent:

@ Explicitly mark the function name.
@A
void @[f()
{}
@ Explicitly mark the entire function name.
@A@[
void f()
{}
@ Rely on ‘@a’ to issue an implicit ‘@[’.
@a
void f()
{}

Since the marks are executed during phase 1, forward referencing is not a problem. Thus, in the following
code the references to functions f and g in module 1 will be properly subscripted in the woven output.

@c
@ An example of a function with forward referencing.
@a
main()
{
f();
g();
}
@ Forward references to functions declared in the unnamed module are
handled with ease.
@a
void f()

@ For named modules, one must mark explicitly if that is appropriate.
@<Special functions@>=@[
void g()

Note that at present section names do not automatically issue an ‘@[’ command, so we had to insert one
explicitly in the above example. This restriction may be removed in future releases.

Macro references can also be subscripted. The commands ‘@d’ and ‘@m’ issue implicit ‘@[’s by default,
so you should have to do nothing explicitly to have macro references properly identified. If you never want
a particular macro reference to be subscripted, use the upper-case commands ‘@D’ or ‘@M’.

In C-like languages additional types can be created via the typedef command. In the original CWEB
design, typedefs were processed during phase 2, so there was again a problem with forward referencing.
The implicit ‘@[’ command now issued by ‘@a’ aggravates the difficulty, as seen in the following example:

@c
@
@A
@<Typedefs@>@;

@ The user-defined type |MY_TYPE| isn’t understood here yet when |typedef|s

92 — Forward references to identifiers —

are processed in phase 2.
@a
MY_TYPE f()
{}
@
@<Typedefs@>=
typedef int MY_TYPE;

Not only is the typedef name MY TYPE not understood when it is discussed in the text, the implicit ‘@[’
issued by ‘@a’ will incorrectly mark MY TYPE instead of f as a function defined in the current mod-
ule. Therefore, typedefs are now partly processed during phase 1 to the extent that the identifier being
typedefed is now marked as a reserved word. Since the subscripting of identifiers is done during the output
in phase 2, the above example will now work correctly.

Here is a typeset illustration that contains forward references to function names, macro references, and
typedefs:

1. FORWARD REFERENCING. Here is a nonsense program illustrating forward referencing for
identifiers. Although there are various instances of forward references, there was need for just one explicit ‘@[’
command (in module 3). Identifiers that are used in the same section as they are defined are subscripted with
a bullet. Note how the module-number subscripts are set in different type for different kinds of identifiers.

Here we see that one can refer to the macros D2 and W 2 as well as the user-defined type PTR4 in
advance of their definition, yet they will be subscripted properly.

int main •()
{
〈Typedefs 4 〉
〈Special stuff 3 〉
x = fcn 2(D2(outer test));
py = g3(W 2(WEB test));
}

2. Examples of definitions of an outer macro, a WEB macro, and a function.

@d D•(name) #name
@m W •(arg) ∗arg++

int fcn •(char ∗name)
{ }

93

3. In the following, we had to say “PTR @[g. . .” in order to make forward referencing to g• work. Although
one can say things like “@[int g. . .”, it wouldn’t work here to say “@[PTR g. . .” because PTR4 isn’t known
yet as a special type, even in phase 1.

〈Special stuff 3 〉 ≡
PTR4 g•(int i)
{ }

This code is used in section 1.

4. The compiler will see this typedef before any statements that use the type PTR•.

〈Typedefs 4 〉 ≡
typedef char ∗PTR•;

This code is used in section 1.

5. INDEX.

(Index and remaining material skipped.)

(Page break skipped.)

When many macro references and/or typedef statements are in use, one may in some cases actually
be annoyed by the clutter of subscripts. Several mechanisms are provided to selectively turn on or off the
subscripts. First, all subscripts can be turned off from the command line by the option ‘−f’. Second, style
file entries (see section on “Advanced Features” below) serve as switches to enable or disable subscripting
for certain types of identifiers, according to the following table:

mark_defined.generic_name — Something explicitly marked by ‘@[’. [0]
mark_defined.fcn_name — Function names. [1]
mark_defined.WEB_macro — WEB macro (@m). [2]
mark_defined.outer_macro — Outer macro (@d). [3]
mark_defined.exp_type — Something explicitly marked by @`. [4]
mark_defined.typedef_name — A typedef -like statement in C-like languages. [5]

By default, mark_defined.generic_name and mark_defined.exp_type are set to 1 (on); the others are set
to 0 (off).

Each of the above types of identifiers has a number, indicated in brackets. This number is the first
argument to the subscripting macro \WIN; the second argument is the number of the module in which the
identifier was defined. Thus, if the function fcn was defined in module 38, the output tex file produced
by FWEAVE will contain the phrase “\\{fcn}\WIN1{38}”. The identifier number is used as an argument to
an \ifcase statement, so the output format can be different for different types of identifiers and can be
controlled by the user. The default fwebmac macro \WIN subscripts all kinds of identifiers with a bullet if
they were defined in the current module. Otherwise, the module number subscripts are typeset in the same
style as the bracketed numbers in the above table. You may wish to experiment to find an output format
that is more informative or pleasing to your eye.

94 — Spacing and macros —

12.19 Spacing and macros

Macros place unusual demands on WEAVE. For example, suppose one defined

@m PLUS +

then attempted to use that macro in the expression “x PLUS y”. This would tangle correctly and do
what you want, but WEAVE’s output would look like “xPLUS y”, whereas what you really would like is
“x PLUS y”. This occurs because WEAVE treats all normal identifiers as expressions, and its rules tell it to
simply concatenate expressions (with no intervening white space). To help in situations like this, FWEAVE has
a few extra reserved words that invoke special rules that insert extra spaces. These words are $ BINOP ,
$ COMMA , $ EXPR , $ EXPR , $EXPR , and $UNOP . The underscores show where spaces will be
inserted. You can format your unusual macros to these words, as in

@f PLUS $_BINOP_

and your macro will then be treated as the proper part of speech—either a binary operator, a comma, an
expression, or a unary operator.

12.20 M4 built-in commands

By default, Fortran and Ratfor do not understand the special m4 preprocessor built-in commands:
changequote, define, divert, divnum, dnl, dumpdef , errprint, ifdef , ifelse, include, incr, index,
len, maketemp, sinclude, substr, syscmd, translit, and undivert. To make them understand m4, use
the command-line option ‘−m4’. Because these commands are essentially macros, which need not obey the
Fortran syntax, WEAVE has a very difficult time formatting arbitrary m4 constructions. To help WEAVE
out, the underlined commands in the above list have their arguments interpreted as strings (delimited by
balanced parentheses), and WEAVE will format them as such, in typewriter type. These strings are treated
just like other strings, except that if they don’t end on the same line, they don’t have to be continued by a
backslash. (However, you have the option of changing the default. For parenthesized strings only, if you use
the command-line option ‘−(’, then those strings must be continued by backslashes.)

Similar considerations about string arguments apply to the FWEB built-in commands COMMENT,
ERROR, IF, IFELSE, and LEN.

12.21 More general spacing

Sometimes it is desirable to insert spacing into code that is more general than the thin space provided
by ‘@,’. The @t feature can be used for this purpose; e.g., ‘@t\hskip 1in@>’ will leave one inch of blank
space. Furthermore, ‘@t\4@>’ can be used to backspace by one unit of indentation, since the control sequence
\4 is defined in webmac to be such a backspace.

12.22 Change file

WEAVE and TANGLE are designed to work with two input files, called web file and change file , where
change file contains data that overrides selected portions of web file . The resulting merged text is actually
what has been called the WEB file elsewhere in this report.

Here’s how it works: The change file consists of zero or more “changes,” where a change has the form
‘@x〈old lines〉@y〈new lines〉@z’. The special control codes @x, @y, @z must appear at the beginning of a line;
the remainder of such a line is ignored. The 〈old lines〉 represent material that exactly matches consecutive
lines of the web file ; the 〈new lines〉 represent zero or more lines that are supposed to replace the old.

— Change file — 95

Whenever the first “old line” of a change is found to match a line in the web file , all the other lines in that
change must match too.

Between changes, before the first change, and after the last change, the change file can have any number
of lines that do not begin with ‘@x’, ‘@y’, or ‘@z’. Such lines are bypassed and not used for matching purposes,
except for the following special codes.

In addition to ‘@x’, ‘@y’, and ‘@z’, the language commands ‘@c’, ‘@r’, ‘@n’, and ‘@Ll’ are also allowed
in the change file, as are the commands ‘@[’ and ‘@]’. All these commands must begin in column 1. The
command ‘@[’ means switch into code mode; ‘@]’ means switch out of code mode. These latter commands
are necessary only in Fortran, but are crucial there. Although modes switch back and forth automatically
between free-form and column syntax as the input driver reads sequentially through the input file, that can’t
happen automatically for the change file, which consists of isolated fragments of text that could match any
line of the input file, in either TEX mode or code mode. If you do not help out the change file, the input
driver will probably not interpret the syntax of the change file in the same way as it does the source file, and
lines that look identical in the source files nevertheless won’t match.

For example, if a Fortran–77 source file contains the line

call open(’datafile’)

the following change file will replace that line with two new lines:

@n
@[
@x

call open(’datafile’)
@y
/* Here are the replacement lines: */

call open(’newdatafile’)
@z

This dual-input feature is useful when working with a master FWEB file that has been received from
elsewhere (e.g., FTANGLE.WEB or FWEAVE.WEB), when changes are desirable to customize the program for your
local computer system. You will be able to debug your system-dependent changes without clobbering the
master web file; and once your changes are working, you will be able to incorporate them readily into new
releases of the master web file that you might receive from time to time.

You specify the name of the change file on the command line; it is the second command-line argument
that the parser can recognize as a file name—i.e, that does not begin with a hyphen. A default extension of
‘.ch’ is implied. If you just say ‘FTANGLE test’, you are talking about the web file ‘test.web’ with the null
change file. If you say ‘FTANGLE test test’, you are talking about the web file ‘test.web’ and the change
file ‘test.ch’. If you say ‘FTANGLE alpha.fweb beta.fch’, you are calling for the web file ‘alpha.fweb’
and the change file ‘beta.fch’. It is almost never necessary to deal with nondefault file extensions. (The
range of default extensions can be increased by entries in the style file. See the following discussion of the
style file and of the command-line option ‘−e’.)

13. INPUT

It doesn’t take much time attempting to fit the column-oriented Fortran–77 syntax into the WEB
framework to realize the virtues of languages such as C, Ratfor, or Fortran–90 with free-form syntax.
The present FWEB design solves the problem of multiple, incompatible input syntaxes by introducing the
concept of input drivers. These are front ends that convert the incoming syntax as quickly as possible to

96 — INPUT —

a uniform syntax that the innards of FWEB can understand. Individual lines from the WEB file are filtered
through the input driver appropriate to whatever language is in force at that point. For C, that filter is
essentially a unit operator; it presents to FWEAVE and FTANGLE the same input line that it read in. At the
other extreme, however, for Fortran–77 the filter does much more work. Because of the possibility of
continuation lines, the filter must read ahead. If it finds a continuation line, it concatenates it to the stuff
already in the filter’s buffer. Finally, when it finds no more continuations, it appends a semicolon to the
logical line it has constructed, then presents this line to the innards of FWEAVE or FTANGLE. The semicolon
serves as the end-of-statement delimiter, just as it does in C. Thus, the input line presented to the processors
has a standard form for all supported languages, so it can be parsed in a standard way.

In fact, the Fortran and Ratfor drivers do even more things, especially related to comments. These
details will be described in the following sections. Here, the point to remember is that your input file can
pretty well follow the conventions of whatever mode you’re in at the moment: C, C++, Fortran, TEX, or
whatever.

13.1 Fortran–77 input

It is recommended that you do not use bare Fortran for new codes; use Ratfor instead. Another
option is to use the free-form mode of Fortran–90.

Although the preferred commenting style is C-style, the Fortran column-1 convention is retained for
compatibility with existing code. These two styles are fundamentally incompatible, and the Fortran style
is definitely not recommended! Note that trailing comments beginning with an exclamation point will not
work!

x = y !This doesn’t work in Fortran−−77.

This is a VAX extension that conflicts with the standard WEB use of the exclamation point, as it is the input
symbol for the logical NOT. (See below.) If your source file already contains such comments, you must change
them into C-style ones. With the aid of a good editor, this can be done with just one command repeated
automatically.

Following the conventions of Fortran–77, lines that begin with ’C’, ’c’, or ’*’ are (short) comments
(terminated by the end-of-line). When the option ‘−n/’ is in effect, these lines behave identically to ones
beginning with ‘//’. Consecutive comments of the same kind (long or short) are concatenated by the input
driver. Thus, the construction

/* A */ /* B */
C C
// D
* E

will be typeset into the two lines
/∗ A B ∗/
// C D E

Since the input driver concatenates successive lines of the same type, very long effective input lines can
be created. Sometimes the associated buffer overflows and FWEB terminates with an error message. Since that
buffer is allocated dynamically, one can use the ‘−y’ option to increase its size; the error message explains
how.

A comment that appears on the line immediately after a statement or continuation line will be attached

— Fortran–77 input — 97

to the previous line as a trailing comment. Generally, this is not what you want; a comment beginning
in column 1 probably belongs with the next statement. One solution is to insert a blank line before the
comment. This puts a blank line in your woven output. If you don’t want that, omit the blank line and
preface the comment by ‘@/’.

The commenting rules are such that both FTANGLE and FWEAVE will handle compiler directives appro-
priately. Typically a compiler directive begins with the character ’C’ so it will be ignored by a compiler that
doesn’t understand the directive. Thus if cdir is a compiler directive, one can say

x = y

cdir Text of the directive
(more code)

and the compiler directive will be executed. Note the important blank line before the directive. If it were
not there, the directive would be treated as a trailing comment attached to the previous line of code. (It is
instructive to try this example with the blank line both present and absent. With the blank line absent, you
will find that the ’d’ of cdir gets eaten. This occurs because of a quirk of the input driver that will be fixed
someday.) However, for new codes a much better solution for compiler directives is to use the ‘@?’ command;
see the discussion in the section on control codes.

“By default the semicolons are
actually appended as pseudo-
semicolons, so they will be invis-
ible on output.”

The Fortran–77 input driver recognizes the end of a valid statement when the next line is neither a
continuation nor a comment. At this point, the input driver performs a scan over everything it has collected
so far and concatenates any adjacent comments
of the same type. It then appends a semicolon to
the end of the compilable part of the statement
(i.e., just before the last comment), because the
semicolon is used as a universal statement ter-
minator in the innards of FWEAVE and FTANGLE.
Logically, the semicolons should show up in the
woven output, since they are FWEB’s way of terminating statements. However, this makes the Fortran
output look a little strange, and, logic notwithstanding, people have understandably found this annoying.
Therefore, by default the semicolons are actually appended as pseudo-semicolons, so they will be invisible
on output. To make the semicolons visible, use the command-line option ‘−np’. FTANGLE, of course, always
throws the semicolons away during its output phase, since they would not be understood by the compiler.

If you think the Fortran input driver isn’t working the way it’s supposed to (for example, if it doesn’t
concatenate continuation lines properly), you might want to look at the line-by-line output from the driver.
You can turn on this debugging feature with the command-line option ‘−l’. If this confirms that something is
wrong, by all means report the bug. The Fortran driver is much too complicated for its own good! (Often,
bugs show up in incorrect continuation lines. These can often be circumvented by using the −# option to
remove the line- and module-number comments.)

If all goes well and WEAVE is able to recognize a complete main program, function, or subroutine, the
body of that program unit is indented. To be consistent, you should use the program statement for main
programs; otherwise, the indentation may appear strange. (You may call this a bug, but it’s really a design
“feature”.)

Fortran contains such archaic constructions as ‘.ne.’. WEB has two ways of helping you to deal with
these things. You are allowed more flexibility in input, and WEAVE substitutes prettier constructions such as
‘6=’ as it typesets the documentation. (The exact form of the output is controlled by a TEX macro; study
fwebmac.web. Thus, if you don’t like the way exponentiation is typeset, for example, you can easily change
it without recompiling FWEB.) Here is a table of what you can type on input, and what WEAVE will typeset.

98 — Fortran–77 input —

The first entry is standard Fortran; the parenthesized material is an allowable input alternative. (In most
cases, the pretty input alternatives follow C’s convention.)

.lt. (<) → <

.le. (<=) → ≤

.eq. (==) → ≡

.ne. (!=,<>) → 6=

.gt. (>) → >

.ge. (>=) → ≥

.and. (&&) → ∧

.or. (||) → ∨

.neqv. → 6≡

.xor. → 6≡

.eqv. → ?=

.not. (!) → ¬
** (^) → (a+b)^(c+d) → (a + b)c+d

// (\/) → ‖
These same conventions are allowed in Ratfor mode. Note that in Fortran and Ratfor ‘//’ is interpreted
by default as the concatenation symbol, not the start of a short comment. To override that default, use one
of the command-line options ‘−n/’, ‘−r/’, or ‘−/’, or use a language-changing command of the form “@n/”.

A few restrictions or modifications of Fortran’s rules have been made in the interest of simplicity.
First, FWEB recognizes identifiers in a slightly different way than does Fortran. As an extension compatible
with Ratfor and C, identifiers may contain underscores and dollar signs and may be of arbitrary length.
(FTANGLE can translate these to garden-variety Fortran identifiers; see the discussion of the −t option. On
the other hand, as a restriction there may not be any white space within identifiers. (However, FWEAVE will
correctly understand go to, else if , end if , and end do.) Secondly, there are a few cases in Fortran
where the same identifier is allowed to be used in two entirely different ways. Perhaps the most prominent
case is the identifier real, which is used both as a type specification and as an intrinsic function. FWEAVE,
not being as intelligent as the Fortran compiler, does not understand enough about the syntax to properly
distinguish these two uses; specifically, it understands real only as a type specification. In cases such as
this, one can often make FWEAVE happy by recalling that FWEAVE’s reserved words are all in lower case, but
that Fortran is case-insensitive. Thus, Fortran doesn’t care whether you type real or Real, but FWEAVE
will not confuse Real with a type specifier. In fact, for this particular case FWEAVE has been taught to
understand that Real is an intrinsic function, so what you will really get is real and Real . As a matter of
good programming style, you just shouldn’t get into this situation if you can avoid it. Don’t, for example,
use Integer as the name of a function, even though Fortran allows that and FWEAVE will treat it as an
ordinary identifier.

Standard Fortran–77 does not understand the unnumbered block do construction, which is a VAX
extension. FTANGLE understands such constructions, and can optionally convert them into standard numbered
dos. See the description of the command-line option ‘−d’. (This mode is slow, and is not recommended. Use
Ratfor or Fortran–90 instead.)

An excellent application of named modules is to define things like common declarations that you wish
to insert at the beginning of every subroutine. By using a named module, you can keep the code for the
common declarations in the same file as the rest of your code; a separate include file is unnecessary.

One of the annoying Fortran constructs is the “dot constant”—e.g., ‘.false.’ or ‘.eq.’. In some
cases FWEB gets confused by the periods, which are used for other purposes as well. For example, a VAX
extension uses periods to separate components of structures. (Fortran–90 uses ‘%’ for this purpose.) If you
want, you can change the delimiters of such dot constants via the style-file options dot_constant.begin

and dot_constant.end. For example, if you say in fweb.sty

dot_constant.begin ’[’
dot_constant.end ’]’

then you can say in your code things like “if(a[eq]b). . .”. However, generally it is better to say “if(a==b). . .”.
The command-line option ‘−.’ tells FWEB to not attempt to identify dot constants (even when the delimiters
have been changed as above). Use this option if your compiler uses periods for something else.

— Fortran–90 input — 99

13.2 Fortran–90 input

Fortran–90 permits two input syntax styles: column format, as in Fortran–77, and free-form format.
The column format behaves as in Fortran–77; see the previous subsection. The free-form format is a great
advance, and should be used for new code. The following remarks pertain to free-form input.

In free-form input, lines are continued by a character at the end of the line instead of one in column 6 of
the next line. The continuation character is selected by a command-line option, which also serves to turn on
the free-form input mode. You may choose either ‘−n&’ or ‘−n\’, allowing one to continue lines with either
an ampersand (Fortran–90’s rule) or a backslash (compatible with C and other WEB conventions). (If you
select ‘−n\’, FTANGLE will convert the backslash into an ampersand on output.) For example, here is how to
begin a web source code written with free-form Fortran–90:

@n9[-n& -n/]

@* INTRODUCTION. The following code will be in free-form Fortran--90.
(It may take a lot of CPU time.)
@a
program main
integer i

i =&
0 // Illustration of line continuation.
iterate: do

i++
end do iterate

end

13.3 Ratfor input

By default, the auto-semi mode is not used. In this case the Ratfor syntax is completely free-form and
identical to that of C. In the auto-semi mode the input driver will turn the Ratfor-style comment (anything
between ‘#’ and the end-of-line) into a C-style comment. (’#’ characters embedded in comments will just
be copied, and paste tokens (‘##’) in WEB macro definitions will be properly understood.) As described
earlier, in that mode it also handles the Ratfor style of obvious continuation, and supplies semicolons in
the appropriate places.

With the exception of remarks specific to Fortran’s line-and-column-oriented syntax, all the other
remarks about Fortran apply to Ratfor as well.

13.4 C and C++ input

This is the bare-bones driver; it does nothing but pass the free-form syntax along to the innards of the
processors. This driver is also used for Ratfor.

Beginning with version 1.21, typedefed variables can be marked automatically with the number of the
module in which they are defined. See the previous discussion of “Forward References.”

One formatting annoyance is concerned with constructions of the form

typedef struct weird
{
...
} weird;

100 — C and C++ input —

The C language permits this construction, in which weird is used in two ways. However, WEAVE is not as
clever as a compiler; it only understands one interpretation of a variable, and will likely become slightly
confused by the above situation. It’s not really good programming practice to use an identifier in more than
one way anyway; replace the last weird by WEIRD , or the first weird by weird0 .

14. COMMAND-LINE OPTIONS

Various information of interest to FWEAVE and/or FTANGLE may be entered from the command line.
Command-line arguments are delimited by spaces; if you need a space inside an argument itself, surround the
argument with quotes (single or double, depending on your operating system or shell). Since the arguments
are case-sensitive, remember that under VAX/VMS arguments are translated into lower case unless they are
protected by double quotes. Under UNIX, certain characters such as “&|;<>(){}*?[]” may mean special
things to the shell and may need to be escaped with a backslash or protected with quotes. Thus, while under
VMS a valid option is ‘−>’, under UNIX you must say ‘−’>’’ or ‘−\>’. (Since this is cumbersome to type, the
synonym ‘−=’ has been provided.)

“Command-line arguments may
appear in any order.”

Command-line arguments may appear in any order; they are processed from left to right. If a command-
line argument does not begin with a hyphen, it is understood to be a file name. The first file name found is the
name of the WEB source file; optionally, if a second file name is found, it is the name of the change file. If the

name (excluding a possible path) contains a period,
then it is processed exactly as specified. Otherwise,
WEB supplies an extension. Precisely how this is done
depends on whether the ‘−e’ option is in effect. If it

is not in effect, then a default extension is used: “.web” for the WEB file, “.ch” for the change file. If it
is in effect, then extensions taken from the relevant style file entry (ext.web or ext.change) are applied
in turn until one matches. A lone hyphen ‘−’ is understood to stand for the special file stdin (standard
input), which is usually the terminal. Hyphenated options should have no space between the option and its
parameter, if one is required. Thus, an example of a command line is

fweave test test -wmy_macros

which means “Weave the file test.web using the change file test.ch; print ‘\input my_macros’ at the
beginning of test.tex.” It would be an error if test.web were missing. However, if one had said in the
style file “ext.web = "web wb"” and used the ‘−e’ option, then in the absence of test.web the system would
attempt to open test.wb. This same mechanism works for file names specified on @i lines (see the discussion
of the control code ‘@i’, except that if the ‘−e’ option is not in effect there are no default extensions. The
associated style-file entries are ext.hweb for the included web file and ext.hchange for the associated change
file.

Certain command-line options can be negated by including an extra hyphen. For example,

fweave test --x

means “Do the opposite of option ‘−x’.” Since ‘−x’ means suppress all cross-reference information, ‘−−x’ means
“do write all cross-reference information.” This example is essentially pedagogical, since that information is
normally written anyway by default. The most common reason to negate an option is when one wishes to
override an option that was set in the initialization file .fweb (discussed below). For example, .fweb might
contain the command ‘+v’, which tells FTANGLE to make all comments verbatim and pass them along to the
output file. If you want to turn off those comments for one particular run, say ‘−−v’ on the command line.

14.1 Options to language commands

Whenever a language is changed via a control code such as ‘@c’, that code may be optionally followed by

— Options to language commands — 101

text, optionally enclosed in square brackets. This was explained in the section on languages. The optional
text is essentially parsed as though it were a command line; this affords a way of selecting different parameters
for each language. For example, the following are valid commands:

@c++ @% Select c++.
@r[-k*] @% Select Ratfor, and suppress comments about keyword expansions.

However, some options such as −x are truly global and are not reasonably changed in the midst of the web

source. Those global commands that may not be used inside brackets are marked in the following list with
asterisks.

14.2 List of options

Here are the options (brackets mean optional arguments; case is significant):

- — The file name “stdin”, which signifies “standard input”.

-0 — Turn off WEAVE’s debugging output. (The command ‘@0’ should be placed in a different
module from ‘@1’ or ‘@2’.)

-1 — Turn on limited debugging for FWEAVE.

-2 — Turn on full verbose debugging for FWEAVE.

-A — Turn on translations to ASCII. (On ASCII machines, translations to the internal
ASCII representation are redundant, so are turned off by default. This flag is
used for debugging. On non-ASCII machines, the translations are done regardless
of the setting of this flag.)

-b — Number do and if blocks in woven Fortran and Ratfor output. This is helpful when
the blocks are highly nested and/or long. The form of this numbering is defined
by the fwebmac macro \Wblock, which by default prints as ‘ // Block 99’.

* -c — Set the global language to C. (Will be overridden by a language command in limbo.)

-c++ — Set the global language to C++.

-D[letters] — Display information about reserved words of the current (command-line) language (be-
ginning with letters if present). For example, to see all the reserved words of C,
say “ftangle −c −D”.

-d[nnnnn] — In Fortran–77, this tells TANGLE to convert unnumbered ‘do. . . enddo’ constructions
to numbered ones of the form ‘do 10000 . . . 10000 continue’. The constructions
are numbered uniquely, without regard for subroutine boundaries. By default, the
numbering starts with a large number such as 90000. If you wish to change that
starting number, say ‘-dnnnnn’, where nnnnn is an integer number sufficiently less
than 99999. Any statement numbers that you use yourself should be less than
that starting number. (This feature is a kludge and is slow; use Ratfor instead.)

102

-Ec — Change the delimiter of a file-name extension from the default ’.’ to ’c’. This option
is included because on some (weird) systems the period is used as a directory
delimiter.

-e — Turn on automatic file-name completion. If any file name contains a period, then it is
assumed that this is the complete name of the file to be opened. If it does not con-
tain a period, then trial names are constructed by appending in turn each extension
from the relevant style-file extension list: one of ext.web, ext.change, ext.hweb,
or ext.hchange. The first trial name that matches a file in the user’s directory is
opened. For example, if one says in the style file “ext.hweb = "hweb hw"” and
uses an include line of the form “@i my_includes”, the system will search for the
include files my_includes.hweb and my_includes.hw, using the first one it finds.

-f — Turn off the module reference subscripts for all identifiers.

* -h — Get help from the command line. (Not implemented yet; just refers the user elsewhere
and quits.)

-i — This option is intended to help cut down on the volume of woven output. It tells
FWEAVE to read include files named by the ‘@I’ command, but to not print their
contents. (Include files named by ‘@i’ will always be processed fully, regardless of
any command-line options.) This command will only work properly if the included
text is a complete module, or has no new-module commands in it at all.

-i! — Tells FWEAVE to not even read include files named by the ‘@I’ command.

-I — Append a directory to the list of directories to be search for include files. (That list
begins with the contents of the environment variable FWEB INCLUDES if that
is defined.) The argument of this option can also be a colon-delimited list of
directories.

103

-k[letters] — This option turns off the comment lines generated by FTANGLE during Ratfor state-
ment translation. The ‘k’ must be followed by a list of single lower-case characters
(no quotes are required). If any of those characters is an asterisk, or if the list is
empty, then all comment lines are suppressed. Otherwise, the characters serve as
abbreviations for which Ratfor keyword the comment should be suppressed, as
follows:

b — break
c — case
t — default
d — do
f — for
i — if

n — next
p — repeat, until
r — return
s — switch
h — where
w — while

For example, ‘−kbn’ will suppress comments about the break and next state-
ments.

-K[letters] — As above, except that the list of abbreviations specifies which comments to include,
rather than to suppress.

-l[mmmm[:nnnn]] — Echo the input line that the input driver has constructed, between lines mmmm
and nnnn. Useful for debugging (especially for FWEB itself), but rather slow. The
command ‘−lnnnnn’ echos all lines beginning with line nnnnn; if you just say ‘−l’,
the echo starts with the first line.

* -Ll — Select language l, where l ∈ {c, n, r, x}.
* -mid[=text] — The construction ‘−mstring’, where string does not begin with ‘4’, allows one to define

WEB macros from the command line. To define the lower-case macro name ‘test’
with null replacement text, say ‘−mtest’. To give test a value, say ‘−mtest=5’.
(No spaces are allowed before or after the equals sign.) This is equivalent to
saying at the beginning of the definition section of the first module ‘@m test 5’.
(The equals sign in lieu of a space between macro name and replacement text is
allowed only in definitions made from the command line, but allows you to avoid
having to type quotes to ensure that the space is counted as part of the definition.
For example, although allowable, it’s more cumbersome to type ‘−m"test 5"’.)
Under VMS, if your macro name is upper case (a common convention), you must
enclose the definition in quotes, otherwise the name will be turned into lower case
by VMS.

-m4 — Tells WEAVE to understand the m4 built-in commands. Also makes the output exten-
sion ‘m4’ instead of ‘rat’, or ‘n4’ instead of ‘for’.

-m; — Tells WEAVE to automatically append a pseudo-semicolon to the end of WEB macro
definitions. (Not recommended; insert pseudo-semis explicitly where necessary.)

104

* -n — Set the global language to Fortran-77.

-n9 — Set the global language to Fortran–90.

-n; — For Fortran–77, supply semicolons automatically. (This is done automatically by
default.)

-nb — Number do and if blocks in woven Fortran output. This is helpful when the blocks
are highly nested and/or long. The form of this numbering is defined by the
fwebmac macro \Wblock, which by default prints as ‘ // Block 99’.

* -np — Print semicolons in woven Fortran output. (Don’t confuse with ‘−n;’, described
above.)

-n\ — Use free-form syntax for Fortran–90; continue lines with a backslash.

-n& — As above, but continue lines with the ampersand.

-n/ — In Fortran, make ’//’ denote the start of a short comment instead of concatenation.
(One can always use ’\/’ for concatenation.)

-n! — In Fortran, make ‘!’ denote the start of a short comment instead of the logical NOT.

-o — Turn off FWEAVE’s mechanisms for overloading operators.

* -P[letter] — Inform FWEAVE about which processor, TEX or LaTEX, will be used to process the .tex

file. The default is ‘−PT’ (TEX); to select LaTEX, say ‘−PL’. The empty command ‘−P’
is equivalent to ‘−PT’.

-pcmd — This absorbs a style-file command, which will be processed just before the local style
file is read. This option is useful in the initialization file .fweb; style-file options
common to all jobs can be put there, leaving only things that customize individual
runs to the local style file.

-q — Turn off translation of Ratfor commands into Fortran. (This command is no longer
supported.)

* -r — Set the global language to Ratfor–77.

-r9 — Set the global language to Ratfor–90.

-rb — Number do and if blocks in woven Ratfor output. This is helpful when the blocks are
highly nested and/or long. The form of this numbering is defined by the fwebmac

macro \Wblock, which by default prints as ‘ // Block 99’.

-rgparams — This option sets the parameters for the decision between the computed goto and if
statements for expanding the Ratfor switch. See the discussion of Ratfor for
a detailed discussion of this command.

* -r; — For Ratfor, make the input driver supply the semicolons automatically and use the
“obviously continued” syntax. (It’s recommended that this option not be used.
When the programmer supplies the semicolons, Ratfor looks quite close to C.)

-r/ — In Ratfor, make ’//’ denote the start of a short comment instead of concatenation.
(One can always use ’\/’ for concatenation.)

-r! — In Ratfor, make ‘!’ denote the start of a short comment instead of the logical NOT.

105

* -s — Print statistics about memory usage at the end of the run.

* -sm[nnn] — As above, but also print each dynamic memory allocation as it is made. By default,
only allocations ≥ 10, 000 bytes are shown. However, if you say “−smnnn”, then
allocations ≥ nnn bytes are displayed. (On personal computers, this command
also displays some indication of how much memory is available at the beginning
and end of the run.)

* -tln[{. . . }] — Truncate identifiers of language l to length n. If braces are present, the dots signify a
list of forbidden characters that are removed from the identifier before truncation.
(For example, ‘−tn6{_}’ removes any underscores, then truncates the result to
6 characters.) If this process results in non-unique identifiers, these will be listed.

* -uid — This undefine command is the inverse of ‘−m’. Saying ‘−umacroname’ undefines a macro
name either predefined by WEB or defined earlier on the command line. Use this
command with discretion. Don’t undefine built-in macros such as _IF since other
things may also stop working because they use that built-in macro internally.

-v — Tells FTANGLE to make all comments verbatim; that is, retain them all in the output.

-Wletters — Flag-setting commands that apply only to FWEAVE. Here letters may be one or more of
the following:

[— Turn on special processing of bracketed array indices.

f — Don’t print format statements (@f) in woven output.

l — As above, but for limbo statements (@l).

m — As above, but for macro definitions (@m).

v — As above, but for operator overloading (@v).

w — As above, but for identifier overloading (@W).

* -w[file name] — With no argument, do not print “\input fwebmac.sty” as the first line of the .tex

output file. (This may be useful if you have some other macro package that needs
for some tricky reason to be loaded before fwebmac.) With an argument, print
instead “\input file_name”.

106

* -x[letters] — Reduce or eliminate printed cross-reference information. The optional letters refer to
which piece of information should not be printed; they can be one or more of ’c’, ’i’,
’m’, or ’*’, referring respectively to the table of contents, index, module list, or all
cross-reference information. The command ‘−xi’ means “do not print the index,
but print the module list and table of contents”. The command ‘−xim’ means
“print only the table of contents, as does ‘−Xc’ (see the next option) or even ‘−−xc’.
The command ‘−x’ is equivalent to ‘−x*’, which means “print nothing”.

* -X[letters] — Print selected cross-reference information; equivalent to ‘−−x’. To suppress printing of
the index and module list, but retain the table of contents, say ‘−Xc’. The default
is ‘−X*’, which means print everything.

* -ya[a]nnnn — Allocate dynamic memory. The format is −yaannnnn, where aa stands for a one- or
two-character abbreviation for the relevant array and nnnnn is the number of
elements in the array. See the section below on dynamic memory allocation for
more details.

-Z[letters] — Print default value of style-file parameters. If letters are absent, information about all
parameters is displayed. If letters are present, information about only parameters
beginning with letters is displayed.

-z[name] — Specify a new name for the style file, as in −znewstyle. (The default name is fweb.sty.)
If no name is given, the null file is assumed.

* -. — In Fortran or Ratfor, do not recognize “dot constants” such as ‘.eq.’. (Use the
modern WEB alternatives such as ‘==’.)

* -\ — Explicitly escape continued strings. Without this option, continued strings must begin
in the first column of the next line. With this option, the continuation line may
begin with white space followed by an escape character; the string continues after
the escape character. In C, the escape character is the backslash; in Fortran or
Ratfor, it is selected by ‘−n&’ or ‘−n\’.

* -(— Continue parenthesized strings (arguments of certain built-in commands) with back-
slashes.

* -:nnnnn — The command ‘−:nnnnn sets the starting automatic statement number for Fortran
and Ratfor.

->[l=][name] — Redirect output. The command ‘−>’ (or its synonym ‘−=’) with no argument redirects
output to the terminal. The most general form is ‘−>l=name’, which redirects
output for language l to the file name. See the section on output redirection for
more details.

-=[l=][name] — Redirect output; same as ‘−>’. Useful under UNIX, because ’>’ has special significance
to the shell.

* -# — Turn off commands about line numbers and module names in tangled output.

* -+ — In Fortran or Ratfor, don’t allow the compound assignment operators ‘++’, ‘−−’,
‘+=’, ‘−=’, ‘*=’, or ‘/=’.

-/ — In both Fortran and Ratfor, make ‘//’ denote the start of a short comment instead
of concatenation. (One can always use ’\/’ for concatenation.)

-! — In both Fortran and Ratfor, make ‘!’ denote the start of a short comment instead
of the logical NOT.

— Initialization file (.fweb or fweb.ini) — 107

♣ 14.3 Initialization file (.fweb or fweb.ini)

Commonly used options can be placed into an initialization file instead of repeated each time on the
command line. The name of this file is determined as follows. On systems that support environment variables
(logical names under VMS), if the environment variable FWEB_INI is defined, then that is the name of the
ini file. As examples,

setenv FWEB_INI .fweb (UNIX)
define FWEB_INI .fweb (VMS)

This should just be the raw file name, such as .fweb; no path should be specified, since the initialization file
must be placed into the user’s home directory (not the current one). If FWEB_INI is not defined, then if the
operating system allows a file name to begin with a period the name is “.fweb”. (It begins with a dot so it
will be invisible by default on UNIX systems.) Otherwise, as on the IBM-PC, the name is instead “fweb.ini”.
Any argument that can be placed on the command line can be placed into .fweb. (Presently, they cannot be
continued across newlines.) For options that on the command line would begin with a hyphen, one can either
use the hyphen or, alternatively, a plus sign. Ini options beginning with a plus sign are processed before
the command-line arguments; ini options beginning with a hyphen are processed after the command-line
arguments. Entries beginning with anything other than a hypen or plus sign are interpreted as file names,
and are processed after any file names found on the command line. Usually one uses the plus sign for ini file
options, so that one can override them on the command line if desired.

Comments may be used in the ini file. They follow the same format as those for TEX: namely, anything
beginning with a per cent sign is ignored to the end of the line.

Thus, a sample initialization file is

% Sample FWEB initialization file.
+PL % LaTeX will be used.
+v % Retain all comments in tangled output.
+n9 % Assume Fortran--90,
+n\% with free-form syntax.

♣ 15. ADVANCED FEATURES

Knowledge of the following features is not necessary for simple uses of the WEB system. However, they
can be very useful in unusual applications. It is particularly helpful to learn how to use the style file.

♣♣ 15.1 Input and output redirection

As we have explained, the FWEB processors read their input by default from a file with extension .web.
FWEAVE’s TEX output goes by default into a file with extension .tex; FTANGLE’s compilable output goes by
default into .sty, .c, .rat, or .for files. (Under UNIX, the latter two are .r and .f.) Occasionally, one
may wish to override these defaults. It is most useful to redirect the output. This can be done with the
command-line option ‘−>’ or its synonym ‘−=’. The bare command ‘−>’ redirects all output to the terminal.
The command “−>file name” redirects all output to the file file name. (For FTANGLE, this kind of redirection
is not very useful if you’re working with more than one language.) The command “−>l=file name” redirects
output intended only for the file associated with language l, where l is one of x, c, r, or n. (Use n if you’re
working with Ratfor; the symbol refers to the output file that is being created, not the language from
which things are being produced.) If file name contains the symbol ’#’, that symbol is expanded into the
name of the web file. Thus, for example, if you say “ftangle test −>#.out”, all output is redirected into
the file test.out.

108 — Input and output redirection —

One should not confuse FWEAVE’s redirection with the redirection provided by UNIX shells. The default
FWEB processors cannot be used as UNIX filters: by default they neither take their input from the standard
input nor write it to the standard output; they take it from, and write it to, files. (Information and error
messages are always written to the standard output.) The FWEB command ‘−>’ makes FWEB write all output to
the standard output; that output could then be redirected again by the UNIX shell. Thus, the UNIX command
“ftangle test −= >test.out” puts all output, both information and compilable code, into test.out. If
you didn’t use the ‘−=’ option, you would just get the information messages in test.out. Incidently, it
should now be clear why the command ‘−=’ was introduced as a synonym for ‘−>’. UNIX would interpret
the ’>’ as a redirection command to the shell, and it’s cumbersome to type ‘−\>’ when you’re in a hurry.

Input redirection is also possible; just replace the web file name by “stdin” or, equivalently, a single
hyphen. Thus, the command “ftangle stdin” or equivalently “ftangle −” reads from the standard input
(usually the terminal). (The analogous command for FWEAVE doesn’t work in a reasonable way, since FWEAVE
makes two passes over the input file.) Thus, you can force FTANGLE to be a UNIX filter by saying “ftangle
stdin −=”. For example, if you say “ftangle <test.in stdin −= >test.out”, input will be taken from
test.in and written to test.out (along with the information messages). Note that “ftangle <test.in

stdin” is equivalent to just “ftangle test.in”; however, “ftangle test.in −= >test.out” is not quite
equivalent to “ftangle test.in >test.out”. The former puts everything into test.out; the latter just
puts the information messages into test.out.

♣ 15.2 Customizing FWEB: The style file fweb.sty

It is possible to customize various aspects of FWEB’s behavior. The original motivation was to provide
some control over the appearance of the index; the same mechanism can also be used to change the defini-
tions of many of FWEB’s ’@’ commands and to customize other facets of FWEB’s behavior. (Customizing the
production rules is not presently implemented, but may be in the future.)

One can customize behavior
with the style file fweb.sty.

The solution that has been adopted follows that for the utility program makeindex [5]: namely, a style
file can be supplied. If present, the style file is read in after the command line is parsed. This file is located
in the directory specified by the environment variable FWEB_STYLE_DIR, if that is defined. Otherwise, it is

assumed that the style file is in the current directory.
The default name of the style file is fweb.sty; that can
be overridden by using the command-line option ‘−z’.
(If you say “−z” with no argument, the style file is

null; specify an alternate name by saying “−zname”.) Its contents consists of a sequence of keywords and
keyword arguments, in essentially free-form format. The keywords and arguments are separated by white
space, and/or optionally an equals sign. Also, periods in keywords are equivalent to underscores. Thus, the
following two lines are equivalent:

lethead_flag 1
lethead.flag = 1

(The form with the period is preferred; the intent is to emulate structure references in C.) The arguments can
be either single characters (surrounded by single quotes), character strings (surrounded by double quotes),
boolean (0 for NO , 1 for YES), or integers (optionally followed by a trailing L for long). As in C, characters
can be escaped with a backslash. Thus, for example, to include a double quote and a newline inside a string,
say ". . . \". . .\n. . .".

Comments may be included in the style file. They follow the TEX format: everything from a per cent
character to the end of line is ignored.

At present, there can be just one style file. No include command is allowed within a style file. (Someday
these restrictions may be removed.)

— Customizing FWEB: The style file fweb.sty — 109

In the following discussion, the style-file vocabulary is presented in functional groups. For an alphabetical
listing of all of the vocabulary entries, see the index entry “style file, vocabulary”. Also, to save space, the
actual list of keywords associated with each group is not given here, but is rather presented in Appendix M.
Here, we content ourselves with a summary of the available features and some examples of their use.

♣ 15.2.1 Customizing the index, etc.

First there are keywords related to customizing the index, module list, and miscellaneous features that
are recognized in the style file. (In conjunction with these keywords, you should also study the \Wcon

macro in fwebmac.web.) Note that during its processing FWEB uses several temporary files to accumulate
the index, list of modules, and the table of contents. By default, these are called INDEX.tex, MODULES.tex,
and CONTENTS.tex. When working with more than one file at a time, it is desirable to change these names
to include the file name. This can be done by incorporating the character ‘#’ into the style-file field; this
character is translated into the root name of the web file. For example, a typical style file might contain the
entries

index.tex "#.ndx"
modules.tex "#.mds"
contents.tex "#.cts"

As an example, here is how one might beautify FWEAVE’s index (see Appendix M, “Customizing FWEAVE’s
index”):

% --- SAMPLE STYLE FILE fweb.sty ---

limbo "\\input fweb" % Input fweb.tex automatically just after fwebmac.sty.

% If the source file is test.web, make the name of the index file test.ndx.
index.tex "#.ndx"

% Separate index entries by \letter{...}. See fweb.tex for \letter.
lethead.prefix "\\letter{"
lethead.suffix "}\n"
lethead.flag -1 % Use lower-case letters.

The file fweb.tex contains TEX macros used for producing the woven output of the FWEB sources themselves.
In it, one finds the definition of \letter, which in part looks like

\def\letter#1{\hbox{. . .\kern2em--- {\tt #1} ---}\smallskip}

With this definition, each index entry will be preceded by a line that contains a construction such as “— a —”
to denote the start of each new letter group.

For further information about customizing the module list and table of contents, see App. M, “Cus-
tomizing FWEAVE’s module list” and “Customizing FWEAVE’s table of contents.”

FWEB can attach cross-reference information as subscripts to various entities such as function names.
FWEB will do this by default for some entities, but not for others. To change the defaults, see App. M,
“Customizing cross-reference subscripts.”

When FWEAVEwrites the .tex file, it emits the names of various macros that are used by the FWEB’s macro
package fwebmac.sty. In some cases it is desirable to have some control over these names without recompiling
FWEB. For further information, see App. M, “Overriding or completing definitions in fwebmac.sty.”

There are various miscellaneous customization commands for FWEAVE. One important one is the limbo

110 — Customizing the index, etc. —

command, which specifies TEX material that FWEAVE should print at the beginning of the limbo section. For
example,

limbo "\input fweb"

writes the line “\\input fweb” somewhere soon after the first line of the output file, which is generally
“\\input fwebmac.sty”. This provides a way of including a user’s macro file in addition to the default one
of FWEB. For more information, see App. M, “Miscellaneous customization commands for FWEAVE.”

A variety of parameters are useful only for FTANGLE. These include the cdir_start commands, which
specify default text that should be output at the beginning of every compiler directive (initiated by ‘@?’).
Also, one can specify the extension for the output file for each language with the suffix command. For
more information, see App. M, “Customizations for FTANGLE.”

For a few miscellaneous commands, see App. M, “Miscellaneous customizations for both FTANGLE and
FWEAVE.

♣ 15.2.2 Automatic file name completion

When the ‘−e’ option is in effect, file names that contain no period will be completed automatically by
using extensions from the style-file entries described in App. M, “Automatic file-name completion.” The
entries such as ext.web are strings that contain a blank-delimited list of extensions. Complete file names are
created by applying each of these extensions in turn to the original name; the first full name that matches
a directory entry is used. Thus, if one says “ext.change = "ch chng"”, then if the ‘−e’ option is in effect
the command line “ftangle test test” means to tangle test.web with the change file test.ch or, if that
does not exist, with the change file test.chng if that exists.

♣♣ 15.2.3 Custom colors

“Color is obviously
a frill. Have fun...”

FWEB supports a restricted, experimental, and incomplete color enhancement mode. Color output is not
considered to be essential, since FWEB is not interactive and usually prints only a small amount of information
to the terminal. Nevertheless, color can be usefully used for emphasis—e.g., for error messages, file names,

etc.—and those who have spent considerable amounts of money on a color
monitor like to feel that they’re getting their money’s worth. Unfortu-
nately, color manipulations are not fully standardized. The X Terminal
System standardizes one mode of manipulating color, and someday there

may be an X version of FWEB. Meanwhile, FWEB can be taught to translate color commands into VT100

escape sequences, so various highlighting modes such as underlining, double intensity, etc., can be used with
standard terminal emulators such as xterm.

Here’s how it works. The information output by FWEB has been classified into various types; each type
can be assigned a different color. For example, referring to the list below, error messages have the type
color.error. Each type has a default color that can be overridden in the style file, as in

color.error = "red"

Ultimately, these colors will correspond to R–G–B triplets. However, in this restricted implementation they
are mapped to VT100 escape sequences. There are also defaults for these, or they can be set in the style file,
as in

color.red = "md mr"

(Note the space separating multiple escape sequences.) The abbreviations such as “md” for the escape
sequences are those standardized by termcap files; in UNIX, see the man page for termcap, or in emacs see

— Custom colors — 111

the termcap menu item. Thus, the previous example means that red information fields will be displayed as
double intensity reverse video.

Whether any kind of color manipulation is operative is specified by the variable color.mode. When
color.mode = 0, no color manipulations are done. When color.mode = 1, a “bilevel”, essentially dual-
intensity palette is selected, with the default sequences as below. When color.mode = 2, true color is
supposed to be selected; however, at present, that also corresponds to a particular mapping between colors
and escape sequences. Experiment to see what happens.

Color is obviously a frill. Have fun playing with it, but don’t forget to do some real work too. For the
list of available commands, see App. M, “Colors”.

♣♣ 15.2.4 Customizing control codes

Now we describe how to customize FWEB’s control codes. This feature is still experimental, and is
recommended for advanced users only. (No, cancel that; it’s not recommended at all.) Generally, the default
codes are adequate. However, occasionally one might want to change the code that maps to a particular
operation. The format is the keyword listed below, followed by a (double-quoted) character string containing
all the symbols that you wish to map onto the operation associated with the keyword. For example, if you
want to allow the use of any of ‘@a’, ‘@A’, or ‘@j’ to denote the start of the unnamed module, you would use
a style file entry

begin_code "aAj"

In the above, replace the string "aAj" by "j" if you want to use only ‘@j’.

There may be no overlaps—i.e, one can’t map the same character onto two different operations. Also,
because of design decisions built into the original WEB, some commands with different meanings are all
mapped onto the same fundamental operation, such as the commands ‘@ ’ and ‘@*’. At present, such
commands cannot be remapped.

For more information, see App. M, “Customizing FWEB’s control codes.”

♣♣ 15.3 Dynamic memory allocation

FWEB’s internal buffers and arrays are allocated dynamically (at run time, rather than at compile time).
Although default lengths are built into FWEB and will be adequate for most applications (in particular, for
running the FWEB processors on themselves and each other), the facility does exists to change those. (One
might need to enlarge certain arrays for an unusually large job, or one might need to shrink things to make
them fit on a personal computer.) Dynamic memory allocation is done with the command-line option ‘−y’.
This is followed by a one- or two-character abbreviation for the array in question, followed in turn by the
number of array elements (not bytes) to allocate, as in ‘−yb150000’. These abbreviations are described more
fully in Appendix N.

In general, you probably shouldn’t fiddle around with dynamic memory allocation unless you understand
the inner workings of FWEB in considerable detail. However, someday one of the processors may complain
that it ran out of memory for one reason or another; then you may wish to try overriding the default. Usually
the error message will tell you which abbreviation to use as well as its maximum allowed value. (Beware: if
it’s the macro buffer that overflowed, there’s probably something wrong with the macro, or there’s a bug in
FTANGLE.) Sometimes, however, the message will simply tell you that it ran out of memory, but it won’t deign
to advise you which array to shrink. In this case, proceed as follows. First, determine the default allocations
by using the ‘−y’ option with no arguments. (Query just one option by saying ‘−ya[a]’.) Alternatively, one
can run a very small test code with the ‘−s option; that reports statistics about the principal buffers at the

112 — Dynamic memory allocation —

end of the run. (If you want even more information, use the option ‘−sm’ to obtain a detailed accounting of
the dynamic memory allocations as they occur.) Then, attempt to shrink one or more of the largest buffers
by using the appropriate ‘−ya[a]nnnnn’ option; refer to Appendix N.

After one determines an appropriate set of allocations, one typically puts the allocation commands into
the ini file .fweb, since the same parameters would likely be used for many runs.

♣♣ 15.4 Debugging

There is no denying that the use of named sections (in this discussion we explicitly distinguish between
modules and sections: modules are the concatenations of all sections with the same name) significantly helps
one to write structured, readable code. In many cases, one can use a named section in place of a function
call, with all the readability and helpful cross-reference information of the former but without the overhead
of the latter. Unfortunately, the absence of an explicit function call means that the job of debugging is
somewhat more annoying. One might want to set a breakpoint at the beginning of the section. Without a
function call one must set a breakpoint at a line number, but this is the line number of the output file as
understood by the compiler, not the WEB file; that line number may be difficult to determine.

FWEB provides a partial, experimental solution to this problem. If the user defines from the command line
the breakpoint macro _BP(num,name), then FTANGLE will insert at the beginning of every section that begins
with a left brace the expansion of _BP, with num replace by the section number and name replaced with
the (possibly truncated) name (surrounded by quotes) of the module to which the section belongs. Thus,
the user has complete flexibility to develop his own tracing/breakpointing system. For example, suppose
the C user issues the command-line option ‘−m_BP(num,name)=trap(num,name);’. Then each section that
begins with a left brace will begin with a call to the function trap , which the user can define as he pleases.
He might call another function directly from the debugger to add or remove a section number from a list
of breakpoints, then arrange to have trap pause when only the turned-on sections are encountered. Exactly
how this would work depends in some detail on the debugger available, but the philosophy itself is quite
general. Casual users of WEB will probably not bother with all this, but for those who work with large codes
this feature may be essential.

C and Ratfor users will have no trouble understanding the restriction to sections beginning with
a left brace; the debugging call needs to be tucked away inside a compound statement so that it does
not inadvertently appear to be a single statement following a loop and thereby change the program logic.
Fortran users ordinarily do not need to use braces; however, if they do not, this breakpointing mechanism
will not function. Happily, straight Fortran will expand braces just fine—it just ignores them on output—so
things will work consistently in all languages if all sections that are to be interpreted as “call-less functions”
are delimited by braces.

However, C users will object that one can’t always insert an executable statement immediately after a
left brace, because a declaration statement might be coming up. The solution to this is to replace the left
brace by ‘@{’. This expands into a left brace, but also prevents the default insertion. To insert a breakpoint
later in such a section, use the command ‘@b’ at the desired place. For example,

@ An example of inserting breakpoint commands for debugging.
@<Test@>=
@{
int i;

@b
executable code;
@b @% Note that one can insert a breakpoint at more than one place.
}

— Debugging — 113

For an example of section breakpointing functions suitable for use with C programs, see the example
file breakpt.web. It would be easy to adapt this scheme for Fortran programs as well. That demo also
illustrates the use of the built-in functions _SECTIONS and _MODULES.

16. USAGE TIPS and SUGGESTIONS

In this section we collect various tips and suggestions to help one make full use of the WEB system.
(There’s more to come here!)

16.1 Converting an existing code to FWEB

In summary, to convert an existing code to FWEB, you should do the following. (The following simple
procedure assumes that you put all the subroutines into the unnamed module. However, other more elaborate
schemes are possible.)

1. Place invisible commentary about the author, version, etc. at the beginning of the source file
by bracketing it with ‘@z. . .@x’. The ‘@z’ must be the first two characters of the file.

2. Next, set the language by including a command such as ‘@n’.

3. Place an ‘@a’ command before each program unit (e.g., main program, subroutine, or
function).

4. Before each ‘@a’, place an ‘@*’ or ‘@ ’ command, followed by TEX documentation about that
particular section of code.

5. If you have program units longer than about twelve lines, either make them function calls,
if you can afford the overhead and can impart sufficient information via the function name, or break
them up into shorter fragments by using named modules. Insert the command ‘@<Name of module@>’
in place of the fragment you’re replacing, then put that fragment somewhere else, prefaced by ‘@ ’
and ‘@<Name of module@>=’.

6. Make sure your comments are valid TEX. (You can’t have things like raw underscores or
dollar signs in comments, since those cause TEX to take special actions.)

7. Beautify and clarify your documentation by using code mode (enclosing stuff between vertical
bars) liberally within your TEX.

8. After you’ve seen the woven output, you may need to go back and format a few identifiers
or section names so that FWEAVE understands them properly, or you may need to insert some
pseudo-semicolons, pseudo-expressions, or pseudo-colons.

9. Consider using the built-in macro preprocessor to make your code more readable—for exam-
ple, replace raw numerical constants by symbolic names.

10. If you are a Fortran user, for ultimate readability consider converting to Ratfor. The
initial annoyance is getting rid of column 6 continuations. With the aid of a good editor, this can
be done simply. For example, in EMACS one can replace the regular expression [carriage return, five
spaces, something not equal to space, tab, or 0] with [backslash, carriage return, six spaces]:

M-x replace-regexp RET
C-q C-j [^ tab 0]RET

114 — Converting an existing code to FWEB —

\\C-q C-j RET

Get rid of the keywords such as then or end if in favor of braces. Change singly-quoted character
strings to doubly-quoted ones.

16.2 Programming tips and other suggestions

This section will be enlarged in the future! Meanwhile, please feel free to contact krommes@princeton.edu
for help and advice, and to suggest items to include here.

1. Periodically check lyman.pppl.gov:/pub/fweb/READ_ME for bug reports and other news.

2. Most options in .fweb should begin with ’+’ so they can be overridden by command-line options for
the job itself.

3. Put standard command-line options into .fweb. Also put there standard style parameters—e.g.,

+pindex.tex "#.ndx"
+pmodules.tex "#.mds"
+pcontents.tex "#.cts"

4. Learn how to use the style file.

5. Use the info options ‘−D’, ‘−y’, and ‘−Z’ to find out about various internal FWEB tables (reserved words,
memory allocations, and style-file parameters).

6. Begin all FWEB sources with invisible commentary bracketed by @z. . .@x.

7. Always include an explicit language-setting command in the limbo section.

8. Keep sections quite short. Knuth suggests a dozen lines. That’s quite hard to achieve sometimes, but
almost never should a section be more than a page long.

9. It’s easy to define macros from the command line to expedite conditional preprocessing.

10. Use the preprocessor construction @#if 0. . . @#endif to comment out unwanted code.

11. For logical operations with the preprocessor, use ‘||’, not ‘|’.

12. It’s conventional to identify the ends of long preprocessor constructions as follows:

@#if A
.
.
@#endif // |A|

13. To debug an errant WEB macro, use the built-in function _DUMPDEF.

14. Use ‘@?’ for compiler directives (‘@!’ is obsolete). Use the style-file parameters cdir_start.l to specify
information that will be written out at the beginning of the line.

15. Stick to the standard FWEB commenting style /*. . .*/ or //. . . . Don’t use alternatives such as
Fortran’s column 1 convention; these may not work or may not be supported someday.

— Programming tips and other suggestions — 115

16. The meta-comment feature @(. . .@) provides a poor-man’s alignment feature. But that’s not in the
spirit of TEX; learn to use \halign or the LaTEX alternatives.

17. In Fortran, use #:0 to declare readable alphabetic statement labels.

18. When mixing languages, define the language of a module at the highest possible level—e.g., in the
unamed module, not after ‘@<. . .@>=’.

17. PRESENT STATUS and the FUTURE

The goal of FWEB v. 1.0 was to achieve functionality, particularly regarding the macro preprocessor and
Ratfor. Having done so, it is now time to rework certain parts of the code in order to achieve portability,
optimal speed, and/or eloquence. This will be done as time permits. Note that the author works with large
codes written with FWEB, so there is a powerful incentive to maintain and improve it. The best way to ensure
that FWEB evolves as you would like it is to use e-mail liberally to make suggestions, report bugs, etc.—send
them to krommes@princeton.edu.

116 — PRESENT STATUS AND THE FUTURE —

18. ACKNOWLEDGEMENTS

“Many users have reported
bugs and provided sugges-
tions, all of which are greatly
appreciated.”

FWEB has evolved from the CWEB code written by Silvio Levy of Princeton University, who graciously
provided the author with version 0.5 of the CWEB source code. Henry Greenside greatly fostered the author’s
initial appreciation of software tools, particularly Ratfor. The author is extremely grateful to Charles
Karney for providing many incisive suggestions about FWEB and enormous help with all aspects of TEX

and computing in general. A number of beta-testers
suffered patiently through the initial debugging stage
and made many valuable suggestions (usually not ob-
scene): Cris Barnes, John Bowman, Charles Karney,
and Chang–Bae Kim. (Patience of some of those beta-
testers flagged somewhat when FWEB stopped working
a few days before a major meeting of the American

Physical Society, but that is perhaps understandable.) Arnold Kritz generously provided both precious time
and the use of his excellent, super-enhanced IBM-PC system for developing the original PC version. Barbara
Kritz made a seminal contribution by locating the key PC disk on Arnold’s desk. Thorsten Ohl provided
expert, trans-Atlantic assistance and advice in debugging first the PC version, then the ASCII translations
necessary for non-ASCII machines. Many users have reported bugs and provided suggestions, all of which are
greatly appreciated. Charles Karney and Bart Childs contributed nice demos of the use of Fortran FWEB
(see adj.web and series.web, respectively). Bart Childs furnished a variety of insightful remarks about
literate programming that influenced aspects of the design of FWEB. Tom McCurdy and Clarissa Wilson
furnished the short pedagogical introduction Intro.tex to WEB programming that is included with the FWEB
release.

This work was supported by U.S. D.o.E. contract DE–AC02–76–CHO–3073.

19. REFERENCES

[1] D. E. Knuth, Literate Programming (Center for the Study of Language and Information, Leland
Standard Junior University, 1992).

[2] J. Bowman, Ph.D. thesis, Princeton University, 1992.

[3] Marcus Speh, marcus@x4u.desy.de. For further information, see the files in the official FWEB public
area: lyman.pppl.gov:/pub/fweb/faq.

[4] B. W. Kernighan and P. J. Plauger, Software Tools (Addison-Wesley, Reading, Massachusetts,
1976).

[5] The makeindex utility is available from ftp.math.utah.edu in /pub/tex/pub/makeindex/2-11.
The extension .trz is equivalent to .tar.Z.

117

20. APPENDICES

The basic ideas of WEB can be understood most easily by looking at examples of “real” programs.
Appendix A shows the FWEB input for the simple Fortran to FWEB demo program f_to_web; Appendix B
shows the corresponding TEX code output by FWEAVE; Appendix C shows excerpts from the finished woven
product typeset from f_to_web.tex; and Appendix D shows the corresponding code output by FTANGLE.
Appendix E shows the woven output from the sample f90_cpp.web, which mixes C++ and Fortran–90
code.

The complete webs for FWEAVE and FTANGLE are available in the files fweave.web and ftangle.web.
It’s very instructive to study these programs, since WEAVE and TANGLE contain several interesting aspects,
and since an attempt has been made in these codes to evolve a style of programming that makes good use
of the WEB language.

Appendix F is the ‘fwebmac’ file that sets TEX up to accept the output of FWEAVE; Appendix G discusses
how to use some of its macros to vary the output formats; Appendix H summarizes how this FWEB code
differs from its immediate predecessor CWEB. Appendix I is a question-and-answer session about FWEB, and
Appendix J discusses what needs to be done when FWEAVE and FTANGLE are installed in a new operating
environment.

Appendix K lists and explains the error messages produced by FWEB. Finally, Appendix L contains a
summary of all the FWEB syntax, commands, and idiosyncracies.

O, what a tangled web we weave O, what a tangled WEB we weave
When first we practise to deceive! When TEX we practise to conceive!

—SIR WALTER SCOTT, Marmion 6:17 (1808) —RICHARD PALAIS (1982)

118

20.1 APPENDIX A: A SIMPLE DEMO PROGRAM: f to web.web

Appendices A–D use a simple Fortran–77 program to demonstrate the various facets of the WEB system.
The demonstration begins with the file f_to_web.src, provided with the FWEB distribution but not shown
here. This appendix is a verbatim listing of a web file based on f_to_web.src. Appendix B shows the output
f_to_web.tex from FWEAVE, Appendix C shows part of the finished typeset product, and Appendix D is a
verbatim listing of the output from FTANGLE.

@z --- f_to_web.web ---

This file is part of FWEB. It and its various pieces of processed output are
included into the user manual fwebman.tex.

Author: J. A. Krommes
Version: 1.23
Date: April 1, 1992

@x---

@n/ @% Set the language to Fortran, and allow short comments.

\def\title{--- F_TO_WEB ---}

@* INTRODUCTION. This demo shows you how to convert the file
\.{f_to_web.src} (look at that file with your editor now) into a valid
\.{FWEB} file, namely this file \.{f_to_web.web}. Each subroutine should
be placed into a separate module, begun with~‘\.{@@*}’ or~‘\.{@@\ }’. After
those symbols, you should explain what the subroutine does, using \TeX\ in
all its glory. Then follows the code, introduced by~‘\.{@@a}’ or
‘\.{@@<...@@>=}’. Code sections should be short---about 12 lines, according
to Knuth. If they’re too long, break them up into named fragments that are
explained separately. For new code, comments should be C-style---namely,
‘‘\.{/*...*/}’’ or ‘‘\.{//...}’’. (In order to use the latter form, you
must use the command-line option~‘\.{-n/}’, and then you must use the
symbol~‘\.{\\/}’ for concatenation.)

Before proceeding, let us note that standard Fortran is {\it not}
recommended for new code. Use the Ratfor mode instead. Standard Fortran
mode is intended primarily to support conversion of existing code.

Notice how forward references to named modules and function names are
handled in the woven output.
@a

program main
@<Common blocks@>

/* Initialize values. Long comments should be done in standard
C style and may be continued across lines. */

x = -3.14159e-11
i = 1

call see // Print results. (Short comments can be done like this.)

— APPENDIX A: F TO WEB.WEB — 119

end

@ Code fragments can be defined anywhere, even after they are used.

@f @<Com...@> common /* Use a format statement to tell \.{WEAVE} how to handle
this module name. */

@<Com...@>=
integer i
real x
common/test/ x,i

@ Notice how the common block information is handled. You don’t need to
include such stuff from a separate file.

@M NFMT #:0 /* This preprocessor command is a handy way of replacing numeric
statement labels by symbolic ones. Numeric statement labels will
never have to be used. */

@a
subroutine see
@<Com...@> /* You can abbreviate the name if it has already

appeared in full. */

write(6,NFMT) x,i
NFMT: format(’ x = ’,1pe10.2,’, i = ’,i2)

return
end

@ In fact, the Ratfor language is recommended for new Fortran codes. It’s
best to do everything in Ratfor, but you can also work on a
module-by-module basis. Here’s an example. Examine the listing of the
output file in Appendix~D to see how this is translated into standard
Fortran.

@a
@r/ @%* Set the language to Ratfor-77, for this section only. */
integer function f(a,b,n)

integer n;
real a(0:n-1),b(0:n-1);

{
integer k;

/* You can (and should) use a |do| loop for the following, but the |for|
construction is more flexible in general, so we use it to demonstrate. */
for(k=0; k<n; k++)

{
a(k) = k;
b(k) = k^2; /* In Ratfor and Fortran, you can use pretty

alternatives for archaic Fortran constructions such as~\.{.lt.} or~\.{**}. */
}

120 — APPENDIX A: F TO WEB.WEB —

return n; // It’s easy to return values from functions.
}

@* INDEX.

20.2 APPENDIX B: WOVEN OUTPUT f to web.tex

The following output f_to_web.tex results from the command “fweave f_to_web”.

% FWEAVE v1.30 (May 15, 1993)

\input fwebmac.sty

\Wbegin[]{article}{1em}{1em}{f_to_web.cts}{{\&}{\|}{\\}{\\}{\\}{\@}{\.}{\.}}

% --- Beginning of user’s limbo section ---

\def\title{--- F_TO_WEB ---}

\WN1. INTRODUCTION. This demo shows you how to convert the file
\.{f_to_web.src} (look at that file with your editor now) into a valid
\.{FWEB} file, namely this file \.{f_to_web.web}. Each subroutine should
be placed into a separate module, begun with~‘\.{@*}’ or~‘\.{@\ }’. After
those symbols, you should explain what the subroutine does, using \TeX\ in
all its glory. Then follows the code, introduced by~‘\.{@a}’ or
‘\.{@<...@>=}’. Code sections should be short---about 12 lines, according
to Knuth. If they’re too long, break them up into named fragments that are
explained separately. For new code, comments should be C-style---namely,
‘‘\.{/*...*/}’’ or ‘‘\.{//...}’’. (In order to use the latter form, you
must use the command-line option~‘\.{-n/}’, and then you must use the
symbol~‘\.{\\/}’ for concatenation.)

Before proceeding, let us note that standard Fortran is {\it not}
recommended for new code. Use the Ratfor mode instead. Standard Fortran
mode is intended primarily to support conversion of existing code.

Notice how forward references to named modules and function names are
handled in the woven output.
\WY\WP \&{program} \1\\{main}\WIN1{0}\2\1\6
\WX2:Common blocks\X \X\1\2\7
\WC{ Initialize values. Long comments should be done in standard C style
and may be continued across lines. }\7
${}\|x={-}\WO{3.14159\^E-11}$\6
${}\|i=\WO{1}{}$\7
\&{call} \\{see}\WIN1{3}\5
\Wc{ Print results. (Short comments can be done like this.)}\2\7
\&{end}\WY\par

— APPENDIX B: F TO WEB.TEX — 121

\fi % End of module 1

\WM2. Code fragments can be defined anywhere, even after they are used.

\WY\WP\WF::\WX2:Common blocks\X \X\ \\{common}\5
\WC{ Use a format statement to tell \.{WEAVE} how to handle this module name. }%
\WY\par
\WY\WP\4\4\WX2:Common blocks\X \X${}\WS{}$\6
\&{integer} \1\|i\2\6
\&{real} \1\|x\2\6
\&{common} \1 ${}{/}\\{test}{/}$ \|x, \|i\2\WY\par
\WU sections~1 and~3.\fi % End of module 2

\WM3. Notice how the common block information is handled. You don’t need to
include such stuff from a separate file.

\WY\WP\WMD$\\{NFMT}$\5
\NC $\WO{0}{}$\5
\WC{ This preprocessor command is a handy way of replacing numeric statement
labels by symbolic ones. Numeric statement labels will never have to be used. }%
\WY\par
\WY\WP \&{subroutine} \1\\{see}\WIN1{0}\2\1\6
\WX2:Common blocks\X \X\1\2\5
\WC{ You can abbreviate the name if it has already appeared in full. }\7
${}\&{write}\,(\WO{6},\39\\{NFMT})$ \|x, \|i\6
\llap{\\{NFMT}\Colon\ }${}\&{format}\,(\.{’\ x\ =\ ’},\39\WO{1}\\{pe10.2},\39%
\.{’\1\ i\ =\ ’},\39\\{i2})$;\6
\&{return}\2\6
\&{end}\WY\par
\fi % End of module 3

\WM4. In fact, the Ratfor language is recommended for new Fortran codes. It’s
best to do everything in Ratfor, but you can also work on a
module-by-module basis. Here’s an example. Examine the listing of the
output file in Appendix~D to see how this is translated into standard
Fortran.

\WY\WP \LANGUAGE{R}\&{integer} \&{function} \1\|f\WIN1{0}(\|a,\39\|b,\39\|n)\2%
\1\1\6
\&{integer} \1\|n;\2\2\2\1\1\6
\&{real} \1\|a${}(\WO{0}:\|n-\WO{1}),$ \|b${}(\WO{0}:\|n-\WO{1});$\2\2\2\1\6
${}\{$\6
\&{integer} \1\|k;\2\7
\5
\WC{ You can (and should) use a \WCD{ \&{do}} loop for the following, but the %
\WCD{ \&{for}} construction is more flexible in general, so we use it to
demonstrate. }\7
${}\&{for}\,(\|k=\WO{0};$ ${}\|k<\|n;$ ${}\|k\PP)$ \1\6
${}\{$\6
${}\|a(\|k)=\|k;$\6
${}\|b(\|k)=\|k\EE{\WO{2}};{}$\5
\WC{ In Ratfor and Fortran, you can use pretty alternatives for archaic Fortran

122 — APPENDIX B: F TO WEB.TEX —

constructions such as~\.{.lt.} or~\.{**}. }\6
${}\}$\2\7
\&{return} \|n;\5
\Wc{ It’s easy to return values from functions.}\6
${}\}$\2\WY\par
\fi % End of module 4

\WN5. INDEX.
\fi % End of module 5

\input f_to_web.ndx
\input f_to_web.mds

\Winfo{"fweave ./f_to_web -zdemos.sty -=f_to_web.tex"} {"./f_to%
_web.web"} {(none)}
{FORTRAN}

\Wcon

20.3 APPENDIX C: The FINISHED PRODUCT f to web

Here is part of the typeset documentation produced by saying “tex f_to_web.tex” and printing the
output f_to_web.dvi.

1. INTRODUCTION. This demo shows you how to convert the file f_to_web.src (look at that file
with your editor now) into a valid FWEB file, namely this file f_to_web.web. Each subroutine should be
placed into a separate module, begun with ‘@*’ or ‘@ ’. After those symbols, you should explain what the
subroutine does, using TEX in all its glory. Then follows the code, introduced by ‘@a’ or ‘@<...@>=’. Code
sections should be short—about 12 lines, according to Knuth. If they’re too long, break them up into named
fragments that are explained separately. For new code, comments should be C-style—namely, “/*...*/” or
“//...”. (In order to use the latter form, you must use the command-line option ‘−n/’, and then you must
use the symbol ‘\/’ for concatenation.)

Before proceeding, let us note that standard Fortran is not recommended for new code. Use the Ratfor
mode instead. Standard Fortran mode is intended primarily to support conversion of existing code.

Notice how forward references to named modules and function names are handled in the woven output.

program main •
〈Common blocks 2 〉

/∗ Initialize values. Long comments should be done in standard C style and may be continued
across lines. ∗/

x = −3.14159 · 10−11

i = 1

call see3 // Print results. (Short comments can be done like this.)

end

123

2. Code fragments can be defined anywhere, even after they are used.

@f 〈Common blocks 2 〉 common
/∗ Use a format statement to tell WEAVE how to handle this module name. ∗/

〈Common blocks 2 〉 ≡
integer i
real x
common /test/ x, i

This code is used in sections 1 and 3.

3. Notice how the common block information is handled. You don’t need to include such stuff from a
separate file.

@M NFMT #:0 /∗ This preprocessor command is a handy way of replacing numeric statement labels
by symbolic ones. Numeric statement labels will never have to be used. ∗/

subroutine see •
〈Common blocks 2 〉 /∗ You can abbreviate the name if it has already appeared in full. ∗/
write (6,NFMT) x, i

NFMT : format (’ x = ’, 1pe10.2 , ’, i = ’, i2) ;
return

end

124

4. In fact, the Ratfor language is recommended for new Fortran codes. It’s best to do everything in Ratfor,
but you can also work on a module-by-module basis. Here’s an example. Examine the listing of the output
file in Appendix D to see how this is translated into standard Fortran.

integer function f•(a,b,n)@Lr:
integer n;
real a(0 : n − 1), b(0 : n − 1);

{
integer k;

/∗ You can (and should) use a do loop for the following, but the for construction is more flexible
in general, so we use it to demonstrate. ∗/

for (k = 0; k < n; k++)
{
a(k) = k;
b(k) = k2; /∗ In Ratfor and Fortran, you can use pretty alternatives for archaic Fortran

constructions such as .lt. or **. ∗/
}

return n; // It’s easy to return values from functions.
}

5. INDEX.

(Index and remaining material skipped.)

(Page break skipped.)

20.4 APPENDIX D: TANGLED OUTPUT f to web.f

The following output results from the command “ftangle f_to_web”.

C FTANGLE v1.30, created with UNIX on "Tuesday, May 11, 1993 at 10:55."
C COMMAND LINE: "ftangle ./f_to_web -zdemos.sty -=f_to_web.f"
C RUN TIME: "Thursday, June 10, 1993 at 12:39."
C WEB FILE: "./f_to_web.web"
C CHANGE FILE: (none)
C* 1: *
*line 35 "./f_to_web.web"

program main
C* 2: *
*line 54 "./f_to_web.web"

integer i
real x
common/test/x,i

C* :2 *
*line 37 "./f_to_web.web"

— APPENDIX D: F TO WEB.F — 125

C* Initialize values. Long comments should be done in standard C style and m
Cay be continued across lines.

x=-3.14159e-11
i=1
call see

C Print results. (Short comments can be done like this.)
end

C* :1 *
C* 3: *
*line 66 "./f_to_web.web"

subroutine see
C* 2: *
*line 54 "./f_to_web.web"

integer i
real x
common/test/x,i

C* :2 *
*line 69 "./f_to_web.web"

C You can abbreviate the name if it has already appeared in full.
write(6,90000)x,i

90000 format(’ x = ’,1pe10.2,’, i = ’,i2)
return
end

C* :3 *
C* 4: *
*line 82 "./f_to_web.web"
C* 4: *
*line 83 "./f_to_web.web"

integer function f(a,b,n)

integer n
real a(0:n-1),b(0:n-1)

integer k

C* You can (and should) use a |do| loop for the following, but the |for|
Cconstruction is more flexible in general, so we use it to demonstrate.

CONTINUE
C --- "for(k=0; k<n; k++)" ---

k=0
90001 IF(k.LT.n)THEN

a(k)=k
b(k)=k**2

C* In Ratfor and Fortran, you can use pretty
Calternatives for archaic Fortran constructions such as~\.{.lt.} or~\.{**}.
C --- Reinitialization of "for(k=0; k<n; k++)" ---

k=k+1
GOTO 90001

ENDIF

CONTINUE

126 — APPENDIX D: F TO WEB.F —

C --- "return n" ---
f=n
RETURN

C/ It’s easy to return values from functions.
END

C* :4 *

20.5 APPENDIX E: EXAMPLE of C++ and Ratfor--90 CODE

This example demonstrates some sample Ratfor–90 and C++ code that involves operator overloading.
Note how the ‘@v’ command is used to change the default printed form of the overloaded operators.

1. INTRODUCTION. This example demonstrates operator overloading in both Ratfor–90 and C++.
It also shows how brackets may be used instead of parentheses for Fortran array indices.

@l "\\let\\WARRAY\\WSUB" // Subscript Fortran indices.

〈Ratfor–90 2 〉@Lc++:
〈C++ 5 〉C++

127

2. The following example is excerpted from the ANSI Draft S8, Version 112 for the Fortran–90 language.

@v .IN. "\\in" < /∗ Make .IN. display as ‘∈’ and be treated as a relational operator. ∗/
@v ≤ "\\subset" ≤ /∗ Make .LE. display as ‘⊂’ and be treated as a relational operator. ∗/

〈Ratfor–90 2 〉 ≡
module integer sets•
{
integer, parameter :: max set card = 200;

type set
{

private:
integer card ;
integer elementmax set card ;
};

interface operator (∈ ≡ .IN.)
{
module procedure element ;
};

interface operator (⊂ ≡ .LE.)
{
module procedure subset ;
};

〈Union function 3 〉
〈Subset function 4 〉
}

This code is used in section 1.

128

3. This function uses structure elements. We overload the element operator ‘%’ to make the resulting code
look more like C.

@v % "." . // Make % print as ‘.’ and also be treated as ‘.’.

〈Union function 3 〉 ≡
function union •(A,B)

type (set) A, B;
{
type (set) UNION ;
integer j;

UNION = A;
do j = 1, B.card ;

if (¬(B.element j ∈ A))
if (UNION .card < max set card)
{
UNION .card += 1;
UNION .elementUNION .card = B.element j ;
}

else ; // Maximum set size exceeded...
}

This code is used in section 2.

4. We claim that this is much more visually appealing than a raw listing.

〈Subset function 4 〉 ≡
logical function subset •(A,B)

type (set) A, B;
{
integer i;

subset • = A.card ⊂ B.card ; /∗ In the source, this is “subset = A%card <= B%card;” ∗/
if (¬subset •) return;

do i = 1, A.card ;
subset • = subset • ∧ (A.element i ∈ B);

}

This code is used in section 2.

129

5. Here is a short example of operator overloading in C++. Note that since the global language is Ratfor–
90, we must explicitly insert a language command in the following definition section in order that the star
be overloaded in the proper language.

@vC++ ∗ "\\times" ∗
〈C++ 5 〉C++ ≡

class complex
{
double re , im ;

public:
complex (double r,double i)
{
re = r; im = i;
}

friend complex operator +(complex, complex);
friend complex operator ×(complex, complex);
};

z = x × y; /∗ An example of a statement using the overloading multiplication operator. ∗/

This code is used in section 1.

6. INDEX.

(Index and remaining material skipped.)

(Page break skipped.)

20.6 APPENDIX F: The FWEBMAC MACROS

If this appendix is not here, you can say \typesetfwebmactrue near line 39 of fwebman.tex to create
a larger, self-contained manual. Alternatively, you can weave fwebmac.web separately.

20.7 APPENDIX G: HOW TO USE FWEB MACROS

The macros in fwebmac.sty (produced by tangling fwebmac.web) make it possible to produce a variety
of formats without editing the output of FWEAVE, and the purpose of this appendix is to explain some of the
possibilities. (NOTE: Although FWEB now works with LaTEX, the original discussion in this appendix was for
Plain TEX, and it may have not been completely updated yet.)

Before proceeding, it is important to stress that it is sometimes not possible to satisfactorily change
the appearance of the woven output just by modifying macros in fwebmac. Occasional difficulties may arise
since certain TEX commands are hard-coded into FWEAVE’s output routines. In unusual situations, one may
need to recompile FWEAVE to achieve the desired effect. (But don’t do this unless you really have to; it can
be an endless sink of time.) However, many features can be customized via the style file. (Please feel free to
suggest additional features that should be customizable.)

130 — Additional fonts —

20.7.1 Additional fonts

Several fonts have been declared in addition to the standard fonts of PLAIN format: You can say ‘{\SC
STUFF}’ to get STUFF in small caps, or ‘{\Csc Stuff}’ to get Stuff; and you can select the largish fonts
\titlefont and \ttitlefont in the title of your document, where \titlefont gives one titlefont and
\ttitlefont is a typewriter style of type giving one ttitlefont.

20.7.2 Typesetting comments

Comments are typeset in the font \cmntfont, which is \let to \tenrm by default. You can redefine
\cmntfont in the limbo section; for example, “\let\cmntfont\Csc”.

20.7.3 Typesetting identifiers

When you mention an identifier in TEX text, you normally call it ‘|identifier|’. But if that identifier
is not a reserved word, you can also say ‘\\{identifier}’. The output will look the same in both cases,
namely ‘identifier ’, but the second alternative doesn’t put identifier into the index, since it bypasses WEAVE’s
translation from code mode. For one-character identifiers, you should say ‘\|i’ to get ‘i ’. Also, for a reserved
word you can say ‘\&{reserved}’ to get ‘reserved’. If you’re talking about an intrinsic function, you can
say ’\@@{intrinsic}’ to get ‘intrinsic ’. (Note that the macro name itself is ‘\@’.)

Note that WEB identifiers may contain the characters ‘$’ and ‘_’. These must be preceded by a backslash
when using them with the macros \\, \&, and \@. This is not necessary when enclosing such identifiers
between vertical bars; WEB handles the escaping for you. Thus, say “|id_code|” but “\\{id_code}”.

LaTEX users (see the section below on Using LaTEX) will object that ‘\\’ means something very different
to them. Actually, the true situation is slightly more complicated than that described in the last paragraph.
In fwebmac, the macro that formats an ordinary identifier is really called ‘\Wid’, not ‘\\’. The macro ‘\\’
becomes associated with ‘\Wid’ because the style-file entry ‘format.identifier’ has ‘\\’ as its default value.
That value is transmitted to TEX or LaTEX via the ‘\Wbegin’ macro that is emitted automatically just after
the “\input fwebmac.sty” command at the beginning of the output file. (Study a sample of woven output,
for example Appendix B.) Similar equivalences are set up for the other formatting macros according to the
following table:

Type of argument fwebmac macro Style-file entry Default value
−PT (−PL)

character string \Wtypewriter format.typewriter \.
reserved word \Wreserved format.reserved \&
single-character identifier \Wshort format.short_identifier \|
ordinary identifier \Wid format.identifier \\ (\>)
outer macro \WidD format.outer_macro \\ (\>)
WEB macro \WidM format.WEB_macro \\ (\>)
intrinsic function \Wintrinsic format.intrinsic \@
Fortran keyword \Wkeyword format.keyword \.

[Note that when the LaTEX processor is specified (‘−PL’ option), a few of the defaults are changed for con-
venience.] Note that by default macro names are treated the same way as ordinary identifiers. To cause
macro names to be formatted in a distinctive way, you must use the style-file entries format.outer_macro
and/or format.WEB_macro. (If more than one of these has the same value, the equivalences to the funda-
mental definitions in fwebmac.sty are made in the order format.WEB_macro, format.outer_macro, then
format.identifier.) However, you must also supply a new definition for the fwebmac macros \WidD

— Typesetting identifiers — 131

and/or \WidM, since by default these are merely \let equal to \Wid. You could introduce such new defini-
tions by placing them into a file that is \input automatically at the beginning of each run (see the style-file
entry limbo), by creating a new personal version of fwebmac.sty (use a change file in conjunction with
fwebmac.web), or by using the ‘@l’ command to place the definition directly into the limbo section of your
code.

20.7.4 Typewriter type

To get typewriter-like type, as when referring to ‘WEB’, you can use the ‘\.’ macro (e.g., ‘\.{FWEB}’).
In the argument to this macro you should insert an additional backslash before the following characters
enclosed by double quotes: “ \#%$^{}~&_”. A ‘\ ’ here will result in the visible space symbol; to get an
invisible space following a control sequence you can say ‘{ }’.

The original form of the ‘\.’ macro surrounded the string with an \hbox, which unfortunately prevented
very long strings from being broken across lines. The present FWEB form does not surround the string with an
\hbox and allows strings to be broken, either after commas or every so many characters. To accomplish this,
FWEAVE inserts into strings special control sequences that are treated essentially like discretionary hyphens.
Automatically broken strings are marked by a backslash at the end of the line.

Actually, the fwebmac macro for typewriter type is called ‘\Wtypewriter’. Its equivalence to ‘\.’ is
established by the same mechanism as described above for formatting identifiers, via the style-file entry
‘format.typewriter’.

20.7.5 Page dimensions

The three control sequences \pagewidth, \pageheight, and \fullpageheight can be redefined in the
limbo section at the beginning of your WEB file to change the dimensions of each page. The standard settings

\pagewidth=6.5in

\pageheight=8.7in

\fullpageheight=9in

were used to prepare the present report; \fullpageheight is \pageheight plus room for the additional
heading and page numbers at the top of each page. If you change any of these quantities, you should call
the macro \setpage immediately after making the change.

20.7.6 Page heads

The macro \identicalpageheads is normally false, which means that by default the page numbers and
module numbers will alternate left and right on even- and odd-numbered pages. If you want all the page
heads to be formatted identically, say “\identicalpageheadstrue”.

20.7.7 Shifting pages left or right

The \pageshift macro defines an amount by which right-hand pages (i.e., odd-numbered pages) are
shifted right with respect to left-hand (even-numbered) ones. By adjusting this amount you may be able to
get two-sided output in which the page numbers line up on opposite sides of each sheet.

20.7.8 Page title

The \Wtitle macro will appear at the top of each page in small caps. This macro is null by default,
but you can define it in the limbo section.

132 — Page numbering —

20.7.9 Page numbering

The first page usually is number 1; if you want some other starting page, just set \pageno to the desired
number—e.g., ‘\pageno=16’.

20.7.10 Paragraph breaks

By default, paragraph breaks in TEX mode are spaced out with an extra blank line. If you don’t want
that, say ‘\pardimen=0pt’.

20.7.11 Magnifying the output

If you want your output to be bigger than usual, use \magnify instead of \magnification; say, for
example, ‘\magnify{\magstep1}’.

20.7.12 Table of contents

The macro \iftitle will suppress the header line if it is defined by ‘\titletrue’. The normal value
is \titlefalse except for the table of contents; thus, the contents page is usually unnumbered. If your
program is so long that the table of contents doesn’t fit on a single page, or if you want a number to appear
on the contents page, you should reset \pageno when you begin the table of contents.

Two macros are provided to give flexibility to the table of contents: \topofcontents is invoked just
before the contents info is read, and \botofcontents is invoked just after. For example, Appendix D of
Knuth’s original manual was produced with the following definitions:

\def\topofcontents{\null\vfill

\titlefalse % include headline on the contents page

\def\rheader{\mainfont Appendix D\hfil 15}

\centerline{\titlefont The {\ttitlefont WEAVE} processor}

\vskip 15pt \centerline{(Version 2.5)} \vfill}

Redefining \rheader, which is the headline for right-hand pages, suffices in this case to put the desired
information at the top of the page.

20.7.13 Customizing the table of contents

Data for the table of contents is written to a file that is read after the indexes have been TEXed; there’s
one line of data for every starred module. For example, one might obtain a file CONTENTS.tex containing

\WZ {0}{ Introduction}{1}{16}

\WZ {0}{ The character set}{11}{19}

and similar lines. Here the first argument of \WZ is the level number of the module, the second argument is
the title, the third is the module number, and the fourth is the page number. The \topofcontents macro
could redefine \WZ so that the information appears in another format. (The default name CONTENTS.tex can
be changed by means of the style-file parameter “contents.tex”.

20.7.14 Date and time

The macro \Date gives the present date in the form “June 17, 1993”. The macro \Time gives the time
in the form “14:40”. By default, these are printed automatically at the bottom of the title page, via the
\botofcontents macro.

— Subdividing output — 133

20.7.15 Subdividing output

Sometimes it is necessary or desirable to divide the output of WEAVE into subfiles that can be processed
separately. For example, the listing of TEX runs to more than 500 pages, and that is enough to exceed
the capacity of many printing devices and/or their software. When an extremely large job isn’t cut into
smaller pieces, the entire process might be spoiled by a single error of some sort, making it necessary to start
everything over.

Here’s a safe way to break a woven file into three parts: Say the pieces are α, β, and γ, where each piece
begins with a starred module. All macros should be defined in the opening limbo section of α, and copies of
this TEX code should be placed at the beginning of β and of γ. In order to process the parts separately, we
need to take care of two things: The starting page numbers of β and γ need to be set up properly, and the
table of contents data from all three runs needs to be accumulated.

The webmac macros include two control sequences \contentsfile and \readcontents that facilitate
the necessary processing. We include ‘\def\contentsfile{CONT1}’ in the limbo section of α, and we include
‘\def\contentsfile{CONT2}’ in the limbo section of β; this causes TEX to write the contents data for α
and β into CONT1.TEX and CONT2.TEX. Now in γ we say

\def\readcontents{\input CONT1 \input CONT2 \input CONTENTS};

this brings in the data from all three pieces, in the proper order.

However, we still need to solve the page-numbering problem. One way to do it is to include the following
in the limbo material for β:

\message{Please type the last page number of part 1: }

\read−1to\\ \pageno=\\ \advance\pageno by 1

Then you simply provide the necessary data when TEX requests it; a similar construction is used at the
beginning of γ.

This method can, of course, be used to divide a woven file into any number of pieces. (One problem
with it is that each piece will have its own index. This problem will be addressed in the future.)

20.7.16 Special index entries

Sometimes it is nice to include things in the index that are typeset in a special way. For example, we
might want to have an index entry for ‘TEX’. WEAVE provides only two standard ways to typeset an index
entry (unless the entry is an identifier, an intrinsic function, or a reserved word): ‘@^’ gives roman type, and
‘@.’ gives typewriter type. But if we try to typeset ‘TEX’ in roman type by saying, e.g., ‘@^\TeX@>’, the
backslash character gets in the way, and this entry wouldn’t appear in the index with the T’s.

The solution is to use the ‘@9’ feature, declaring a macro that simply removes a sort key as follows:

\def\9#1{}

Now you can say, e.g., ‘@9TeX}{\TeX@>’ in your WEB file; WEAVE puts it into the index alphabetically, based on
the sort key, and produces the macro call ‘\9{TeX}{\TeX}’ which will ensure that the sort key isn’t printed.

A similar idea can be used to insert hidden material into module names so that they are alphabetized
in whatever way you might wish. Some people call these tricks “special refinements”; others call them
“kludges”.

134 — Module number —

20.7.17 Module number

The control sequence \modno is set to the number of the module being typeset.

20.7.18 Symbolic names of modules

The macros \modlabel and \module afford a way of assigning symbolic names to modules (whose abso-
lute numbers one doesn’t know). Say \modlabel{alpha} somewhere in the module in question. If somewhere
else you want to discuss that particular module, say something like ‘discussed in \module{alpha}’. With
Plain TEX, forward references do not work; you must label the module before you reference it with \module.
(However, the scheme could be generalized in standard ways, using the I/O features of TEX.) When LaTEX
is in use, forward references do work; the definitions of the module labels are stored in the .aux file, using
LaTEX’s \label macro. In fact, under LaTEX the definitions of \modlabel and \module are equivalent to
simply

\def\modlabel#1{\label{MOD#1}}
\def\module#1{module~\ref{MOD#1}}

If you want to say “section” instead of “module”, say “\WEBsection” instead of “\module”. (LaTEX usurps
“\section”.) For symmetry, “\WEBmodule” is equivalent to “\module”.

20.7.19 Listing modules that have been changed

If you want to list only the modules that have changed, together with the index, put the command
‘\let\maybe=\iffalse’ in the limbo section before the first module of your WEB file. It’s customary to make
this the first change in your change file.

20.7.20 Loading the macro package

The macro package fwebmac.sty \lets the macro \FWEBisloaded to be \relax. This macro can be
used in various ways by macros you write that may need to behave differently depending on whether fwebmac
has been loaded or not. See the Dirty Tricks section of the TEXbook.

20.7.21 Redefined macros

The macro package fwebmac usurps certain macro names for its own use. To find a complete list of the
fwebmac macros, look in the index to fwebmac.tex. The original definitions of some of the more common
ones are stored away under other names, as follows:

\let\amp\&
\let\at\@
\let\bslash\\
\let\caret\^
\let\dollar\$
\let\dstar*
\let\equals\=
\let\leftbrace\{
\let\period\.
\let\rightbrace\}
\let\vertbar|
\let\PM\#
\let\PC\%

— Using FWEB with LaTEX — 135

20.7.22 Using FWEB with LaTEX

The WEB system was originally designed for use with Plain TEX, and the design of the macros in fwebmac

reflects this. However, with some restrictions it is also possible to use FWEB with LaTEX, thereby gaining the
use of additional convenient macros, environments, etc. To use LaTEX instead of TEX to process the output
test.tex that results from running FWEAVE on test.web, you should do two things at a minimum:

(1) Use the command-line option ‘−PL’. (If you will always be using LaTEX, place the command
‘+PL’ into your .fweb file.) This command affects the default definitions of certain quantities
defined through the style file; see the discussion below.

(2) Simply say “latex test” instead of “tex test”.

Just say “latex test” in-
stead of “tex test”.

Probably the principal price one pays is that FWEB has already usurped certain macro names for its
own use. For example, the standard FWEB macro used to format an ordinary identifier is ‘\\’. See the table
just above for alternative macro names. For example, a LaTEX user could use ‘\bslash’ instead of ‘\\’.
However, since the use of ‘\\’ is quite common in LaTEX and it is cumbersome to type ‘\bslash’ it is possible
to dynamically reconfigure FWEAVE to use a different macro to
format ordinary identifiers. This is done through the style file.
As explained above in the section on “Typesetting identifiers,”
the names of the identifiers actually used in the tex file to format
identifiers are mapped through an equivalencing procedure to the actual definitions in fwebmac, and those
names can be changed without tampering with the definitions through entries in the style file. If no entries
are made in the style file, then by default the macro ‘\\’ is used to format both outer macro names, WEB
macro names, and ordinary identifiers (with more than one character). When the ‘−PL’ option is used, then
that default is instead chosen to be ‘\>’. That default can be overridden by explicit style-file entries.

Additional difficulties will arise with certain attempts to produce very clever output using some of the
page layout facilities of LaTEX, since FWEB overrides the \output routine of LaTEX.

Also, LaTEX’s \index macro is not correlated in any way to the index produced by FWEAVE.

On the positive side, the use of the aux file allows forward referencing to module names to be done
conveniently. In particular, LaTEX’s \label macro understands the current module number. (It does not
understand anything about the level of starred modules.) See the discussion about “Symbolic names of
modules” above.

Beginning with version 1.30 the fwebmac macros have been augmented (thanks to Charles Karney) to
work with LaTEX’s New Font Selection Scheme (NFSS). There hasn’t been too much experience here; please
report any difficulties.

20.8 APPENDIX H: SUMMARY of EXTENSIONS or CHANGES FROM CWEB

Here are some of the more significant differences between CWEB and FWEB 1.0. Many more features have
been added in v. 1.1 and later; these are too numerous to describe here.

Blank lines in the source are significant to WEAVE. The ‘@#’ command will hardly ever have to be used.

The unnamed module is begun by ‘@a’.

Language switching: the ‘@c’, ‘@r’, and ‘@n’ commands.

136 — APPENDIX H: CHANGES FROM CWEB —

Long strings (‘\.’ macro) are broken with discretionary backslashes every so many characters, and after
commas.

Verbatim comments: Preface comments you want TANGLE to keep by ‘@’, as in ‘‘@/* Keep. */’’. Make
all comments verbatim by command-line option ‘−v’.

WEB macros, defined by ‘@m’ and expanded by TANGLE, were reintroduced. Macro definitions are allowed
in the code section.

A C-like preprocessing language was added. The preprocessor commands may appear in either the
definition section or the code section.

FTANGLE translates Ratfor directly to Fortran.

One-character uppercase fwebmac macros have been changed to two-character ones starting with ‘W’.

Because physicists sometimes like to use the asterisk for complex conjugation and therefore may define
it to be an active character, FTANGLE will output an asterisk when it is in TEX mode, but puts out “\ast”
when it is in code mode.

20.9 APPENDIX I: FWEB Q and A

This section is not complete! Please see /pub/fweb/faq for a more complete discussion [5].

Q. What is the difference between fwebmac.web, fwebmac.tex, and fwebmac.sty?

A. The macros read in by the *.tex files produced by FWEAVE are called fwebmac.sty; they
are maintained in the source file fwebmac.web. Running FTANGLE on fwebmac.web produces
fwebmac.sty; if you want to see a pretty listing of the macros, run FWEAVE on the source to
get fwebmac.tex.

Q. Why not incorporate Pascal as one of the supported languages, especially since Knuth’s original processors
supported that?

A. This project evolved from Levy’s CWEB, which was written in C for C. Since the present author
does not personally use Pascal, it was considered too much of an effort to incorporate Pascal
processing, especially since most modern codes are written in C.

Q. What is the difference between .fweb and fweb.sty?

A. Both are initialization files. However, .fweb is intended to be a global initialization file for all
runs made by a particular author. One is supposed to put common command-line options into
here. The style file fweb.sty is intended to allow customizations of particular runs or groups
of runs. For example, the appearance of the index can be customized by setting parameters
in the style file. Also, .fweb is read before the command line is processed, while fweb.sty is
read after .fweb and the command-line are processed.

Q. How does one force FWEAVE to align comments?

A. One can’t do that yet. In general, all complicated alignment issues relating to FWEAVE have
been deferred to a future version. Sorry!

— APPENDIX I: Q and A — 137

This list is not completed yet. Please suggest questions to be discussed in this space.

20.10 APPENDIX J: ERROR MESSAGES

Presently the error- message-processing facilities are a mixture of old and new: the original scheme of
Knuth and Levy was restricted to function calls with fixed number of arguments, which tended to result in
error messages with the bare minimum of information. Many, although not yet all, of the error messages have
now been generalized to calls allowing variable numbers of arguments, which facilitates constructing rather
elaborate error messages. Error processing will be refined still further in the future. It is very important that
you report difficulties with FWEB’s error processing facilities. If FWEB ever issues an error not in the following
list, please report that too.

There are five general classes of error messages: (1) messages common to both FTANGLE and FWEAVE
(produced, for example, by command-line processing or one of the input drivers); (2) general messages from
FTANGLE; (3) macro processing errors; (4) Ratfor errors; (5) general messages from FWEAVE. The class of
the error is (usually) indicated in the output to the screen. There is as yet no numbering scheme. The
messages are described here alphabetically within each class. Italics indicate variable fields that are filled in
by the particular situation.

20.10.1 Messages common to both FTANGLE and FWEAVE

“Ambiguous prefix.” A section name abbreviated with an ellipsis was not unique.

“Can’t open include file "name".” Possibly a misspelled file name; the @i command is skipped.

“get_mem0: Can’t request n units; used max of n.” Either you’re asking for too much memory, or
there’s something wrong with the use of the ANSI calloc routine. If you think it’s the latter, please
report it.

“Change file ended after @x.” There’s something missing.

“Change file ended before @y.” You must use the complete construction @x. . .@y. . .@z.

“Change file ended without @z.” You must use the complete construction @x. . .@y. . .@z.

“Change file entry did not match.” There’s no text in the WEB file that matches the stuff between @x

and @y.

“get_mem0: Can’t request n units; used max of m.” This is probably related to the difference between
ints and longs on the local machine, and may signify a bug in the implementation.

“Hmm. . . some of the preceding lines failed to match.” There was stuff left in the change buffer at
the end of the run.

“get_mem0: Can’t request n units; used max of m.” This is probably related to the difference between
ints and longs on the local machine, and may signify a bug in the implementation.

“Hmm. . . some of the preceding lines failed to match.” There was stuff left in the change buffer at
the end of the run.

“Input line too long; must be shorter than n characters.” The input line length may be increased
with the −mbs option.

138 — Messages common to both FTANGLE and FWEAVE —

“Invalid ’g’ option: parameter type c.” . The valid parameters are ’r’, ’m’, or ’s’.

“Invalid ’g’ option:” You specified an invalid parameter for the Ratfor switch.

“Invalid language command ”. . .”.” You said ‘@Ll’, where l was not one of ’c’, ’n’, ’r’, or ’x’.

“Missing id for ’m’ option.” To define a macro from the command line, you must say −mA=1 or −m"A 1".

“Missing id for ’u’ option.” You must say −uname.

“Missing language character after @L.” You must say ‘@Ll’.

“No includes allowed in change file.” You may not use the @i command within a change file.

“Style file name too long; must be less than n characters.” There’s something wrong with the −z

option.

“Syntax error in output redirection command "−>". Language must be one of ’c’, ’r’, or
’n’, not ’x’.” If you’re redirecting output from a particular language, the form of the command is
“−>l=file”.

“Too many nested includes; n allowed.” @i commands can be nested to a level of n.

“WARNING: Command-line language name overridden in limbo by new name.” A language com-
mand in the limbo section always takes precedence over a language specified on the command line.

“WEB file ended during a change.” There’s something incompatible about the change you’re trying to
make.

“Where is the matching @x?.” In the change file, a @y or @z was encountered before an @x.

“Where is the matching @y?.” A misplaced @x or @z was encountered.

“Where is the matching @z?.” A misplaced @x or @y was encountered.

20.10.2 General messages from FTANGLE

“@d, @f, and @a are ignored in code text.” @d and @f may appear only in the definition section. @a,
which signifies the unnamed module, must be preceded by either @ or @*.

“ASCII string didn’t end.” ASCII constants such as @’a’ must end on the same input line as they
begin. (They can’t even be continued by backslashes.)

“Can’t continue comments on @i lines.” You said something like ‘‘@i filename /*. . . ’’.

“Code text flushed; = sign is missing.” A section name of the form @<. . .@> was encountered at the
end of a TEX or definition section, but it wasn’t followed by the requisite equals sign that signifies the
start of a named module.

“Compiler directives are allowed only in code.” The compiler directive command @! was encountered
while scanning through TEX text. This directive is allowed only in the code section.

— General messages from FTANGLE — 139

“Continuation character ’c’ from ’&’ option is invalid; ’d’ assumed.” Fortran’s continuation
character must be printable and not blank.

“Definition flushed; must start with identifier.” An @d or @m command must be followed by a valid
identifier.

“Expected @> after @<.” A section name must be indicated by @<. . .@>.

“Expected ’c’ after language in ”−>”; command ignored.” The syntax of the output redirection
command is “−>l=filename”.

“Improper @ within control text.” Other than @>, only @@ is allowed within control text.

“Include file name not given.” In an include command, the file name must be on the same line as the
@i.

“Incompatible section names.” A section name is not uniquely distinguishable from another.

“Infinite recursion in definition of environmental variable ”. . .”.” Either a bug in your logic or in
WEB’s. If you think it’s WEB, please report it.

“Input ended in mid-comment.” A “/*” was not followed by a matching “*/”.

“Input ended in middle of embedded comment.” Embedded comments are C-style comments within
strings that are delimited by parentheses. (Certain macros or include statements treat their arguments
as strings.)

“Input ended in middle of string beginning with ’delimiter’.” Found end-of-file before end of string.

“Input ended in section name.” The closing @> of a section name was not found.

“Input ended in verbatim comment.” A ‘@/*’ was not followed by a matching “*/”.

“Inserted ’c’ at beginning of continued string.” The option −\ is in effect, but the continuation
character c that ended the last line does not appear as the first non-blank character on the present line.

“Invalid escape sequence ’\c’ in ASCII constant; null assumed.” In a construction of the form
’\c’, c was not one of 0, \, ’, ", ?, a, b, f, n, r, t, or v.

“Name does not match.” A section name was used that was never defined.

“Nested named modules. Missing @?.” A construction of the form ‘@<. . .@>=’ was found in the code
section of a module. Perhaps the equals sign is spurious or there’s a missing @ or @*.

“Not present: <section name>.” A section name of the form @<. . .@> was referenced but never defined.

“Output file name not given.” You must say @o filename.

“Output file name too long; allowed only n characters.” The file name following an @o command is
too long.

“Section name didn’t end.” A new module command (@ or @*) was encountered in the middle of a

140 — General messages from FTANGLE —

section name beginning with @<.

“Section name ended in mid-comment.” An @ or @* was encountered while inside a comment begin-
ning with “/*”.

“Should use double @ within ASCII constant.” You should say ‘‘@’@@’’”, not “@’@’”.

“String beginning with ’delimiter’ didn’t end.” Quoted strings must end on the same input line as
they began, unless they are explicitly continued by a backslash as the very last character in the line.

“TeX line had to be broken.” FTANGLE had to insert its own line break in a TEX input line. Usually
this will be done satisfactorily, but it’s best to check it out.

“Too many END DOs.” Issued only when the −d option is used and the do. . . end do blocks don’t match
properly. Note: This option is obsolete; use Ratfor instead.

“Verbatim string didn’t end.” Verbatim strings (beginning with @=) must end on the same line as they
began. (They can’t be continued with backslashes.)

“WARNING: Code mode ended during unbracketed optional argument. Should there be
white space after language command?.” If you say “. . .|@ninteger i|. . . , the ’i’ is interpreted
as a command-line type of argument to @n. Leave a space after the @n.

20.10.3 Errors related to preprocessing and macro processing

“Actual number of macro arguments (m) does not match number of def’n (n).” WEB macros
with a fixed number of arguments (not defined with an ellipsis) must be called with precisely the same
number of arguments. Macros with a variable number of arguments must be called with at least as
many arguments as explicitly defined.

“Adjacent operators "name1 name2" not allowed in expression.” For example, you can’t say “A || || B”.

“Argument n of _TRANSLIT must be a string.” The arguments of this built-in must be enclosed in
quotes.

“Argument n of _TRANSLIT doesn’t begin with ’c’.” The delimiter characters for the string arguments
of _TRANSLIT must all be the same.

“Auto insertion type must be one of "ibfmps”.” The characters between brackets in @m[. . .] must
be one of ibfmps*.

“Can’t have @#elif after @#else.” The order must be @#if. . .@#elif. . .@#elif. . .@#else. . .@#endif.

“Can’t have more than 6 types of automatic insertion material; remaining ignored.” You would
get this message if you said @m[*f]. . . , since the * already counts as the six types bifmps.

“Can’t negate type name.” You can only apply the ! operator to numeric types.

“Can’t take one’s complement of type name; operand converted to integer.” You can only take
the one’s complement of an integer.

“’defined’ ends prematurely.” In WEB macros, defined must be followed by an identifier.

— Errors related to preprocessing and macro processing — 141

“’defined’ must act on identifier, not type name.” As above.

“Expected ’)’ after ellipsis.” Macros with variable numbers of arguments must be defined with the
format “@m A(x,y,...) text”; no other arguments may follow the ellipsis.

“Expected constant after "#:".” For automatic statement labelling, you must say #:n, where n ≥ 0.

“Found space instead of ’]’ after automatic insertion material.” The syntax of an automatic inser-
tion macro is @m[. . .] name text.

“Identifier "name" not allowed as binary operand.” Possibly you forgot to define a macro. For
example, in _EVAL(A+B), both A and B must be WEB macros.

“Identifier must follow #!; command ignored.” In WEB macro text, the construction #!name means
substitute the macro parameter name without expanding it.

“Identifier must follow #&.” The construction #&name is intended for internal use by the designer of
FWEB; do not use it.

“Identifier must follow @#undef.” You must say ‘@#undef A’, where A is a macro name.

“Ignored out-of-order "preprocessor cmd" (mlevel = n).” There’s something wrong with a preprocessor
construction. The order must be @#if. . .@#elif. . .@#elif. . .@#else. . .@#endif.

“Internal function name "name" not defined.” Do not use the construction #&; it’s for internal use
only.

“Invalid data type name in promotion.” A crazy syntax error, or a bug.

“Invalid operand of exponentiate has type name.” There’s something wrong with an exponentiation
operation (^) in a macro expression.

“Invalid operand of unary minus has type name.” The unary minus (−) can only be applied to numeric
types.

“Invalid preprocessor block structure (level n). Missing @#endif?.” The definition section ended
before an @#if statement was properly terminated.

“Invalid type name in bit operation. (Macro not defined?).” You can only apply bit operations such
as & or || to integers.

“Invalid statement number offset (n) after #:; 1 assumed.” In the construction #:n, n must satisfy
n ≥ 0.

“Invalid token 0xXX (’c’) after #.” In WEB macro text, only the constructions #: or #! were expected
here.

“Invalid token ’c’ (0xXX) in expression.” There’s a syntax error in an argument to something like an
@#if.

“Invalid type returned from eval .” There’s something wrong with the expression evaluator, or a
syntax error in an expression.

142 — Errors related to preprocessing and macro processing —

“Macro after #! may not have arguments.” The more general case is not implemented.

“Macro buffer full; n bytes requested for reason.” The macro expansion buffer overflowed. The size
can be increased with the −mb option. However, this message may also signify a bug in FWEB.

“Macro definition may not start with ’c’; −m option ignored.” There’s trouble with a macro defi-
nition from the command line. Macro names must begin with an alphabetic character, an underscore,
or a dollar sign.

“Macro inner recursion depth exceeded.” Either a macro was too complicated, or a bug permitted an
infinite recursion.

“Macro outer recursion depth exceeded.” As above.

“Macro must start with identifier.” There’s something wrong with a WEB macro.

“Macro token "#!" must be followed by a parameter.” In WEB macro text, the construction #!name
means substitute the macro parameter name without expanding it.

“Macro token "#*" must be followed by a parameter.” In WEB macro text, the construction #*name
means stringize the macro parameter name without expanding it, and without adding an extra level of
quotes if the parameter is already a quoted string.

“Missing argument to token-paste operation. Null assumed.” The operator ## is not allowed at
the very beginning or end of a macro definition.

“Missing equivalence field while undefining "name"; this shouldn’t happen!.” There’s trouble in
paradise; a bug in FWEB.

“Missing internal function name after #&.” The construction #&name is intended for internal use by
the designer of FWEB; do not use it.

“Missing macro parameter in definition of macro "name". Token . . . is invalid; can only have
identifiers and commas between (. . .).” There’s something wrong with the argument list of a WEB
macro definition.

“Missing right paren in definition of macro "name".” Parentheses didn’t match up while processing
the argument list of a WEB macro.

“Missing ’(’ in call to macro "name".” This macro was defined to have arguments, but is used without
an argument list.

“No ’)’ in call to macro "name".” In a call to a WEB macro, the closing parenthesis couldn’t be found.

“Non-numeric type returned from eval (undefined macro?); assumed FALSE.” The expression
evaluator couldn’t reduce an expression to 0 or 1.

“Non-numeric type returned from neval (undefined macro?); assumed 0.” The expression evalu-
ator couldn’t reduce an expression to a number.

“Null expression encountered during expression evaluation; 0 assumed.” You would get this
message, for example, if you said ‘‘@#if()’’.

— Errors related to preprocessing and macro processing — 143

“Only one @#else allowed.” Only one @#else is permitted in an @#if construction. Perhaps you meant
to say @#elif.

“Overriding previous auto insertion type c.” Auto insertions for the same type do not stack. You
said something like @m[f] but type f had already appeared in a previous such construction (possibly
implicitly, through a ’*’).

“Right operand of ’c’ is zero.” You can’t divide by 0.

“Section ended during scan for "@#else", "@#elif", or "@#endif". Inserted "@#endif". (elevel
= n).” A @ or @* was encountered before a @#if was properly closed.

“Sorry, @#pragma command not implemented yet.” But you were clever to try.

“Too many macro arguments in definition of "name"; MAX MARGS = n.” A maximum of
MAX MARGS arguments are allowed for WEB macros.

“WARNING: Command-line language language overridden in limbo by language.” You specified
a language on the command line, but a different one in the file. Generally, put the language command
into the file.

“WARNING: "name" is already undefined.” You attempted to @#undef an identifier that was not
defined as a WEB macro.

20.10.4 Ratfor errors

An annoying class of error messages is that which begins with “Output ended . . . ”. If an expected
delimiter is missing, the scan will, at present, proceed to the end of file. Really, it’s possible to stop the scan
before that, say at the beginning of the next function; that mechanism will be installed in future versions.

“Automatic statement number out of bounds; n assumed.” An automatic statement number bigger
than Fortran’s maximum of 99999 was generated.

“Case value val of type double truncated to int.” Cases should really be integer expressions.

“Can’t return value from program or subroutine.” The statement “return expr;” is allowed only
in functions, not subroutines or main programs.

“Expected identifier after "name".” There’s a missing name after program, subroutine, or function.

“Ignored ’r’ not matched with ’l’.” There were too many right delimiters r to be matched with the
left delimiter l.

“Inserted ’{’.” A compound statement was expected here.

“Inserted ’c’ after "name".” For example, default wasn’t followed by its mandatory colon.

“Invalid escape sequence ’\letter’ in Ratfor character constant; null assumed.” In a construction
of the form ’\c’, c was not one of 0, \, ’, ", ?, a, b, f, n, r, t, or v.

“Missing left paren after ”name”; expansion aborted.” Certain keywords such as while are expected
to be followed by a left parenthesis.

144 — Ratfor errors —

“Missing opening delimiter ’c’; text not copied.” A construction beginning with the character c was
expected here.

“Missing right brace (level n) at beginning of function; END statement inserted.” A program,
subroutine, or function statement was encountered before the body of a preceding program unit was
properly terminated with a right brace.

“Misplaced keyword: "name" must appear inside loop.” For example, next is allowed only inside
loops such as for.

“Misplaced keyword: "name" must be used only inside "switch".” For example, default is allowed
only inside a switch.

“Output ended after ’{’.” End of file was encountered before a matching right brace was found.

“Output ended at beginning of statement.” A single or compound statement was expected here.

“Output ended during scan of simple statement.” A semicolon to terminate the statement wasn’t
found.

“Output ended while copying to ’r’.” In some cases, Ratfor copies things directly to the output
while searching for a closing delimiter. In this case, the closing delimiter wasn’t found.

“Output ended while scanning for ’c’.” Some sort of list, such as the argument to a for statement,
wasn’t properly terminated.

“Output ended while skipping newlines.” Probably a statement was expected here. Comments are
also skipped while skipping over newlines.

“Ratfor character constant longer than one byte; extra characters ignored.” In Ratfor, as in C,
single quotes denote character constants whose length is one byte, so constructions such as ’ab’ are
not allowed. Perhaps you intended this to be a character string, which should be enclosed by double
quotes: "ab".

“Ratfor is not loaded. . . .” You linked on the dummy package ratfor0.o instead of ratfor.o. Therefore,
you’re not allowed to set the language to RATFOR.

“Shouldn’t encounter top level here.” There’s something wrong with FWEB’s stacking mechanism for
expanding Ratfor keywords.

“Unexpected keyword "name" ignored.” For example, an until was used without a preceding repeat.

20.10.5 General messages from FWEAVE

“@f line ends prematurely.” For changing category codes, the syntax is @f ‘a �n.

“A string must follow @l.” Where is the text of the limbo text definition?

“Braces don’t balance in comment.” This holdover from Knuth’s Pascal WEB is sometimes spurious,
and should be improved.

— General messages from FWEAVE — 145

“Can’t have vertical bars in @! compiler directives.” A restriction of the implementation.

“Category code must be between 0 and 15.” Just as in TEX.

“Control codes are forbidden in control text.” If you need an @, you can say “\AT!”.

“Control text didn’t end.” The terminating @> must be on the same line as the control text began.

“Double @ required outside of sections.” If you intend for the character ’@’ to be here, you must
double it. Otherwise, you’re using a control code that isn’t allowed here.

“Double @ should be used in strings.” No control codes are allowed inside strings; for the ’@’ symbol
you must say ‘‘@@’’.

“Identifier was already explicitly defined via @[in module n.” Identifiers should be explicitly defined
in only one place.

“Illegal use of @ in comment.” No control codes are allowed in comments. If you intend the character ’@’,
you must double it.

“Implicit declaration of ‘name’ conflicts with previous declaration at module n.” The syntax
parser recognized a complete function (during phase 2), but either the function name had already been
identified by an @[command in phase 1 or the function has been defined more than once.

“Improper format definition.” There are too many or too few items in an @f command.

“Improper macro definition: expected ’)’ after ellipsis.” Self-explanatory.

“Improper macro definition: expected identifier.” Self-explanatory.

“Improper macro definition: unrecognized token in argument list.” Self-explanatory, but the
message should be made more explicit.

“Input ended in mid-comment.” A “/*” was not followed by a matching “*/”.

“Input ended in middle of string beginning with ’delimiter’.” Found end-of-file before end of string.

“Input ended in section name.” The closing @> of a section name was not found.

“Inserted c at beginning of continued string.” The option −\ is in effect, but the continuation char-
acter c that ended the last line does not appear as the first non-blank character on the present line.

“Invalid @f command: One of the representation ‘a, ‘\a, or ‘^^M is required.” A left quote
appears after @f says that you want to change a TEX category code. Use the same syntax for the
character whose catcode is to be changed as you would following TEX’s \catcode command.

“Invalid category code.” A numerical constant was expected here.

“Invalid op code n.” There’s something wrong with the operator being processed. If you can’t figure this
one out, please report it.

“Missing ’|’ after code text.” Did you forget to switch out of code mode in the middle of TEX text?

146 — General messages from FWEAVE —

“No op macro name for ”. . .” [language]; token ignored.” There’s something funny about an operator
overload. If you can’t figure this out, please report it.

“Operator after @v is invalid.” There’s something wrong with the operator after an @v command. Dot
constants should be written sans dots; characters such as parentheses are not valid operators.

“Second argument (replacement text) of @v must be a quoted string.” The syntax of an operator
overload command is @v newop "string" oldop.

“Section ended in middle of Fortran-90 continuation.” WEB thinks the last line was a continuation
(ended by the continuation character ’\’ or ’&’), but then reached end-of-file.

“Section name didn’t end.” A new module command (@ or @*) was encountered in the middle of a
section name beginning with @<.

“String beginning with ’delimiter’ didn’t end.” Quoted strings must end on the same input line as
they began, unless they are explicitly continued by a backslash as the very last character in the line.

“String must follow @l.” Limbo text commands have the form ‘‘@l "abc\ndef"’’.

“TeX string should be in code text only.” An @t command is misplaced.

“Verbatim string didn’t end.” Verbatim strings (beginning with @=) must end on the same line as they
began. (They can’t be continued with backslashes.)

“You can’t do that in code text.” Commands like @d or @f are not allowed here.

“You can’t do that in TeX text.” The following commands are not allowed in TEX text: @,, @|, @/, @#,
@+, @&, @;, @e, @:.

“You need an = sign after the section name.” Self-explanatory. One sometimes gets this error if
FWEAVE has gotten confused about which part of the section it’s in.

“You should say @@.” Don’t forget to double the @’s in WEB source code.

“You should say \@@.” The single-character TEX macro \@ must be written in WEB source code as \@@.

20.11 APPENDIX K: GETTING WEB ONTO a NEW COMPUTER

The following paragraph, extracted from Knuth’s original report, is included here mostly for entertain-
ment.

“If you have only the present report, not a tape, you will have to prepare files WEAVE.WEB
and TANGLE.WEB by hand, typing them into the computer by following Appendices D and E.
Then you have to simulate the behavior of TANGLE by converting TANGLE.WEB manually into
TANGLE.C; with a good text editor this takes about six hours. Then you have to correct
errors that were made in all this hand work; but still the whole project is not impossibly
difficult, because in fact the entire development of WEAVE and TANGLE (including the writing
of the programs and the manual) took less than two months of work.” [Note from J. A.
Krommes: (!!!)]

FWEB is available via anonymous guest ftp from Internet host lyman.pppl.gov, a Sun SparcStation

— APPENDIX K: INSTALLATION — 147

running UNIX. Use binary mode to transfer a compressed tar file with a name like fweb−1.30.tar.Z. See
the file /pub/fweb/READ_ME for the current status, recent bug reports, and further instructions.

For those without ftp access, it is possible to emulate the function of ftp by sending a valid ftp session
as a mail message to bitftp@pucc.bitnet. The requested files will be returned by mail, possible uuencoded
and broken up into several parts if they are sufficiently long. A sample ftp session is

ftp lyman.pppl.gov
cd /pub/fweb
get READ_ME
quit

To learn more about the bitftp service, send a message containing the single word “help” to the above
address.

To unpack the tar file, say

uncompress fweb-1.30.tar
tar -xvf fweb-1.30.tar

A brief summary of the installation procedure can be found in the READ_ME.FWEB file included in the
subdirectory corresponding to the numbered release—e.g., /pub/fweb/v1.30/READ_ME.FWEB. UNIX users
should do the following:

cd fweb-1.30
./configure
cd web
make bootstrap
make install

More detailed installation information can be found in the separate file INSTALL_FWEB.tex included
with the FWEB release in the manual subdirectory.

148

20.12 APPENDIX L: SYNTAX SUMMARY

Here we summarize various of the important features of FWEB. This material is intended to be for
reference; please refer to the body of the user’s manual for full details.

20.12.1 The FWEB processors

FTANGLE — Creates compilable code.

Phase one:
• discards TEX documentation;
• tokenizes source;
• expands @’. . .’, @". . .", and 0bbinary (also 0octal and 0xhex in

Fortran);
• stores code text in appropriate modules;
• memorizes macro definitions (@d and @m).

Phase two:
• outputs outer macro definitions (@d);
• outputs the unnamed module (@a);
• expands WEB macros (@m);
• expands build-in macros;
• translates Ratfor statements.

FWEAVE — Typesets the documentation and code.

Phase one:
• tokenizes and stores identifiers and module names;
• collects cross-reference information (including processing @[and @`);
• stores limbo text definitions (@l);
• collects information about overloaded operators (@v) and identi-

fiers (@W).

Phase two:
• outputs limbo text;
• outputs special TEX macros for overloaded operators;
• copies TEX material directly to output;
• treats material between vertical bars (|. . . |) as code to be typeset;
• tokenizes and stores contents of each code section;
• analyzes code syntax and converts to appropriate TEX macros.

Phase three:
• typesets index and module cross-references;
• writes table of contents.

— Files — 149

20.12.2 Files

The FWEB system works with a variety of files. File names have the form [path]/root[.ext]. Here ’/’
is called the PREFIX END CHAR . Since it differs for various operating systems, it can be changed in
custom.h. The character that initiates the file-name extension (normally a period) can be changed with the
‘−E’ command-line option.

Input files:

null file — The system sometimes reads from the null file. This name varies from system
to system; the default can be defined in custom.h, or it can be changed
with the style-file parameter null_file.

.fweb (or fweb.ini) — Initialization file; always in the home directory. The basic file name can
be overridden by the environment variable FWEB_INI. (It can also be
changed in custom.h, although this is strongly discouraged.)

fweb.sty — Style file; in current directory unless overridden by environment variable
FWEB_STYLE_DIR. The basic name can be changed by the ‘−z’ option. (It
can also be changed in custom.h, although this is strongly discouraged.)

name.web — Source code. (Alternative suffixes can be searched for automatically with
the ‘−e’ option and the ext.web style-file entry.)

name.ch — Change file. (Suffixes are treated as above, but see ext.change.)
name.hweb — Code included into web file with ‘@i’. Include files are searched for in the

path set by the environment variable FWEB_INCLUDES and/or the −I op-
tion; if that path is empty, then the current directory is searched. (Suf-
fixes are treated as above, but see ext.hweb.)

name.hch — Change file for include file. (Suffixes are treated as above, but see ext.hchange.)

Output files:
name.tex — Woven output; can be processed with either Plain TEX or LaTEX.
CONTENTS.tex — Accumulates table-of-contents information written by FWEAVE. (This name

can be overridden by the style-file option contents.tex.)
INDEX.tex — Stores indexing information written by FWEAVE. (This name can be overrid-

den by the style-file option index.tex.)
MODULES.tex — Stores module list written by FWEAVE. (This name can be overridden by the

style-file option modules.tex.)

name.ext — Compilable output file; see table below for the extension associated with
each language.

When the ‘−e’ option is in effect, input file names that include no period are completed automatically
according to the style-file entries listed in the following table:

Type of file Style-file entry Default
WEB file ext.web .web
Change file ext.ch .ch
Include file ext.hweb .hweb
Change file
for include file ext.hch .hch

The default extension for the file(s) output by FTANGLE sometimes depends on whether the operating

150 — Files —

system is UNIX or not. (These defaults can be overridden by style-file parameters, as indicated.)

Language Style-file entry UNIX

default
Non-UNIX

default
C suffix.C .c .c
C++ suffix.Cpp .c++ .cpp
FORTRAN--77 suffix.N .f .for
FORTRAN--90 suffix.N90 .f .for
MAKE suffix.K .mk .mk
RATFOR--77 suffix.R .f .for
RATFOR--90 suffix.R90 .f .for
TEX suffix.X .sty .sty

20.12.3 Environment variables

Environment variables in UNIX and logical names in VMS behave in the same way.

FWEB INCLUDES — Colon-delimited list (identical in format to the Unix C-shell PATH variable)
of directories to search for include files. (One can append to this list by
means of the −I option.)

FWEB INI — Name of the initialization file—e.g., fweb.ini. If not defined, either .fweb
or fweb.ini is chosen, depending on the machine. The initialization
file always resides in $HOME.

FWEB STYLE DIR — Directory in which style file resides—e.g., $HOME/fweb. If not defined, the
current directory is used.

HOME — Name of the home directory. This variable should be defined by UNIX.
TERM — The terminal type. Defined by UNIX.

To change an environment variable, say, for example (in UNIX)

setenv FWEB_INCLUDES .:$HOME/fweb:/usr/xxx/stuff
setenv FWEB_INI my_FWEB.ini

For VMS, substitute “define” for “setenv”.

The built-in function _GETENV(ENV) expands to the value of the environment variable ENV .

20.12.4 Order of initial operations

FWEB begins its processing by performing the following operations:

1. Evaluate environment variables.
2. Read initialization file .fweb.
3. Execute .fweb options beginning with ’+’.
4. Read and execute the command line.
5. Execute remaining .fweb options.
6. Read the style file fweb.sty.
7. Process the WEB file.

— Command-line syntax — 151

20.12.5 Command-line syntax

The command-line syntax is

{
FWEAVE
FTANGLE

}
web file name [change file name] [options]

where the command-line options, each of which must begin with a hyphen, are summarized below. (Actually,
the options can appear before the file names, or can even be intermixed with them.) If an option has
an argument, no space should precede the argument. (E.g., say “−zmy.sty”, not “−z my.sty”.) In the
descriptions of the options, the letters T or W in brackets denotes to which processor the command applies;
no brackets at all means it applies to both processor. Similarly, parenthesized C, N, R, or X denotes the
applicable language. Italic brackets, as in −d[nnnnn], indicate an optional argument; the brackets themselves
shouldn’t be typed. Stars mean the command is not allowed to be optionally changed along with a language
change, according to the format ‘‘@l[options]’’ or ‘‘@Ll[options]’’.

152 — Command-line options a–q —

20.12.6 Command-line options a–q

-0 — Turn off WEAVE’s debugging mode. [W].
-1 — Turn on brief debugging mode. (Display irreducible scraps.) [W].
-2 — Turn on verbose debugging mode. (Display detailed reductions of the scraps.)

[W].
-A — Turn on ASCII translations.
-b — Number do and if blocks in woven Fortran and Ratfor output. [W].

* -c — Set the global language to C.
* -c++ — Set the global language to C++.

-D[letters] — Display information about reserved words of the current language (beginning
with letters if present).

-d[nnnnn] — Convert unnumbered ‘do. . .enddo’ constructions to standard Fortran–77.
[T]; (N).

-Ec — Change the delimiter of a file-name extension from the default ’.’ to c.
-e — Turn on automatic file-name completion. (See discussion of the style file

entries ext.*.)
-f — Turn off module references for identifiers. [W].

* -h — Get help from the command line. (Not implemented yet.)
-Idirectory — Append a directory or colon-delimited list of directories to the list of direc-

tories to be searched for include files.
-i — Read include files named by the ‘@I’ command, but do not print their con-

tents. [W].
-i! — Don’t even read include files named by the ‘@I’ command. [W].

* -Ll — Select global language: l ∈ {c, n, r, x}.
-l[mmm[:nnn]] — Echo the input line constructed by the input driver between lines mmm

and nnn.
* -mid[=text] — Define a WEB macro. [T].

-m4 — Understand the m4 built-in commands. [W].
-m; — Automatically append a pseudo-semicolon to WEB macro definitions. [W].

* -n — Set the global language to Fortran–77.
* -n9 — Set the global language to Fortran–90.

-n; — For Fortran–77, supply semicolons automatically. (Default mode.)
-nb — In Fortran, number the ifs and dos. [W]; (N).
-np — Print semicolons in woven Fortran output. [W].
-n\ — Select free-form Fortran–90 syntax continued with a backslash.
-n& — As above, but continue with an ampersand.
-n/ — In Fortran, make ’//’ denote the start of a short comment instead of

concatenation. (One can always use ’\/’ for concatenation.)
-n! — In Fortran, make ‘!’ denote the start of a short comment instead of the

logical NOT.
-o — Turn off FWEAVE’s mechanisms for overloading operators. [W].

* -Pletter — Selects the TEX processor for FWEAVE’s output. Say ‘−PL’ for LaTEX; the
default is ‘−PT’ for TEX. [W].

* -pstyleentry — Buffer up a style-file entry, to be processed just before the local style file is
read.

-q — Do not translate Ratfor commands into Fortran. (No longer supported.)
[T]; (R).

— Command-line options r–z — 153

20.12.7 Command-line options r–z

* -r — Set the global language to Ratfor–77.
* -r9 — Set the global language to Ratfor–90.

-rb — In Ratfor, number the ifs and dos. [W]; (N).
-rgparams — Set the goto parameters for Ratfor’s switch. [T]; (R).
-rk[letters] — Suppress particular comments about Ratfor statement translation. [T];

(R).
-rK[letters] — As above, but write out particular comments. [T].
-r; — Turns on Ratfor’s auto-semi mode, and tells it to use the “obviously con-

tinued” syntax. (R).
-r/ — In Ratfor, make ‘//’ denote the start of a short comment instead of con-

catenation. (One can always use ’\/’ for concatenation.) (R).
-r! — In Ratfor, make ‘!’ denote the start of a short comment instead of the

logical NOT.
* -s — Print statistics about memory usage.
* -sm[nnn] — As above, but also display the dynamic memory allocations of size ≥ nnn

as they occur.
* -tln[{. . . }] — Truncate identifiers of language l to length n, after optionally filtering out

the characters listed between the braces. [W].
* -uid — Undefine a predefined or command-line macro. [T].

-v — Make all comments verbatim. [T].
-Wletters — Commands that apply only to FWEAVE. Here letters may be one or more of

the following:
[— Turn on special processing of bracketed array indices.

f — Don’t print format statements (@f) in woven output.

l — As above, but for limbo statements (@l).

m — As above, but for macro definitions (@m).

v — As above, but for operator overloading (@v).

w — As above, but for identifier overloading (@W).

* -w[file name] — If file name is absent, don’t print ‘\input fwebmac.sty’ as the first line of
the TEX output file. Otherwise, print ‘\input file_name’. [W].

* -X[letters] — Print selected cross-reference information; the opposite of ‘−x’.
* -x[letters] — Reduce or eliminate cross-reference information. The optional letters can be

one of ’c’, ’i’, ’m’, or ’*’, referring respectively to the table of contents,
index, module list, or all cross-reference information. [W].

* -y[a[a]][nnnn] — Override default for dynamic memory allocation. If nnnn is omitted, then
simply query the default instead of overriding it. The simple com-
mand ‘−y’ with no argument queries everything.

-Z[letters] — Display default values of style-file parameters (starting with letters if present).

* -z[name] — Override default style-file name.

154 — Command-line options (miscellaneous) —

20.12.8 Command-line options (miscellaneous)

-. — Don’t recognize “dot constants” in Fortran or Ratfor.
-\ — Explicitly escape continued strings.
-(— Continue parenthesized strings with backslashes.
-:[nnnnn] — Set the starting automatic statement number. [T].

* ->[l=][name] — Redirect tangled output.
* -= — Redirect tangled output. Synonymous with ‘−>’. Easy to type under UNIX.

-# — Turn off comments about line numbers and module names in tangled output.
[T]

-+ — Don’t interpret the compound assignment operators. [T]; (N,R).
-/ — In both Fortran and Ratfor, make ‘//’ denote the start of a short com-

ment instead of concatenation. (One can always use ’\/’ for concatenation.)
-! — In both Fortran and Ratfor, make ‘!’ denote the start of a short com-

ment instead of the logical NOT.

These command-line options may also be put into the ini file .fweb. Options beginning with a plus sign are
processed before the command-line options. Otherwise, they are processed after the command-line options.

20.12.9 Modules

• Module names are delineated by @<. . .@>.
• To reference a named module in a macro definition, say ‘#<. . .@>’ instead of ‘@<. . .@>’.
• The unnamed module is begun by ‘@A’ or ‘@a’. (The latter command inserts an implicit ‘@[’.)
• FTANGLE outputs the unnamed module. (There must be at least one unnamed section, otherwise

there will be no output!)

TEX part — Arbitrary TEX documentation.

• Begins with ‘@*’ or ‘@ ’.
• Change to code mode with |. . .|.

definition part — Macro definitions, formatting, limbo text, operator overloading, etc.

• Begins with ‘@m’, ‘@d’, ‘@f’, ‘@l’, ‘@v’, or ‘@#...’.

code part — The source code.

• Begins with ‘@a’ or ‘@<’.
• TEX mode inside comments.
• Ends with ‘@*’ or ‘@ ’. (The end of file is like an ‘@ ’.)

— The simplest WEB sources — 155

20.12.10 The simplest WEB sources

The absolutely simplest nontrivial WEB source file is “@ @a”. The next simplest is

@* EMPTY.
@a

These have a null definition part as well as a null code part. The simplest Fortran–77 code is

@n
@* FORTRAN.
@a

program main
end

The same code in Ratfor is

@r
@* RATFOR.
@a
program main
{}

The corresponding code in C is

@c
@* C.
@a
main()
{}

156 — Control codes allowed in WEB files —

20.12.11 Control codes allowed in WEB files

Literal control characters:

@@ — Insert the single character ‘@’.
@| — Insert a vertical bar (TEX text only). In code mode, this command

means an optional line break; see the “Spacing” commands
below.

Beginning of module:

@ — Begin a new minor (unstarred) module.
@*[n] — Begin a new major (starred) module of level n.

Beginning of code part:

@< — Begin a module name.
@> — End a module name.

@A — Begin the code part of an unnamed module.
@a — Equivalent to ‘‘@A@[’’.

Control codes b–z:
@b — Insert a breakpoint command in a WEB module.

@c — Set the language to C.
@c++ — Set the language to C++.

@D — Define an outer macro.
@d — Equivalent to ‘‘@D@[’’.

@e — Invisible (pseudo-) expression.
@f — Format an identifier or module name.

@I — Include a file, but don’t print it out if the −i option is used.
@i — Include a file.

@Ll — Set language to l.
@l — Specify limbo text.

@M — Define a WEB macro.
@m — Equivalent to ‘‘@M@[’’.

@n — Set the language to Fortran–77.
@n9 — Set the language to Fortran–90.

@O — Open new output file (global scope).
@o — Open new output file (local scope).

@r — Set the language to Ratfor–77.
@r9 — Set the language to Ratfor–90.

— Control codes allowed in WEB files, cont’d — 157

20.12.12 Control codes allowed in WEB files, cont’d

@u — Undefine an outer macro.

@v — Overload an operator.
@W — Overload an identifier.

@x — Terminates ignorable material (begun by ‘@z’ at beginning of source
or include file).

@z — Begins ignorable material at beginning of source or include file.

Conversion to ASCII:

@’ — Convert single character to ASCII.
@" — Convert string to ASCII. (In Fortran or Ratfor, generate a call

to the function named by the style-file field ASCII_fcn.)

Markers for forward referencing:

@[— Mark the next identifier as defined in this module.
@] — Reserved; do not use.
@‘ — Reserved; do not use.

Comments:

@/* — Begin a long verbatim comment.
@// — Begin a short verbatim comment.
@% — An ignorable comment: Everything to the next newline is com-

pletely ignored.
@? — Begin a compiler directive.
@! — Begin a compiler directive (obsolete).
@(— Begin a meta-comment.
@) — End a meta-comment.

Special brace:
@{ — Suppress default insertion of breakpoint command.

Index entries:
@_ — Force an index entry to be underlined.
@- — Delete an index entry for the next identifier.

@^ — Make an index entry in Roman type.
@. — Make an index entry in typewriter type.
@9 — Make an index entry in a format controlled by ‘\9’, which the user

must define.

Control text:

@t — Put control text into a TEX \hbox.
@= — Pass control text verbatim to the output.

158 — Control codes allowed in WEB files, cont’d —

20.12.13 Control codes allowed in WEB files, cont’d

Spacing:
@, — Insert a thin space.
@/ — Insert a line break.
@| — Insert an optional line break in an expression.
@# — Force a line break with some extra white space; very seldom neces-

sary, since blank lines in the source are significant. Also begin
a preprocessor command.

@+ — Cancel a line break.
@& — Join left and right with no spaces or line breaks inbetween.

Pseudo (invisible) operators:
@e — Invisible (pseudo-) expression.
@; — Invisible (pseudo-) semicolon.
@: — Invisible (pseudo-) colon.

20.12.14 Special format for language changes

The most general form of a language command is

@[L]l text[options]

where l is a language symbol, text is converted into a hyphenated option, and options have the same syntax
as on the command line. For example,

@n9[-n&]

means set the language to Fortran–90 and use free-form syntax with the ampersand as the continuation
character.

— Control codes allowed in change files — 159

20.12.15 Control codes allowed in change files

The folllowing commands are allowed in change files. They must begin in column 1. Any line that does
not begin with one of these commands is a comment.

@x — Begin a change file entry.
@y — End the old code; begin the replacement code.
@z — End the change file entry.

@c — Set language to C.
@c++ — Set language to C++.
@n — Set language to Fortran–77.
@n9 — Set language to Fortran–90.
@r — Set language to Ratfor–77.
@r9 — Set language to Ratfor–90.
@Ll — Set language to l.

@[— Switch into code mode. (Use for column-oriented language such as
Fortran–77.)

@] — Switch out of code mode.

20.12.16 The null change file

When no change file is specified on the command line, the WEB processors attempt to open and read
from the so-called “null file.” (This file may or may not actually exist in the directory structure, depending
on the system.) The name of this file, which is permanently empty, depends on the operating system and
becomes the default value of the style-file option null_file according to the following table:

Operating system Name of null file
IBM/PC nul
IBM/MVS ’NULLFILE’
VAX/VMS nl:
UNIX or other /dev/null

Usually you must do nothing explicitly to access the null file. However, if FWEB can’t find the default null
file on your system, just create an empty file whose name is null name and insert into the style file the line
“null_file "null name"”.

160 — Commenting modes —

20.12.17 Commenting modes

FWEB allows a variety of commenting styles. The visible comments are in the font \cmntfont, which
defaults to \tenrm.

Invisible comments:

@z...@x — If a source or include file begins with ‘@z’, then all material is skipped until and
including a line beginning in column 1 with ‘@x’.

@% — All material until and including the next newline is completely ignored.

Visible comments:
/*...*/ — A long comment (may extend over several lines).
//... — A short comment (terminated by next newline). (In Fortran or Ratfor, this

must be turned on explicitly with one of the command-line options ‘−n/’,
‘−r/’, or ‘−/’.)

!... — A short comment in Fortran or Ratfor. This must be turned on explicitly
with one of the command-line options ‘−n!’, ‘−r!’, or ‘−!’.

!!... — A short comment in Fortran or Ratfor.
@(...@) — A meta-comment. The material between ‘@(’ and ‘@)’ is typeset in a verbatim

environment, and is appropriately passed to the tangled output. (See the
style-file parameters meta.*.)

20.12.18 Alternatives for ‘dot’ commands in Fortran and Ratfor

Although Fortran and Ratfor allow standard ‘dot’ commands such as ‘.LT.’, they are considered
to be obsolete; more modern alternatives are preferred. Here is a table of what you can type on input, and
what WEAVE will typeset. The first entry is standard Fortran; the parenthesized material is an allowable
input alternative. (In most cases, the pretty input alternatives follow C’s convention.)

.lt. (<) → <

.le. (<=) → ≤

.eq. (==) → ≡

.ne. (!=,<>) → 6=

.gt. (>) → >

.ge. (>=) → ≥

.and. (&&) → ∧

.or. (||) → ∨

.neqv. → 6≡

.xor. → 6≡

.eqv. → ?=

.not. (!) → ¬
** (^) → (a+b)^(c+d) → (a + b)c+d

// (\/) → ‖

These same conventions are allowed in Ratfor mode. Note that in Fortran and Ratfor ‘//’ is interpreted
by default as the concatenation symbol, not the start of a short comment. To override that default, use one
of the command-line options ‘−n/’, ‘−r/’, or ‘−/’, or use a language-changing command of the form “@n/”.

— Considerations about formatting — 161

20.12.19 Considerations about formatting

The construction

@f identifier old identifier

makes identifier behave like old identifier.
The old identifier may be one of the following special names, which insert extra spaces according to the

positions of the underscores and behave as the part of speech indicated by the base names. These are useful
for dealing with macro constructions.

$_BINOP_
$_COMMA_
$_EXPR
$_EXPR_
$EXPR_
$UNOP_

When the current language is TEX, the format command can be used to change a category code according
to the format

@f ‘TEXchar new cat code

162 — Macro commands —

20.12.20 Macro commands

Outer macros, defined by @d, are copied to the beginning of the output file. Inner WEB macros are defined
by @m. WEB macro definitions in the definition section are collected at the beginning of the unnamed module.
WEB macro definitions in the code section (deferred definitions) become known when they are encountered
while the code is being output.

WEB macro definitions have one of the following three forms:

@m name(args) text
@m* name(args) text

@m[bfimps*] name(args) text

In the second form, the asterisk means that the macro may be recursive, although this feature is not im-
plemented yet. In the third form, which is useful only for Ratfor, the brackets means that the contents of
this macro are to be inserted automatically at the beginning of the type of program unit identified by the
characters within the brackets. See the text for more information.

Macros with a variable number of arguments are indicated by an ellipsis , as in ‘‘@m VAR(x,y,z,...) text’’.

Adjacent strings in macro text are automatically concatenated.

The following special tokens can be used in the text of WEB definitions. Here parameter means a dummy
argument in the argument list of a function-like macro.

ANSI C-compatible tokens:
— Paste together tokens to left and right. (ANSI C-compatible.)
#parameter — Convert parameter to string, without expansion. (ANSI C-compatible.)

Extensions to ANSI C macro syntax:

#*parameter — As above, but pass a quoted string through unchanged.
#!parameter — Don’t expand argument.
#’parameter — Convert parameter to a single-quoted string, without expansion.
#"parameter — Convert parameter to a double-quoted string, without expansion.
#0 — The number of variable arguments.
#n — The nth variable argument, counting from 1.
#{0} — Like #0, but the argument may be a macro or expression known at output

time.
#{n} — Like #n, but the argument may be an expression.
#[0] — The total number of arguments (fixed plus variable). (The argument may

be an expression.)
#[n] — The nth argument (including the fixed ones), counting from 1. (The argu-

ment may be an expression.)
#. — A comma-separated list of all variable arguments.
#:0 — Unique statement number (expanded during phase 1).
#:nnn — Unique statement number for each invocation of this macro (expanded dur-

ing phase 2).
#< — Begin a section name. (Ends with ‘@>’.)
#, — An “internal” comma; does not delimit the end of an argument.

— Preprocessor commands — 163

20.12.21 Preprocessor commands

WEB preprocessor commands may appear in either the definition or the code part. But beware: No
matter where they appear, they are expanded during input, not output.

@#define identifier — Define a WEB macro; equivalent to ‘@m’.
@#undef identifier — Undefine a WEB macro.

@#ifdef identifier — Is WEB macro defined? Equivalent to ‘@#if defined identifier’.
@#ifndef identifier — Is WEB macro not defined? Equivalent to ‘@#if !defined identifier’.

@#if expression
@#elif expression
@#else
@#endif

164 — Built-in FWEB macros (A–K) —

20.12.22 Built-in FWEB macros (A–K)

Built-in macros are expanded during output while processing the code part. They all begin with an
underscore and are in upper case. User-defined macros should not begin with an underscore or a dollar sign.
In the following argument lists, string means a character string that should be surrounded by quotes. In
a few cases the quotes are optional if the argument is a single alphanumeric identifier, but don’t use this
property unless you really have to.

A(string) — The built-in equivalent to @’. . .’ or @". . .". (Note the extra
parentheses required by the built-in.)

ABS(expression) — Absolute value of expression.
ASSERT(expression) — Evaluates expression; if false, prints an error message and

aborts.
COMMENT(string) — Generate a comment in the output file.
DATE — A string consisting of the date in the form "August 15, 1989".
DAY — A string consisting of the day of the week in the form

"Monday".
DECR(N) — Decrement a macro.
DEFINE(defn) — Deferred macro definition.
DO(macro,imin,imax[,∆i]{. . . } — Repetitively defines macro as would the Fortran do loop

do macro = imin,imax,∆i.
DUMPDEF(m1,m2,. . .) — Here m1, m2, etc. are macro calls (with argument list if ap-

propriate). The macro definitions and their expansions
are dumped to the terminal.

ERROR(string) — Send string to the standard error message facility.
EVAL(expression) — Evaluate a macro expression.
GETENV(name) — Returns the present value of the environment variable name.
HOME — The user’s home directory; equivalent to _GETENV(HOME).
IF(expression,t,f) — Evaluates expression. If true, returns t; otherwise, returns f .
IFCASE(expr,case 0,. . .,case n,dflt) — Evaluates expr to an integer m. If 0 ≤ m ≤ n, then case m

is selected. Otherwise, the dflt is selected.
IFDEF(macro,t,f) — If macro is defined, returns t; otherwise, returns f .
IFNDEF(macro,t,f) — As above, but returns t if not defined.
IFELSE(s1,s2,t,f) — Compares s1 to s2. If identical, returns t; otherwise, re-

turns f .
INCR(N) — Increment a macro.
INPUT LINE — Line number (in WEB source file) that begins current section.

— Built-in FWEB macros (L–Z) — 165

20.12.23 Built-in FWEB macros (L–Z)

L(string) — Changes string to lower case.
LANGUAGE — An identifier such as ‘_C’ depending on the current language.

(See the table below under _LANGUAGE_NUM.) Intended
to be used with an _IFELSE.

LANGUAGE NUM — An integer according to the following table; intended to be
used with an _IFCASE.

Language LANGUAGE LANGUAGE NUM
C C 0
C++ CPP 1
Fortran–77 N 2
Fortran–90 N90 3
Ratfor–77 R 4
Ratfor–90 R90 5
TEX X 6

LEN(string) — Length of (unexpanded) argument interpreted as a charac-
ter string.

M(defn) — Equivalent to _DEFINE.
MAX(a,b) — Maximum of the two expressions a and b.
MIN(a,b) — Minimum of a and b.
MODULE NAME — Name of present WEB module.
MODULES — The total number of independent modules: namely, the total

number of independent module names, plus 1 for the
unnamed module.

OUTPUT LINE — Current line number of tangled output.
P — The C preprocessor symbol ’#’; a synonym for “_UNQUOTE("#")”.
POW(x,y) — Exponentiation: xy.
ROUTINE — In Ratfor mode, expands to a string built of the name of

the current program, function, or subroutine; not useful
for other languages, for which it expands to the empty
string.

SECTION NUM — Number of current WEB section.
SECTIONS — The maximum section number as understood by WEAVE.
STRING(s) — Expands its argument, then stringizes it according to #*.
STUB(name) — References to undefined modules are automatically replaced

by a call to this macro, with the module name as argument.
TIME — A string consisting of the local time in the form "19:59".
TRANSLIT(string,from,to) — Interprets all arguments as character strings; replaces the

from characters in s by the corresponding to characters.
U(string) — Changes string to upper case.
UNDEF(macro) — Undefine a macro.
UNQUOTE(string) — Returns string, without the surrounding quotes.
VERBATIM(string) — Obsolete name for _UNQUOTE.
VERSION — A string built out of the FWEB version number—e.g., "1.30".

166 — Ratfor commands —

20.12.24 Ratfor commands

Select Ratfor–77 with ‘@r’ or ‘@r7’; select Ratfor–90 with ‘@r9’. Disable Ratfor statement trans-
lation with command-line option ‘−q’ (obsolete). In all cases, the construction {. . .} can be replaced by a
simple statement terminated by a semicolon.

Ratfor–77 commands:

break; — Exit loop or switch immediately.
case i: — Used only inside switch.
default: — Used only inside switch.
do . . .; {. . . } — Fortran’s do statement. (The semicolon is required

only when the do is followed by a simple state-
ment; it is optional when followed by a left brace.)

else {. . . } — Used in conjunction with if .
for(a;b;c) {. . . } — Execute a. Test b. If true, execute body. Execute c.

Test b again and iterate.
if(condition) {. . . } — Fortran’s if . . . then.
next; — Go to bottom of loop.
repeat {. . . } until(condition); — Execute body. If condition is true, iterate.
return expression; — Return value from function.
switch(expression) {. . . } — Select various cases. (Cases fall through unless termi-

nated by break.)
while(condition) {. . . } — If condition is true, execute body of loop.

Additional Ratfor–90 commands:

contains: — Note the colon.
interface name {. . . } — Used as in Fortran–90, but note the braces.
interface operator(operator) {. . . } — As in Fortran–90.
interface assignment(assignment) {. . . } — As in Fortran–90.
module name {. . . } — As in Fortran–90.
private: — Note the colon.
sequence: — Note the colon.
type name {. . . }; — Note the semicolon.
where(expression) {. . . } — Fortran–90 array operations; may be followed by an

optional else clause.

Caviats and nuances about FWEB Ratfor:
1: Numeric statement labels must be followed by a colon; they should be first on their line.
2: The quoting convention for characters and strings follows that of C: Single-quote single characters,

double-quote strings.
3: In a switch, cases fall through to the next case unless terminated by break (just as in C).
4: The do statement must be terminated by a semicolon if followed by a simple statement. (It’s unnec-

essary if followed by a left brace that begins a compound statement.)
5: Use && and || for the logical AND and OR.
6: Do not use an end statement at the very end of a program unit; it is added automatically when the

closing brace is sensed.

— Code mode and the principal fwebmac typesetting macros — 167

20.12.25 Code mode and the principal fwebmac typesetting macros

The construction |. . .| signifies code mode; it may be used in TEX text (including comments and module
names) to typeset code or identifiers between the bars. When code mode is used, entries are made in the
index. Alternatively, the following macros may be used; these do not make entries in the index:

\Wtypewriter{sample\ id} — Typeset in typewriter type, such as “sample_id”.
\Wshort{x} — Use for single-character identifiers, such as “x”. (Do

not use WEB’s shorthand notation “\|x” for this
purpose, as the bar gets confused with the entry
into code mode.)

\Wid{sample\ id} — Ordinary identifiers, such as “sample id ”.
\Wreserved{sample\ id} — For reserved words, such as “sample id”.
\Wintrinsic{sample\ id} — For intrinsic functions, such as “sample id ”.

In the arguments of the above macros, you must precede the special characters “ \#%$^{}~&_” by a backslash.

For brevity, the above macros are equivalenced to shorter macros, as follows:

Type of argument fwebmac macro Style-file entry Default value
−PT (−PL)

character string \Wtypewriter format.typewriter \.
reserved word \Wreserved format.reserved \&
single-character identifier \Wshort format.short_identifier \|
ordinary identifier \Wid format.identifier \\ (\>)
outer macro \WidD format.outer_macro \\ (\>)
WEB macro \WidM format.WEB_macro \\ (\>)
intrinsic function \Wintrinsic format.intrinsic \@
Fortran keyword \Wkeyword format.keyword \.

[Note that when the LaTEX processor is specified (‘−PL’ option), a few of the defaults are changed for
convenience.]

20.12.26 Escape sequences

FWEB follows ANSI C in recognizing the following escape sequences within strings. (The corresponding
ASCII code is in parentheses.)

\’ (0x27) — Literal apostrophe.
\" (0x22) — Literal quotation mark.
\? (0x3F) — Literal question mark.
\\ (0x5C) — Literal backslash.
\a (0x07) — Alert—ring the bell or print visual alert.
\b (0x08) — Horizontal backspace.
\f (0x0C) — Form feed—force output device to begin a new page.
\n (0x0A) — Newline—move to next line.
\r (0x0D) — Carriage return—move to beginning of line.
\t (0x09) — Horizontal tab—move to next tab mark.
\v (0x0B) — Vertical tab—move to next tab mark.
\NNN — Octal number.
\xNN — Hexadecimal number.

168 — Conventions for FWEAVE’s identifiers —

20.12.27 Conventions for FWEAVE’s identifiers

Following are the interpretation of the various fonts used in the output produced by FWEAVE. Subscripts
mean the number of the section in which the identifier was defined. In the index, underlined section numbers
mean the identifier was defined there.

Automatically-generated entries:
italics — An ordinary identifier such as x or xyz .
mark90 — An identifier explicitly marked with @[.
name91 — A function name such as main defined in section 98.
inner92 — A WEB macro.
outer93 — An outer macro.
boldface — A reserved word such as integer.
newtype95 — A new type created via typedef .
boldfaced italic — An intrinsic function such as sin .
TYPEWRITER — A Fortran keyword such as BLOCKSIZE. (These must be in upper case.)

User-defined entries:
typewriter — @.. . .@>
Roman — @^. . .@>
user-defined — @9. . .@>. For example, to make an index entry in sans serif type say “\def\9#1{{\tenss#}}”.

20.12.28 Special array processing

In Fortran and Ratfor, FTANGLE replaces left and right square brackets (outside of strings) by left
and right parentheses. Thus, brackets can be used for array subscripts if one desires.

When the option ‘−W[’ is used, FWEAVE replaces square brackets by a special TEX macro. To change
the appearance of array indices, redefine the macro \WARRAY. For example, to subscript indices, say “\let
\WARRAY\WSUB”.

20.13 APPENDIX M: CUSTOMIZING via the STYLE FILE

The default name of the style file is fweb.sty; change that with the ‘−z’ command-line option. TEX-like
comments (beginning with ’%’) may be included. An alphabetized list of the vocabulary commands may be
found in the index under “style file, vocabulary”. The command syntax is

keyword [=] value

For example,

LaTeX.options = "eqalign"

The style-file parameters are user-specific. The local style file is intended to be used for changes that
are run-specific. (Contrast that with the initialization file .fweb, which is intended to set the user’s default
environment for all runs.) Style-file parameters that are intended to permanently override FWEB’s defaults
should be put into .fweb by using the ‘+p’ option.

A mechanism is also provided to aid in installation-wide customization done when FWEB is compiled.
This is explained in the separate documentation about installation and in the source file custom.web.

— Customizing FWEAVE’s index — 169

20.13.1 Customizing FWEAVE’s index

index.tex (string) Name of the file into which the index is written. The character ’#’
is translated into the root name of the web file. Default:
"INDEX.tex".

index.preamble (string) TEX commands to start the index. Default: "\\Winx".
index.postamble (string) TEX commands to end the index. Default: "\\Wfin".
index.collate (string) Collating sequence for the index.
group skip (string) TEX commands to insert between letter groups. (A letter group

is all index entries that begin with the same character.) De-
fault: "".

lethead.prefix (string) (Partial) TEX command to begin identifying letter at start of
group. The letter starting the next group is inserted imme-
diately following this string. Default: "".

lethead.suffix (string) (Partial) TEX command to insert after identifying letter. De-
fault: "".

lethead.flag (integer) This controls the kind of letter that is inserted between let−

head_prefix and lethead_suffix. If lethead_flag is 0,
no letter is inserted. If lethead_flag > 0, an uppercase
letter is inserted. If lethead_flag < 0, a lowercase letter is
inserted. Default: 0.

item 0 (string) TEX command to begin an index entry. Default: "\\:".
delim 0 (string) String to insert after the identifier in an index entry. Default:

", ".
delim n (string) String to insert between two module numbers in an index entry.

Default: ", ".
underline.prefix (string) (Partial) TEX command to begin an underlined index entry. De-

fault: "\\[".
underline.suffix (string) (Partial) TEX command to end an underlined index entry. De-

fault: "]".
language.prefix (string) (Partial) TEX command to begin a language reference in the in-

dex. Default: "\\(".
language.suffix (string) (Partial) TEX command to end a language reference. Default:

")".

20.13.2 Customizing FWEAVE’s module list

modules.tex (string) Name of the file into which the module names are written. The
character ’#’ is translated into the root name of the web file.
Default: "MODULES.tex".

modules.preamble (string) TEX commands to begin the list of modules. Default: "\\Wmods".
modules.postamble (string) TEX commands to end the list of modules. Default: "".
modules.info (string) TEX macro name that formats the command line and related

information. Default: "\\Winfo".

170 — Customizing FWEAVE’s table of contents —

20.13.3 Customizing FWEAVE’s table of contents

contents.tex (string) Name of the file into which the table of contents is written. The
character ’#’ is translated into the root name of the web file.
Default: "CONTENTS.tex".

contents.preamble (string) TEX string that begins printing the table of contents. Default:
"\n\\Wcon".

contents.postamble (string) TEX string that ends the table of contents. Default: "".

20.13.4 Customizing cross-reference subscripts

mark defined.generic name (boolean) Identifier explicitly marked by @[. Default: 1.
mark defined.fcn name (boolean) Function name. Default: 0.
mark defined.WEB macro (boolean) WEB macro. Default: 0.
mark defined.outer macro (boolean) Outer macro. Default: 0.
mark defined.exp type (boolean) Identifier explicitly marked by @`. Default: 1.
mark defined.typedef name (boolean) A typedef -like statement in C or C++. Default: 0.

20.13.5 Overriding or completing definitions in fwebmac.sty

format.reserved (string) The macro to use to format reserved words such as integer. De-
fault: "\&".

format.short identifier (string) As above, but for single-character identifiers. Default: "\|".
format.identifier (string) As above, but for ordinary identifiers. Default: "\\".
format.outer macro (string) As above, but for outer macros (defined with ‘@d’). Default:

"\\".
format.WEB macro (string) As above, but for WEB macros (defined with ‘@m’). Default:

"\\".
format.intrinsic (string) As above, but for intrinsic functions such as sin . Default: "\@".
format.keyword (string) As above, but for Fortran keywords such as BLOCKSIZE. De-

fault: "\.".
format.typewriter (string) The macro that generates typewriter type. Default: "\.".
format.wildcard (string) The macro for user-defined entries in the table of contents. De-

fault: "\9".
indent.TeX (string) Paragraph indentation for the TEX part. (Was formerly parindent.)

Default: "1em".
indent.code (string) Paragraph indentation for the code part. (Formerly was same as

indent.TeX.) Default: "1em".
LaTeX.options (string) When running under LaTEX, the document is (effectively) begun

by the command “\documentstyle[options]{style}.” This
string sets the options field. Default: "".

LaTeX.style (string) As above, but sets the style field. Default: "article".

— Miscellaneous customization commands for FWEAVE — 171

20.13.6 Miscellaneous customization commands for FWEAVE

macros (string) The default name of the macro package to be read in. (Over-
ridden by the command-line option ‘−w’.) Default: "fweb-
mac.sty".

limbo (string) TEX material to be printed at the beginning of the limbo section,
just before the text from ‘@l’ commands. Default: "".

meta.TeX.begin (string) TEX macros that initiate the verbatim environment for the ‘@(’ com-
mand. Default: "\\WBM\\Begintt\n".
(TEX) or Default: "\\WBM\\begin{verbatim}\n".
(LaTEX)

meta.TeX.end (string) TEX macros that terminate the verbatim environment for the
‘@(’ command. Default: "\\Endtt\\WEM".
(TEX) or Default: "\\end{verbatim}\\WEM".
(LaTEX).

named preamble (string) TEX macros to be emitted immediately after the start of a named
modules. Default: "".

unnamed preamble (string) TEX macros to be emitted immediately after the start of an un-
named module. Default: "".

172 — Customizations for FTANGLE —

20.13.7 Customizations for FTANGLE

ASCII fcn (string) In Fortran, the command @". . ." is tangled to string(’. . .’)
if string is non-empty. If it is empty, the parentheses are
omitted. Default: "ASCIIstr".

cchar (character) Continuation character for Fortran code output by FTANGLE.
This character must be printable, non-blank, and non-zero.
Default: ’&’.

cdir start.C (string) Insert immediately after ‘@?’ when the language is C. Default:
"#pragma ".

cdir start.Cpp (string) As above, but for C++. Default: "#pragma ".
cdir start.K (string) As above, for MAKE. Default: "".
cdir start.N (string) As above, for Fortran–77. Default: "C".
cdir start.N90 (string) As above, for Fortran–90. Default: "C".
cdir start.R (string) As above, for Ratfor–77. Default: "C".
cdir start.R90 (string) As above, for Ratfor–90. Default: "C".
cdir start.X (string) As above, for TEX. Default: "".
line length.N (integer > 0) Line length for Fortran code output by FTANGLE. Default: 72.
meta.top.l (string) Text that precedes the body of material enclosed by ‘@(’. . . ‘@)’

(meta-comment). (Here l ∈ {C,Cpp,N,N90,R,R90,X}.) De-
fault: "".

meta.prefix.l (string) Each line of the meta-comment is begun by string. Default: "".
meta.bottom.l (string) Like meta.top, but follows the meta-comment. Default: "".
suffix.C (string) Extension for the C output file. Default: "c".
suffix.Cpp (string) As above, for C++. Default: "c++".
suffix.N (string) As above, for Fortran–77. Default: "f".
suffix.N90 (string) As above, for Fortran–90. Default: "".
suffix.R (string) As above, for Ratfor–77. Default: "r".
suffix.R90 (string) As above, for Ratfor–90. Default: "".
suffix.X (string) As above, for TEX. Default: "sty".

20.13.8 Miscellaneous customizations for both FTANGLE and FWEAVE

null file (string) Name of the null file. (Default depends on the operating system.)
dot constant.begin (character) Delimiter that replaces beginning period in Fortran “dot con-

stants” such as ‘.EQ.’. Default: ’.’.
dot constant.end (character) As above, but replaces ending period. Default: ’.’.

— Automatic file-name completion — 173

20.13.9 Automatic file-name completion

ext.web (string) Extensions (space-delimited if more than one) for the web file
(first file name on command line). Default: "web".

ext.change (string) Extensions (space-delimited) for the change file (second file name
on command line). Default: "ch".

ext.hweb (string) Extensions (space-delimited) for an include file (first file name on
an @i line). Default: "hweb".

ext.hchange (string) Extensions (space-delimited) for change files associated with in-
clude files (second file name on an @i line). Default: "hch".

20.13.10 Colors

color.mode (integer) Selects one of several color settings. Default: 0.

color.ordinary (string) Color of otherwise unspecified fields. Default: "default".
color.program (string) Color of program name. Default: "yellow".
color.info (string) Color of information messages. Default: "green".
color.warning (string) Color of warning messages. Default: "default".
color.error (string) Color of error messages. Default: "red".
color.fatal (string) Color of fatal messages. Default: "red".
color.module num (string) Color of module numbers. Default: "orange".
color.line num (string) Color of line numbers. Default: "orange".
color.input file (string) Color of input file names. Default: "yellow".
color.include file (string) Color of include file names. Default: "blue".
color.output file (string) Color of output file names. Default: "yellow".
color.timing (string) Color of the timing information. Default: "default".

color.default (string) Escape sequences for the default color. Default: "me".
color.red (string) As above, for red. Default: "md mr".
color.green (string) As above, for green. Default: "md".
color.blue (string) As above, for blue. Default: "me".
color.orange (string) As above, for orange. Default: "me".
color.yellow (string) As above, for yellow. Default: "md".

174 — Customizing FWEB’s control codes —

20.13.11 Customizing FWEB’s control codes

ascii constant (string) Signify an ASCII constant. Default: "’”".
begin C (string) Switch into C language. Default: "cC".
begin FORTRAN (string) Switch into Fortran language. Default: "nN".
begin meta (string) Start a meta comment. Default: "(".
begin RATFOR (string) Switch into Ratfor language. Default: "rR".
begin code (string) Start the unnamed module. Default: "aA".
big line break (string) A new line with some extra space. Default: "#".
compiler directive (string) Signify a compiler directive. Default: "!".
defd at (string) Explicitly mark as defined. Default: "[".
definition (string) Define an outer macro. Default: "dD".
end meta (string) End a meta comment. Default: ")".
force line (string) Force a new line. Default: "\\".
format (string) Format an identifier or module name. Default: "fF".
explicit reserved (string) Format as reserved (integer-like) word. Default: "‘".
insert bp (string) When breakpointing is turned on, insert an explicit breakpoint

instruction here. Default: "}bB".
invisible cmnt (string) Comment ignored by both processors. Default: "%".
join (string) Join two items together on output. Default: "&".
math break (string) Insert a math break. Default: "|".
module name (string) Begin a module name. Default: "<".
no line break (string) Cancel a line break here. Default: "+".
pseudo colon (string) A pseudo-colon. Default: ":".
pseudo expr (string) A pseudo-expression. Default: "e".
pseudo semi (string) A pseudo-semicolon. Default: ";".
switch math flag (string) Toggle the math flag. Default: "$".
TeX string (string) Insert a TEX string of commands. Default: "tT".
thin space (string) Insert a thin space. Default: ",".
undefinition (string) Undefine an outer macro. Default: "uU".
underline (string) Underline the following entry in the index. Default: " ".
verbatim (string) Send control text verbatim to output. Default: "=".
WEB definition (string) Define an inner or WEB macro. Default: "mM".
xref roman (string) Typeset index entry in Roman type. Default: "^".
xref typewriter (string) Typeset index entry in typewriter type. Default: ".".
xref wildcard (string) Typeset index entry using the macro \9. Default: "9".

— APPENDIX N: MEMORY ALLOCATION — 175

20.14 APPENDIX N: MEMORY ALLOCATION

The command-line option ‘−y’ is used to change the default allocation for a dynamic memory array, as
in ‘−ym4000’. To query the present allocations of variable aa, where aa is the abbreviation in the list below,
just say “−yaa” with no numeric argument. To query everything, say “−y”.

The option ‘−s’ reports memory-usage statistics at the end of the run. The option ‘−sm[n]’ reports
allocations of n or more bytes as they occur. If n is omitted, n = 10000 is assumed.

Here is a brief discussion (not completed yet!) of the dynamic arrays and their abbreviations. (For more
information, please study the code.)

buf size ("bs") — Size of the change buffer.
C buf size ("cb") — Buffer size for single-character buffered output in C.
cmd fmt size ("cf") — Buffer size for certain output messages in Ratfor.
cmd msg size ("cg") — As above.
delta dots ("d") — Number of additional entries to reallocate for the dots array if necessary.
line length ("ll") — Line length for FWEAVE’s output.
longest name ("ln") — Module names or strings shouldn’t be longer than this.
max bytes ("b") — Maximum number of bytes in identifiers, index entries, and module

names.
max dtexts ("dx") — Maximum number of deferred replacement texts.
max dtoks ("dt") — Maximum number of tokens in FTANGLE’s deferred macro pool.
max expr chars ("lx") — Maximum length of expressions for compound assignments.
max lbls ("lb") — Maximum nesting level in Ratfor.
max modules ("m") — Must be larger than the maximum number of modules.
max names ("n") — Maximum number of identifiers, strings, and module names.
max refs ("r") — Maximum number of cross-references.
max scraps ("s") — Maximum number of scraps during FWEAVE’s parsing.
max texts ("x") — Maximum number of replacement texts for FTANGLE.
max toks ("tt") — Maximum number of tokens in FTANGLE’s compressed code.
max toks ("tw") — Maximum number of tokens in current code text being parsed by

FWEAVE.
mbuf size ("mb") — Size of the area into which macros are expanded. This must be large

enough to hold all intermediate levels of expansion as well as the
final result. Furthermore, in some complicated situations, espe-
cially in Ratfor, more than one macro buffer can be open at
once.

num files ("nf") — Number of open files, especially for the @o command.
op entries ("op") — Size of the table that handles overloaded operators. A fixed table

of length 128 is always used to handle operators such as ‘=’. The
quantity op entries must be greater than that amount by the num-
ber of new names that are explicitly overloaded.

sbuf len ("sb") — Length of input line buffer for style file.
stack size ("kt") — FTANGLE’s stack size.
stack size ("kw") — FWEAVE’s stack size.
X buf size ("xb") — Size of TEX’s output buffer.

Thus, for example, to set the maximum number of modules to be 4000, say “−ym4000”.

176 — APPENDIX O: CHARACTER SETS —

20.15 APPENDIX O: CHARACTER SETS

FWEB works internally with the ASCII character set. Users of some IBM machines may need to be
familiar with the EBCDIC character set as well.

20.15.1 The ASCII character set

Here is the ASCII character set, shown in octal, decimal, and hexadecimal. The escape sequences
recognized by C and FWEB are also shown where appropriate. [This table is a minor modification of that
given in the excellent book by the Mark Williams Company, ANSI C: A Lexical Guide (Prentice Hall,
Englewood Cliffs, New Jersey, 1988), p. 66.]

000 0 0x00 NUL 〈ctrl–@〉 Null character
001 1 0x01 SOH 〈ctrl–A〉 Start of header
002 2 0x02 STX 〈ctrl–B〉 Start of text
003 3 0x03 ETX 〈ctrl–C〉 End of text
004 4 0x04 EOT 〈ctrl–D〉 End of transmission
005 5 0x05 ENQ 〈ctrl–E〉 Enquiry
006 6 0x06 ACK 〈ctrl–F〉 Positive acknowledgement
007 7 0x07 BEL 〈ctrl–G〉 Alert (“bell”) (’\a’)
010 8 0x08 BS 〈ctrl–H〉 Backspace (’\b’)
011 9 0x09 HT 〈ctrl–I〉 Horizontal tab (’\t’)
012 10 0x0A LF 〈ctrl–J〉 Line feed (“newline”) (’\n’)
013 11 0x0B VT 〈ctrl–K〉 Vertical tab (’\v’)
014 12 0x0C FF 〈ctrl–L〉 Form feed (’\f’)
015 13 0x0D CR 〈ctrl–M〉 Carriage return (’\r’)
016 14 0x0E SO 〈ctrl–N〉 Shift out
017 15 0x0F SI 〈ctrl–O〉 Shift in
020 16 0x10 DLE 〈ctrl–P〉 Data link escape
021 17 0x11 DC1 〈ctrl–Q〉 Device control 1 (XON)
022 18 0x12 DC2 〈ctrl–R〉 Device control 2 (tape on)
023 19 0x13 DC3 〈ctrl–S〉 Device control 3 (XOFF)
024 20 0x14 DC4 〈ctrl–T〉 Device control 4 (tape off)
025 21 0x15 NAK 〈ctrl–U〉 Negative acknowledgement
026 22 0x16 SYN 〈ctrl–V〉 Synchronize
027 23 0x17 ETB 〈ctrl–W〉 End of transmission block
030 24 0x18 CAN 〈ctrl–X〉 Cancel
031 25 0x19 EM 〈ctrl–Y〉 End of medium
032 26 0x1A SUB 〈ctrl–Z〉 Substitute
033 27 0x1B ESC 〈ctrl–[〉 Escape
034 28 0x1C FS 〈ctrl–\〉 Form separator
035 29 0x1D GS 〈ctrl–]〉 Group separator
036 30 0x1E RS 〈ctrl–^〉 Record separator
037 31 0x1F US 〈ctrl– 〉 Unit separator

— The ASCII character set — 177

040 32 0x20 Space
041 33 0x21 ! Exclamation point
042 34 0x22 " Quotation mark (’\"’)
043 35 0x23 # Pound (sharp) sign
044 36 0x24 $ Dollar sign
045 37 0x25 % Percent sign
046 38 0x26 & Ampersand
047 39 0x27 ’ Apostrophe (right quote) (’\’’)
050 40 0x28 (Left parenthesis
051 41 0x29) Right parenthesis
052 42 0x2A * Asterisk
053 43 0x2B + Plus sign
054 44 0x2C , Comma
055 45 0x2D - Hyphen (minus sign)
056 46 0x2E . Period
057 47 0x2F / Virgule (slash)
060 48 0x30 0
061 49 0x31 1
062 50 0x32 2
063 51 0x33 3
064 52 0x34 4
065 53 0x35 5
066 54 0x36 6
067 55 0x37 7
070 56 0x38 8
071 57 0x39 9
072 58 0x3A : Colon
073 59 0x3B ; Semicolon
074 60 0x3C < Less-than (left angle bracket)
075 61 0x3D = Equal sign
076 62 0x3E > Greater-than (right angle bracket)
077 63 0x3F ? Question mark (’\?’)

178 — The ASCII character set —

0100 64 0x40 @ At sign
0101 65 0x41 A
0102 66 0x42 B
0103 67 0x43 C
0104 68 0x44 D
0105 69 0x45 E
0106 70 0x46 F
0107 71 0x47 G
0110 72 0x48 H
0111 73 0x49 I
0112 74 0x4A J
0113 75 0x4B K
0114 76 0x4C L
0115 77 0x4D M
0116 78 0x4E N
0117 79 0x4F O
0120 80 0x50 P
0121 81 0x51 Q
0122 82 0x52 R
0123 83 0x53 S
0124 84 0x54 T
0125 85 0x55 U
0126 86 0x56 V
0127 87 0x57 W
0130 88 0x58 X
0131 89 0x59 Y
0132 90 0x5A Z
0133 91 0x5B [Left bracket
0134 92 0x5C \ Backslash (’\\’)
0135 93 0x5D] Right bracket
0136 94 0x5E ^ Circumflex
0137 95 0x5F Underscore

— The ASCII character set — 179

0140 96 0x60 ` Grave (left quote)
0141 97 0x61 a
0142 98 0x62 b
0143 99 0x63 c
0144 100 0x64 d
0145 101 0x65 e
0146 102 0x66 f
0147 103 0x67 g
0150 104 0x68 h
0151 105 0x69 i
0152 106 0x6A j
0153 107 0x6B k
0154 108 0x6C l
0155 109 0x6D m
0156 110 0x6E n
0157 111 0x6F o
0160 112 0x70 p
0161 113 0x71 q
0162 114 0x72 r
0163 115 0x73 s
0164 116 0x74 t
0165 117 0x75 u
0166 118 0x76 v
0167 119 0x77 w
0170 120 0x78 x
0171 121 0x79 y
0172 122 0x7A z
0173 123 0x7B { Left brace
0174 124 0x7C | Vertical bar
0175 125 0x7D } Right brace
0176 126 0x7E ∼ Tilde
0177 127 0x7F DEL Delete

180 — The ASCII character set —

20.15.2 The EBCDIC character set

This will be completed someday.

20.16 APPENDIX P: INDEX

The page numbers in the index for this manual can appear in a variety of fonts. These have the following
meaning:

Roman — The keyword or phrase is mentioned here.
Roman — Definition of concept or keyword.
boldfaced — Reference to an entire topic.
italics — An example is given.

— FWEB USER’S MANUAL —

Version 1.30
June 15, 1993

Page

1. INTRODUCTION . 8
1.1 Previous authors, and the structure of this manual . 8
1.2 The origins of FWEB. 9
1.3 Why is this *!@%*#@! manual so large? . 10

2. The PHILOSOPHY of WEB . 11
2.1 The purpose of the processors . 11
2.2 Top-down programming and structured design . 11
2.3 Knuth’s original description of WEB . 12
2.4 How to use WEB . 13
2.5 History and design influences (Knuth) . 14

3. SIMPLE EXAMPLES . 15
3.1 A simple C program organized with FWEB . 15
3.2 Converting a Fortran program to WEB . 18

4. GENERAL RULES . 21
4.1 Text . 22
4.2 Modules . 22
4.3 Beginning a module . 23
4.4 The definition part . 23
4.5 The code part . 24
4.6 How TANGLE makes compilable programs out of modules. 24
4.7 How WEAVE makes a TEX file containing documention. 25
4.8 Starred (major) modules . 25
4.9 Code mode . 26
4.10 Fortran demo program . 27
4.11 Modules versus functions . 30

4.11.1 When to use named modules . 30
4.11.2 Self-documentation and cross-referencing for named modules and identifiers. 30
4.11.3 WEB programming and UNIX . 31

5. The PHASES of WEB . 31
5.1 Phase 1 . 32
5.2 Phase 2 . 32
5.3 Phase 3 . 33

6. LANGUAGES . 33
6.1 Selecting a language . 33

6.1.1 Language abbreviations . 33
6.1.2 Global language . 33
6.1.3 Changing languages within modules . 34

6.2 Demo program with two languages . 35

— Table of contents — 2

6.3 Language commands in the definition part . 37
6.4 Optional arguments to language commands . 37

7. MACROS . 38
7.1 WEB macros . 39

7.1.1 Object-like macros. 39
7.1.2 Function-like macros . 39
7.1.3 Extensions to WEB macro syntax . 40
7.1.4 Stringizing. 40
7.1.5 Making single- and double-quoted strings . 41
7.1.6 Token pasting . 41
7.1.7 Macro expansion . 41
7.1.8 Including a comma in a macro argument . 43
7.1.9 Concatenating strings . 43
7.1.10 Quoting macros . 43
7.1.11 Passing quoted strings unchanged through stringize . 44
7.1.12 Automatic statement numbering . 44
7.1.13 Preventing macro expansion . 45
7.1.14 Module names in macro definitions . 45
7.1.15 Macros with variable numbers of arguments. 46
7.1.16 Debugging macros . 47

7.2 Outer macros . 47
7.3 Deferred macros . 48
7.4 Language dependence of macros . 49
7.5 Preprocessing . 51
7.6 Expression evaluation . 52
7.7 Built-in macro functions . 53

7.7.1 EVAL . 54
7.7.2 DEFINE, M, IFDEF, IFNDEF, UNDEF . 54
7.7.3 DO . 54
7.7.4 INCR, DECR . 55
7.7.5 IF . 55
7.7.6 ABS, MAX, MIN . 55
7.7.7 IFCASE . 55
7.7.8 IFELSE . 55
7.7.9 LEN . 55
7.7.10 POW . 55
7.7.11 TRANSLIT . 56
7.7.12 A . 56
7.7.13 STRING . 56
7.7.14 UNQUOTE, P . 56
7.7.15 L, U . 57
7.7.16 COMMENT . 57
7.7.17 ASSERT . 58
7.7.18 ERROR . 58
7.7.19 DUMPDEF . 58
7.7.20 LANGUAGE, LANGUAGE NUM. 58
7.7.21 STUB . 59
7.7.22 GETENV, HOME . 59
7.7.23 VERSION . 59
7.7.24 MODULE NAME, SECTION NUM . 59

3 — Table of contents —

7.7.25 MODULES, SECTIONS. 59
7.7.26 DATE, DAY, TIME . 59

8. OVERLOADING OPERATORS and IDENTIFIERS . 60
8.1 OVERLOADING OPERATORS . 60
8.2 OVERLOADING IDENTIFIERS . 61

9. RATFOR . 61
9.1 Ratfor–77 commands . 64

9.1.1 if. 64
9.1.2 while . 65
9.1.3 for . 65
9.1.4 repeat—until. 65
9.1.5 do. 66
9.1.6 break, next . 66
9.1.7 switch. 66

9.2 Ratfor–90 commands . 68
9.2.1 module. 68
9.2.2 type. 68
9.2.3 interface . 69
9.2.4 where . 69
9.2.5 contains, private, sequence . 69

9.3 Additional features of Ratfor. 69
9.3.1 Ratfor’s automatic comments . 70
9.3.2 Automatic insertion material. 70
9.3.3 Semicolons . 70
9.3.4 FWEB sans Ratfor . 71

10. ADDITIONAL LANGUAGES . 71
10.1 TEX mode . 71
10.2 MAKE mode . 72

11. CONTROL CODES . 72
11.1 @@ (the character ’@’). 73
11.2 @| (literal vertical bar [TEX text]) . 73
11.3 @ (begin unstarred module) . 73
11.4 @* (begin a starred module). 73
11.5 @A (begin code part of unnamed module). 73
11.6 @a (begin code part of unnamed module; mark first non-reserved word) 74
11.7 @b (insert breakpoint command) . 74
11.8 @c (set language to C) . 74
11.9 @c++ (set language to C++) . 74
11.10 @D (define outer macro) . 74
11.11 @d (define outer macro; mark macro name defined) . 74
11.12 @f (format identifier). 74
11.13 @i (include a file) . 75
11.14 @I (optionally include a file) . 75
11.15 @L (set language). 75
11.16 @l (specify limbo text) . 76

— Table of contents — 4

11.17 @M (define a WEB macro) . 76
11.18 @m (define a WEB macro; mark macro name defined) . 76
11.19 @n (set language to Fortran). 76
11.20 @O (open new output file with global scope) . 76
11.21 @o (open new output file with local scope) . 77
11.22 @r (set language to Ratfor) . 77
11.23 @u (undefine an outer macro) . 77
11.24 @v (overload an operator) . 77
11.25 @W (overload an identifier) . 77
11.26 @x (terminate commentary section; begin old material in change file). 77
11.27 @y (terminate old material in change file) . 78
11.28 @z (begin commentary section; end changed material). 78
11.29 @’ (convert character to ASCII integer) . 78
11.30 @" (convert string to ASCII) . 78
11.31 @[(mark next identifier as defined here) . 78
11.32 @] (shift out of code mode) . 78
11.33 @‘ (reserved) . 79
11.34 @< (begin a module name) . 79
11.35 @/* (begin long verbatim comment) . 79
11.36 @// (begin short verbatim comment) . 79
11.37 @% (ignorable comment) . 79
11.38 @? (compiler directive) . 80
11.39 @! (compiler directive) . 80
11.40 @((begin meta-comment) . 80
11.41 @) (end meta-comment) . 80
11.42 @{ (suppress breakpoint comment) . 80
11.43 @& (join two items) . 81
11.44 @^ (index entry in Roman type). 81
11.45 @. (index entry in typewriter type) . 81
11.46 @9 (user-defined index entry). 81
11.47 @t (format control text) . 81
11.48 @= (verbatim control text) . 81
11.49 @ (underline index entry). 82
11.50 @- (delete index entry) . 82
11.51 @, (insert a thin space) . 82
11.52 @/ (line break) . 82
11.53 @| (optional line break in expression [code text]) . 82
11.54 @# (line break plus white space) . 82
11.55 @+ (cancel line break) . 83
11.56 @; (pseudo-semicolon). 83
11.57 @e (pseudo-expression) . 83
11.58 @: (pseudo-colon) . 84

5 — Table of contents —

12. ADDITIONAL FEATURES and CAVEATS . 84
12.1 Extended character sets . 84
12.2 It’s best to use ASCII characters . 84
12.3 Numerical constants . 84
12.4 Special assignment and increment operators . 85
12.5 Strings . 85
12.6 Breaking long strings . 86
12.7 Breaking TEX output lines. 86
12.8 Comments . 86
12.9 Translation of code text . 86
12.10 Code within vertical bars . 87
12.11 Braces in comments . 87
12.12 Reserved words. 88
12.13 Fortran keywords . 88
12.14 Formatting identifiers . 88
12.15 Formatting module names . 88
12.16 New reserved words . 88
12.17 Special array formatting . 88
12.18 Forward references to identifiers . 90
12.19 Spacing and macros . 94
12.20 M4 built-in commands. 94
12.21 More general spacing . 94
12.22 Change file . 94

13. INPUT . 95
13.1 Fortran–77 input . 96
13.2 Fortran–90 input . 99
13.3 Ratfor input . 99
13.4 C and C++ input . 99

14. COMMAND-LINE OPTIONS . 100
14.1 Options to language commands . 100
14.2 List of options . 101
14.3 Initialization file (.fweb or fweb.ini) . 107

15. ADVANCED FEATURES. 107
15.1 Input and output redirection . 107
15.2 Customizing FWEB: The style file fweb.sty . 108

15.2.1 Customizing the index, etc. 109
15.2.2 Automatic file name completion . 110
15.2.3 Custom colors . 110
15.2.4 Customizing control codes . 111

15.3 Dynamic memory allocation . 111
15.4 Debugging . 112

16. USAGE TIPS and SUGGESTIONS . 113

— Table of contents — 6

16.1 Converting an existing code to FWEB. 113
16.2 Programming tips and other suggestions . 114

17. PRESENT STATUS and the FUTURE . 115

18. ACKNOWLEDGEMENTS . 116

19. REFERENCES . 116

20. APPENDICES . 117
20.1 APPENDIX A: A SIMPLE DEMO PROGRAM: f to web.web 118
20.2 APPENDIX B: WOVEN OUTPUT f to web.tex . 120
20.3 APPENDIX C: The FINISHED PRODUCT f to web . 122
20.4 APPENDIX D: TANGLED OUTPUT f to web.f . 124
20.5 APPENDIX E: EXAMPLE of C++ and Ratfor--90 CODE . 126
20.6 APPENDIX F: The FWEBMAC MACROS . 129
20.7 APPENDIX G: HOW TO USE FWEB MACROS. 129

20.7.1 Additional fonts . 130
20.7.2 Typesetting comments . 130
20.7.3 Typesetting identifiers . 130
20.7.4 Typewriter type. 131
20.7.5 Page dimensions . 131
20.7.6 Page heads . 131
20.7.7 Shifting pages left or right . 131
20.7.8 Page title . 131
20.7.9 Page numbering . 132
20.7.10 Paragraph breaks. 132
20.7.11 Magnifying the output . 132
20.7.12 Table of contents . 132
20.7.13 Customizing the table of contents . 132
20.7.14 Date and time . 132
20.7.15 Subdividing output . 133
20.7.16 Special index entries . 133
20.7.17 Module number . 134
20.7.18 Symbolic names of modules . 134
20.7.19 Listing modules that have been changed. 134
20.7.20 Loading the macro package . 134
20.7.21 Redefined macros. 134
20.7.22 Using FWEB with LaTEX. 135

20.8 APPENDIX H: SUMMARY of EXTENSIONS or CHANGES FROM CWEB 135
20.9 APPENDIX I: FWEB Q and A . 136
20.10 APPENDIX J: ERROR MESSAGES . 137

20.10.1 Messages common to both FTANGLE and FWEAVE . 137
20.10.2 General messages from FTANGLE . 138
20.10.3 Errors related to preprocessing and macro processing . 140
20.10.4 Ratfor errors . 143
20.10.5 General messages from FWEAVE . 144

20.11 APPENDIX K: GETTING WEB ONTO a NEW COMPUTER 146
20.12 APPENDIX L: SYNTAX SUMMARY . 148

20.12.1 The FWEB processors . 148
20.12.2 Files. 149

7 — Table of contents —

20.12.3 Environment variables . 150
20.12.4 Order of initial operations . 150
20.12.5 Command-line syntax. 151
20.12.6 Command-line options a–q . 152
20.12.7 Command-line options r–z . 153
20.12.8 Command-line options (miscellaneous) . 154
20.12.9 Modules . 154
20.12.10 The simplest WEB sources . 155
20.12.11 Control codes allowed in WEB files . 156
20.12.12 Control codes allowed in WEB files, cont’d . 157
20.12.13 Control codes allowed in WEB files, cont’d . 158
20.12.14 Special format for language changes . 158
20.12.15 Control codes allowed in change files. 159
20.12.16 The null change file. 159
20.12.17 Commenting modes . 160
20.12.18 Alternatives for ‘dot’ commands in Fortran and Ratfor . 160
20.12.19 Considerations about formatting . 161
20.12.20 Macro commands . 162
20.12.21 Preprocessor commands. 163
20.12.22 Built-in FWEB macros (A–K) . 164
20.12.23 Built-in FWEB macros (L–Z). 165
20.12.24 Ratfor commands . 166
20.12.25 Code mode and the principal fwebmac typesetting macros . 167
20.12.26 Escape sequences. 167
20.12.27 Conventions for FWEAVE’s identifiers. 168
20.12.28 Special array processing . 168

20.13 APPENDIX M: CUSTOMIZING via the STYLE FILE . 168
20.13.1 Customizing FWEAVE’s index . 169
20.13.2 Customizing FWEAVE’s module list . 169
20.13.3 Customizing FWEAVE’s table of contents . 170
20.13.4 Customizing cross-reference subscripts . 170
20.13.5 Overriding or completing definitions in fwebmac.sty. 170
20.13.6 Miscellaneous customization commands for FWEAVE . 171
20.13.7 Customizations for FTANGLE . 172
20.13.8 Miscellaneous customizations for both FTANGLE and FWEAVE. 172
20.13.9 Automatic file-name completion. 173
20.13.10 Colors . 173
20.13.11 Customizing FWEB’s control codes. 174

20.14 APPENDIX N: MEMORY ALLOCATION . 175
20.15 APPENDIX O: CHARACTER SETS . 176

20.15.1 The ASCII character set . 176
20.15.2 The EBCDIC character set . 180

20.16 APPENDIX P: INDEX . 180

