
Literate-Programming Can Be Simple and

Extensible

Norman Ramsey
Department of Computer Science, Princeton University

35 Olden Street, Princeton, New Jersey 08544

October 1993

Abstract

When it was introduced, literate programming meant WEB. Desire
to use WEB with languages other than Pascal led to the implementation
of many versions. WEB is complex, and the difficulty of using WEB cre-
ates an artificial barrier to experimentation with literate programming.
noweb provides much of the functionality of WEB, with a fraction of the
complexity. noweb is independent of the target programming language,
and its formatter-dependent part is less than 40 lines. noweb is extensi-
ble, because it uses two representations of programs: one easily edited
by authors and one easily manipulated by tools.

This paper explains how to use the noweb tools and gives examples
of their use. It sketches the implementation of the tools and describes
how new tools are added to the set. Because WEB and noweb overlap,
but each does some things that the other cannot, this paper enumerates
the differences.

Key words: literate programming, readability, programming environments

Introduction

When literate programming was introduced, it was synonymous with WEB, a
tool for writing literate Pascal programs [6, Chapter 4]. The idea attracted
attention; several examples of literate programs were published, and a spe-
cial forum was created to discuss literate programming [1, 2, 6, 13]. WEB
was adapted to programming languages other than Pascal [3, 7, 8, 10, 12].
With experience, many WEB users became dissatisfied [9]. Some found WEB

1

not worth the trouble, as did one author of the program appearing in Ap-
pendix C of Reference 11. Others built their own systems for literate pro-
gramming. The literate-programming forum was dropped, on the grounds
that literate programming had become the province of those who could build
their own tools [14].

WEB programmers interleave source code and descriptive text in a sin-
gle document. When using WEB, a programmer divides the source code into
modules. Each module has a documentation part and a code part, and mod-
ules may be written in any order. The programmer is encouraged to choose
an order that helps explain the program. The code parts are like macro
definitions; they have names, and they contain both code and references to
other modules. A WEB file represents a single program; TANGLE extracts that
program from the WEB source. One special module has a code part with
no name, and TANGLE expands the code part of that module to extract the
program. WEAVE converts WEB source to TEX input, from which TEX can
produce high-quality typeset documentation of the program.

WEB is a complex tool. In addition to enabling programmers to present
pieces of a program in any order, it expands three kinds of macros, pret-
typrints code, evaluates some constant expressions, provides an integer rep-
resentation for string literals, and implements a simple form of version
control. The manual for the original version documents 27 “control se-
quences” [5]. The versions for languages other than Pascal offer slightly
different functions and different sets of control sequences. Significant effort
is required to make WEB usable with a new programming language, even
when using a tool designed for that purpose [8].

WEB’s shortcomings make it difficult to explore the idea of literate pro-
gramming; too much effort is required to master the tool. I designed a
new tool that is both simple and independent of the target programming
language. noweb is designed around one idea: writing named chunks of
code in any order, with interleaved documentation. Like WEB, and like all
literate-programming tools, it can be used to write a program in pieces and
to present those pieces in an order that helps explain the program. noweb’s
value lies in its simplicity, which shows that the idea of literate programming
does not require the complexity of WEB.

2

notangle foo.nw > foo.c

noweave foo.nw > foo.tex

foo.nw

�
�
��

foo.c

A
A
AU

foo.tex -tex foo
foo.dvi -dvi foo

Typeset documentation for foo

-cc -c foo.c
foo.o -ld foo.o . . .

Executable a.out

Figure 1: Using noweb to build code and documentation

noweb

A noweb file contains program source code interleaved with documentation.
When notangle is given a noweb file, it writes the program on standard
output. When noweave is given a noweb file, it reads the noweb source
and produces, on standard output, TEX source for typeset documentation.
Figure 1 shows how to use notangle and noweave to produce code and
documentation for a C program contained in the noweb file foo.nw.

A noweb file is a sequence of chunks, which may appear in any order. A
chunk may contain code or documentation. Documentation chunks begin
with a line that starts with an at sign (@) followed by a space or newline.
They have no names. Code chunks begin with

<<chunk name>>=

on a line by itself. The double left angle bracket (<<) must be in the first
column. Chunks are terminated by the beginning of another chunk, or by
end of file. If the first line in the file does not mark the beginning of a chunk,
it is assumed to be the first line of a documentation chunk.

Documentation chunks contain text that is ignored by notangle and
copied verbatim to standard output by noweave (except for quoted code).
noweave can work with LaTEX, or it can use a TEX macro package, supplied
with noweb, that defines commands like \chapter and \section.

Code chunks contain program source code and references to other code
chunks. Several code chunks may have the same name; notangle concate-

3

nates their definitions to produce a single chunk, just as TANGLE does. Code
chunk definitions are like macro definitions; notangle extracts a program
by expanding one chunk (by default the chunk named <<*>>). The defini-
tion of that chunk contains references to other chunks, which are themselves
expanded, and so on. notangle’s output is readable; it preserves the inden-
tation of expanded chunks with respect to the chunks in which they appear.

Code may be quoted within documentation chunks by placing double
square brackets around it ([[...]]). These double square brackets are
ignored by notangle, but they are used by noweave to give code special
typographic treatment.

If double left and right angle brackets are not paired, they are treated
as literal “<<” and “>>”. Users can force any such brackets, even paired
brackets, to be treated as literal by preceding the brackets by an at sign
(e.g. “@<<”).

Figure 2 shows a fragment of a noweb program that computes prime
numbers. The program is derived from the example used in Reference 6,
Chapter 4, and Figure 2 should be compared with Figure 2b of that paper.
Figure 3 shows the program after processing by noweave and LaTEX. Figure 4
shows the beginning of the program as extracted by notangle. A complete
example program accompanies this paper.

Using noweb

Experimenting with noweb is easy. noweb has little syntax: definition and
use of code chunks, marking of documentation chunks, quoting of code, and
quoting of brackets. noweb can be used with any programming language,
and its manual fits on two pages.

On a large project, it is essential that compilers and other tools be
able to refer to locations in the noweb source, even though they work with
notangle’s output [9]. Giving notangle the -L option makes it emit prag-
mas that inform compilers of the placement of lines in the noweb source. It
also preserves the columns in which tokens appear. If notangle is not given
the -L option, it respects the indentation of its input, making its output
easy to read. Large programs may also benefit from cross-reference infor-
mation. If given the -x option, noweave uses LaTEX to show on what pages
each chunk is defined and used.

WEB files map one to one with to both programs and documents. The
mapping of noweb files to programs is many to many; the mapping of files

4

@ This program has no input, because we want to keep it
simple. The result of the program will be to produce a
list of the first thousand prime numbers, and this list
will appear on the [[output]] file.

Since there is no input, we declare the value [[m = 1000]]
as a compile-time constant. The program itself is capable
of generating the first [[m]] prime numbers for any
positive [[m]], as long as the computer’s finite
limitations are not exceeded.
<<program to print the first thousand prime numbers>>=
program print_primes(output);

const m = 1000;
<<other constants of the program>>

var <<variables of the program>>
begin <<print the first [[m]] prime numbers>>
end.

Figure 2: Sample noweb input, from prime number program

5

This program has no input, because we want to keep it simple.
The result of the program will be to produce a list of the first
thousand prime numbers, and this list will appear on the output
file.

Since there is no input, we declare the value m = 1000 as a
compile-time constant. The program itself is capable of gen-
erating the first m prime numbers for any positive m, as long as
the computer’s finite limitations are not exceeded.

〈program to print the first thousand prime numbers〉≡
program print_primes(output);
const m = 1000;

〈other constants of the program〉
var 〈variables of the program〉

begin 〈print the first m prime numbers〉
end.

Figure 3: Output produced by noweave and LaTEX from Figure 2

program print_primes(output);
const m = 1000;

rr = 50;
cc = 4;
ww = 10;
ord_max = 30; { p_ord_max squared must exceed p_m }

var p: array [1..m] of integer;
{ the first m prime numbers, in increasing order }

page_number: integer;
...

Figure 4: Part of primes program as written by notangle

6

to documents is many to one. Source files are combined by listing their
names on notangle’s or noweave’s command line. Many programs may be
extracted from one source by specifying the names of different root chunks,
using notangle’s -R command-line option.

The simplest example of a one-to-many mapping of programs is that of
putting C header and program in a single noweb file. The header comes from
the root chunk 〈header〉, and the program from the default root chunk, 〈* 〉.
The following rules for make automate the process:1

foo.c: foo.nw
notangle -L foo.nw > foo.c

foo.h: foo.nw
notangle -Rheader foo.nw > xfoo.h
-cmp -s xfoo.h foo.h || cp xfoo.h foo.h

A more interesting example is using noweb to interleave different languages
in one source file. I wrote an awk script that read a machine description and
emitted a disassembler for that machine, and I used noweb to combine the
script and description in a single file, so I could place each part of the input
next to the code that processed that input. The machine description was in
the root chunk 〈opcodes table〉, and the awk script in the default root chunk.
The processing steps were:

notangle opcodes.nw > opcodes.awk
notangle -R’opcode table’ opcodes.nw |
awk -f opcodes.awk > disassem.sml

Many-to-one mapping of source to program can be used to obtain effects
similar to those of Ada or Modula-3 generics. Figure 5 shows generic C
code that supports lists. The code can be “instantiated” by combining it
with another noweb file. pair_list.nw, shown in Figure 6, specifies lists of
integer pairs. The two are combined by applying notangle to them both:

notangle pair_list.nw generic_list.nw > pair_list.c

noweb has no parameter mechanism, so the “generic” code must refer to a
fixed set of symbols, and it cannot be checked for errors except by compiling
pair_list.c. These restrictions make noweb a poor approximation to real
generics, but useful nevertheless.

1Using cmp avoids touching the header file when its contents haven’t changed. This
trick is explained on pages 265–266 of Reference 4.

7

This list code supports circularly-linked lists represented by a pointer to
the last element. It is intended to be combined with other noweb code that
defines 〈fields of a list element〉 (the fields found in an element of a list) and
that uses 〈list declarations〉 and 〈list definitions〉.

〈list declarations〉≡
typedef struct list {

〈fields of a list element〉
struct list *_link;

} *List;

extern List singleton(void); /* singleton list, uninitialized fields */
extern List append(List, List); /* destructively append two lists */
#define last(l) (l)
#define head(l) ((l) ? (l)->next : 0)
#define forlist(p,l) for (p=head(l); p; p=(p==last(l) ? 0 : p->next))

〈list definitions〉≡
List append (List left, List right) {

List temp;
if (left == 0) return right;
if (right == 0) return left;
temp = left->_link; left->_link = right->_link; right->_link = temp;
return right;

}

...

Figure 5: Generic code for implementing lists in C

8

〈* 〉≡
〈list declarations〉
〈list definitions〉

〈fields of a list element〉≡
int x;
int y;

Figure 6: Program to instantiate lists of integer pairs

I have used noweb for small programs written in various languages, in-
cluding C, Icon, awk, and Modula-3. Larger projects have included a code
generator for Standard ML of New Jersey (written in Standard ML) and
a multi-architecture debugger, written in Modula-3, C, and assembly lan-
guage. A colleague used noweb to write an experimental file system in C++.
The sizes of these programs are

Program Documentation lines Total lines
markup and nt 400 1,200
ML code generator 900 2,600
Debugger 1,400 11,000
File system 4,400 27,000

Representation of noweb files

The noweb syntax is easy to read, write, and edit, but it is not easily manipu-
lated by programs. To make it easy to extend noweb, I have written markup,
which converts noweb source to a representation that is easily manipulated
by commonly used Unix tools like sed and awk. In this representation, every
line begins with @ and a key word. The possibilities are:

9

@begin kind n Start a chunk
@end kind n End a chunk
@text string string appeared in a chunk
@nl A newline
@defn name The code chunk named name is being defined
@use name A reference to code chunk named name
@quote Start of quoted code in a documentation chunk
@endquote End of quoted code in a documentation chunk
@file filename Name of the file from which the chunks came
@index defn ident The current chunk contains a definition of ident
@index use ident The current chunk contains a use of ident
@index nl ident A newline that is part of markup, not part of the chunk
@literal text noweave copies text to output

markup numbers each chunk, starting at 0. It also recognizes and undoes
the escape sequence for double brackets, e.g. converting “@<<” to “<<”.
markup’s output represents a sequence of files. Each file is represented by a
“@file filename” line, followed by a sequence of chunks.

The representation of a documentation chunk is

@begin docs n where n is the chunk number.
docline repeated an arbitrary number of times.
@end docs n

where docline may be @text, @nl, @quote, @endquote, or @index. Every
@nl corresponds to a newline in the original file. markup guarantees that
quotes are balanced and not nested.

The representation of a code chunk is

@begin code n where n is the chunk number.
@defn name name of this chunk.
@nl The newline following <<name>>= in the original file
codeline repeated an arbitrary number of times.
@end code n

where codeline may be @text, @nl, @use, or @index.
The noweb tools are implemented by piping the output of markup to

other programs. notangle is a Unix shell script that builds a pipeline be-
tween markup and nt, which reads and expands definitions of code chunks.
noweave pipes the output of markup to a 24-line awk script that inserts
appropriate TEX or LaTEX formatting commands.

10

Having a format easily read by programs makes noweb extensible; one
can manipulate literate programs using Unix shell scripts and filters. To be
able to share programs with colleagues who don’t enjoy literate program-
ming, I modified notangle by adding to its pipeline a stage that places
each line of documentation in a comment and moves it to the succeeding
code chunk. The resulting script, nountangle, transforms a literate pro-
gram into a traditional commented program, without loss of information
and with only a modest penalty in readability. Figure 7 shows the results
of applying nountangle to the prime-number program shown in Figure 2.
noweave’s cross-reference generation is also implemented as an extension;
the output of markup is piped through an awk script that uses @literal to
insert LaTEX cross-reference commands. Another simple tool finds all the
roots in a noweb file, making it easy to find definitions where chunk names
have been misspelled.

Comparing WEB and noweb

Unlike WEB, noweb is independent of the target programming language. WEB
tools can be generated for many programming languages, but those lan-
guages must be lexically similar to C. For example, WEB can’t handle the
awk regular-expression notation “/. . . /”; every such expression must quoted
using WEB’s “verbatim” control sequence. The effort required to generate
WEB tools is significant; the prospective user must write a specification of
several hundred lines.

Being independent of the target programming language makes noweb
simpler, but it also means that noweb can do less. Most of the differences
between WEB and noweb arise because WEB has language-dependent features
that are not present in noweb. These features include prettyprinting, type-
setting comments using TEX, generating an index of identifiers, expanding
macros, evaluating constant expressions, and converting string literals to
indices into a “string pool.” Among these features, noweb users are most
likely to miss prettyprinting and the index of identifiers.

Some differences arise because WEB and noweb implement similar features
differently. WEB’s original TANGLE removed white space and folded lines to fill
each line with tokens, making its output unreadable [6, Chapter 4, Figure 3].
Later adaptations preserved line breaks but removed other white space.
By default, notangle preserves whitespace and maintains indentation when

11

{ This program has no input, because we want to keep it }
{ simple. The result of the program will be to produce a }
{ list of the first thousand prime numbers, and this list }
{ will appear on the [[output]] file. }

...

{ <program to print the first thousand prime numbers>= }
program print_primes(output);

const m = 1000;
{ \section-The output phase- }
{ }
{ <other constants of the program>= }
rr = 50;
cc = 4;
ww = 10;
{ <other constants of the program>= }
ord_max = 30; { p_ord_max squared must exceed p_m }

var { How should table [[p]] be represented? Two possibilities }
{ suggest themselves: We could construct a sufficiently }

...

Figure 7: Output produced by nountangle from Figure 2

12

expanding chunks. It can therefore be used with languages like Miranda and
Haskell, in which indentation is significant. TANGLE cannot.

WEB’s WEAVE assigns a number to each chunk, and its cross-reference
information refers to chunk numbers, not page numbers. noweb uses LaTEX
to emit cross-reference information that refers to page numbers. Anyone
who has read a large literate program will appreciate the difference.

WEB works poorly with LaTEX; LaTEX constructs cannot be used in WEB
source, and getting WEAVE output to work in LaTEX documents requires te-
dious adjustments by hand. noweb works with both plain TEX and LaTEX.
Both WEAVE and noweave depend on the text formatter in two ways: the
source of the program itself, and the supporting macros. WEAVE’s source
(written using WEB for C) is several thousand lines long, and the formatting
code is not isolated. noweave’s source is a 57-line shell script, and only 31 of
those lines have to do with formatting. Both WEAVE and noweave use about
200 lines of supporting macros for plain TEX. noweb uses another 80 lines to
support LaTEX, most of which is used to eliminate duplicate page numbers
in cross-reference lists.

noweb has two features that weren’t in the original WEB, but that ap-
peared in some of WEB’s later adaptations. They are the ability to inform
the compiler of the original locations of source lines and the ability to extract
more than one program from a single source file.

Reviewers have had many expectations of literate-programming tools [13,
14]. The most important is verisimilitude: a single input should produce
both compilable program and publishable document, warranting the correct-
ness of the document. Others include flexible order of elaboration, ability
to develop program and documentation concurrently in one place, cross-
references, and indexing. WEB satisfies all these expectations, and noweb
satisfies all but one (it does not provide automatic indexing).

Discussion

WEB takes the monolithic approach to literate programming—it does every-
thing. noweb’s approach is to compose simple tools that manipulate files
in the noweb format. Existing Unix tools provide some of the WEB features
that aren’t found in noweb. Unix supplies two macro processors: the C pre-
processor and the m4 macro processor. xstr extracts string literals. patch
provides a form of version control similar to WEB’s change files. Few of WEB’s
remaining features will be missed; for example, many compilers evaluate

13

constant expressions at compile time. Experience with WEB has suggested
that prettyprinting may be more trouble than it is worth, and that the index
of identifiers, while useful, is not a necessity [9].

Three things distinguish noweb from previous work. noweb takes as
simple as possible a view of literate programming and the tools needed
to implement it. Instead of relying on a generator or re-implementation to
support different programming languages, noweb is independent of the target
programming language. noweave’s dependence on its typesetter is small and
isolated, instead of being distributed throughout a large implementation.

Experimenting with noweb is easy because the tools are simple and they
work with any language. If the experiment is unsatisfying, it is easy to
abandon, because notangle’s output, unlike TANGLE’s, is readable. noweb
is simpler than WEB and is easier to use and understand, but it does less. I
argue, however, that the benefit of WEB’s extra features is outweighed by cost
of the extra complexity, making noweb better for writing literate programs.

noweb can be obtained by anonymous ftp from princeton.edu, in file
pub/noweb.shar.Z.

Acknowledgements

Mark Weiser’s invaluable encouragement provided the impetus for me to
write this paper, which I did while visiting the Computer Science Labo-
ratory of the Xerox Palo Alto Research Center. Comments from David
Hanson and from the anonymous referees stimulated me to improve the pa-
per. The development of noweb was supported by a Fannie and John Hertz
Foundation Fellowship.

References

[1] P. J. Denning. Announcing literate programming. Communications of
the ACM, 30(7):593, July 1987.

[2] D. Gries and J. Bentley. Programming pearls: Abstract data types.
Communications of the ACM, 30(4):284–290, April 1987.

[3] K. Guntermann and J. Schrod. WEB adapted to C. TUGboat, 7(3):134–
137, October 1986.

14

[4] B. W. Kernighan and R. Pike. The UNIX Programming Environment.
Prentice-Hall, 1984.

[5] D. E. Knuth. The WEB system of structured documentation. Technical
Report 980, Stanford Computer Science, Stanford, California, Septem-
ber 1983.

[6] D. E. Knuth. Literate Programming, volume 27 of Center for the Study
of Language and Information Lecture Notes. Leland Stanford Junior
University, Stanford, California, 1992.

[7] S. Levy. WEB adapted to C, another approach. TUGBoat, 8(1):12–13,
1987.

[8] N. Ramsey. Literate programming: Weaving a language-independent
WEB. Communications of the ACM, 32(9):1051–1055, September 1989.

[9] N. Ramsey and C. Marceau. Literate programming on a team project.
Software—Practice & Experience, 21(7):677–683, July 1991.

[10] W. Sewell. How to MANGLE your software: the WEB system for Modula-2.
TUGboat, 8(2):118–128, July 1987.

[11] W. Sewell. Weaving a Program: Literate Programming in WEB. Van
Nostrand Reinhold, New York, 1989.

[12] H. Thimbleby. Experiences of ‘literate programming’ using cweb (a
variant of Knuth’s WEB). Computer Journal, 29(3):201–211, 1986.

[13] H. Thimbleby. A review of Donald C. Lindsay’s text file difference
utility, diff. Communications of the ACM, 32(6):752–755, June 1989.

[14] C. J. Van Wyk. Literate programming: An assessment. Communica-
tions of the ACM, 33(3):361–365, March 1990.

15

An example of noweb

The following short program illustrates the use of noweb, a low-tech tool for
literate programming. The purpose of the program is to provide a basis for
comparing WEB and noweb, so I have used a program that has been published
before; the text, code, and presentation are taken from [6, Chapter 12]. The
notable differences are:

• When displaying source code, noweb uses different typography. In
particular, WEB makes good use of multiple fonts and the ablity to
typeset mathematics, and it may use mathematical symbols in place
of C symbols (e.g. “∧” for “&&”). noweb uses a single fixed-width font
for code.

• noweb can work with LaTEX, and I have used LaTEX in this example.

• noweb has no numbered “sections.” When numbers are needed for
cross-referencing, noweb uses page numbers.

• noweb has no special support for macros. In the sample program, I
have used a “〈Definitions〉” chunk to hold macro definitions.

• noweb does not produce an index of identifiers. Because it treats the
program as text, not as C code, it cannot distinguish identifiers from
other parts of the program.

• The CWEB version of this program has semicolons following most uses
of 〈· · ·〉. WEB needs the semicolon or its equivalent to make its pret-
typrinting come out right. Because it does not attempt prettyprinting,
noweb needs no semicolons.

Counting words

This example, based on a program by Klaus Guntermann and Joachim
Schrod [3] and a program by Silvio Levy and D. E. Knuth [6, Chapter 12],
presents the “word count” program from Unix, rewritten in noweb to demon-
strate literate programming using noweb. The level of detail in this docu-
ment is intentionally high, for didactic purposes; many of the things spelled
out here don’t need to be explained in other programs.

The purpose of wc is to count lines, words, and/or characters in a list
of files. The number of lines in a file is the number of newline characters

16

it contains. The number of characters is the file length in bytes. A “word”
is a maximal sequence of consecutive characters other than newline, space,
or tab, containing at least one visible ASCII code. (We assume that the
standard ASCII code is in use.)

Most literate C programs share a common structure. It’s probably a
good idea to state the overall structure explicitly at the outset, even though
the various parts could all be introduced in chunks named 〈* 〉 if we wanted
to add them piecemeal.

Here, then, is an overview of the file wc.c that is defined by the noweb
program wc.nw:

17a 〈* 17a〉≡
〈Header files to include 17b〉
〈Definitions 17c〉
〈Global variables 18a〉
〈Functions 24〉
〈The main program 18b〉

Root chunk (not used in this document).

We must include the standard I/O definitions, since we want to send
formatted output to stdout and stderr.

17b 〈Header files to include 17b〉≡
#include <stdio.h>

This code is used on page 17a.

The status variable will tell the operating system if the run was suc-
cessful or not, and prog name is used in case there’s an error message to be
printed.

17c 〈Definitions 17c〉≡
#define OK 0 /* status code for successful run */
#define usage_error 1 /* status code for improper syntax */
#define cannot_open_file 2 /* status code for file access error */

Defines:
OK, used on page 18a.
cannot open file, used on page 20d.
usage error, used on page 24.

Uses status 18a.
This definition is continued on pages 20c, 21b, and 23d.
This code is used on page 17a.

17

18a 〈Global variables 18a〉≡
int status = OK; /* exit status of command, initially OK */
char *prog_name; /* who we are */

Defines:
prog name, used on pages 18b, 20d, and 24.
status, used on pages 17c, 18b, 20d, and 24.

Uses OK 17c.
This definition is continued on page 22a.
This code is used on page 17a.

Now we come to the general layout of the main function.
18b 〈The main program 18b〉≡

main(argc, argv)
int argc; /* the number of arguments on the UNIX command line */
char **argv; /* the arguments themselves, an array of strings */

{
〈Variables local to main 19a〉
prog_name = argv[0];
〈Set up option selection 19b〉
〈Process all the files 20a〉
〈Print the grand totals if there were multiple files 23c〉
exit(status);

}
Defines:

argc, used on pages 19b and 20a.
argv, used on pages 19b, 20d, and 23a.
main, never used.

Uses prog name 18a and status 18a.
This code is used on page 17a.

18

If the first argument begins with a ‘-’, the user is choosing the desired
counts and specifying the order in which they should be displayed. Each
selection is given by the initial character (lines, words, or characters). For
example, ‘-cl’ would cause just the number of characters and the number
of lines to be printed, in that order.

We do not process this string now; we simply remember where it is. It
will be used to control the formatting at output time.

19a 〈Variables local to main 19a〉≡
int file_count; /* how many files there are */
char *which; /* which counts to print */

Defines:
file count, used on pages 19b, 20d, and 23.
which, used on pages 19b, 23, and 24.

This definition is continued on pages 20b and 21c.
This code is used on page 18b.

19b 〈Set up option selection 19b〉≡
which = "lwc"; /* if no option is given, print all three values */
if (argc > 1 && *argv[1] == ’-’) {

which = argv[1] + 1;
argc--;
argv++;

}
file_count = argc - 1;

Uses argc 18b, argv 18b, file count 19a, and which 19a.
This code is used on page 18b.

19

Now we scan the remaining arguments and try to open a file, if possible.
The file is processed and its statistics are given. We use a do ... while
loop because we should read from the standard input if no file name is given.

20a 〈Process all the files 20a〉≡
argc--;
do {

〈If a file is given, try to open *(++argv); continue if unsuccessful 20d〉
〈Initialize pointers and counters 21d〉
〈Scan file 22b〉
〈Write statistics for file 23a〉
〈Close file 21a〉
〈Update grand totals 23b〉 /* even if there is only one file */

} while (--argc > 0);
Uses argc 18b.
This code is used on page 18b.

Here’s the code to open the file. A special trick allows us to handle input
from stdin when no name is given. Recall that the file descriptor to stdin
is 0; that’s what we use as the default initial value.

20b 〈Variables local to main 19a〉+≡
int fd = 0; /* file descriptor, initialized to stdin */

Defines:
fd, used on pages 20–22.

20c 〈Definitions 17c〉+≡
#define READ_ONLY 0 /* read access code for system open routine */

Defines:
READ ONLY, used on page 20d.

20d 〈If a file is given, try to open *(++argv); continue if unsuccessful 20d〉≡
if (file_count > 0 && (fd = open(*(++argv), READ_ONLY)) < 0) {

fprintf(stderr, "%s: cannot open file %s\n", prog_name, *argv);
status |= cannot_open_file;
file_count--;
continue;

}
Uses READ ONLY 20c, argv 18b, cannot open file 17c, fd 20b, file count 19a,

prog name 18a, and status 18a.
This code is used on page 20a.

20

21a 〈Close file 21a〉≡
close(fd);

Uses fd 20b.
This code is used on page 20a.

We will do some homemade buffering in order to speed things up: Char-
acters will be read into the buffer array before we process them. To do this
we set up appropriate pointers and counters.

21b 〈Definitions 17c〉+≡
#define buf_size BUFSIZ /* stdio.h’s BUFSIZ is chosen for efficiency */

Defines:
buf size, used on pages 21c and 22c.

21c 〈Variables local to main 19a〉+≡
char buffer[buf_size]; /* we read the input into this array */
register char *ptr; /* the first unprocessed character in buffer */
register char *buf_end; /* the first unused position in buffer */
register int c; /* current character, or number of characters just read
int in_word; /* are we within a word? */
long word_count, line_count, char_count;

/* number of words, lines, and characters found in the file so far
Defines:

buf end, used on pages 21d and 22c.
buffer, used on pages 21d and 22c.
char count, used on pages 21–24.
in word, used on pages 21d and 22b.
line count, used on pages 21–24.
ptr, used on pages 21 and 22.
word count, used on pages 21–24.

Uses buf size 21b.

21d 〈Initialize pointers and counters 21d〉≡
ptr = buf_end = buffer;
line_count = word_count = char_count = 0;
in_word = 0;

Uses buf end 21c, buffer 21c, char count 21c, in word 21c, line count 21c, ptr 21c,
and word count 21c.

This code is used on page 20a.

21

The grand totals must be initialized to zero at the beginning of the
program. If we made these variables local to main, we would have to do this
initialization explicitly; however, C’s globals are automatically zeroed. (Or
rather, “statically zeroed.”) (Get it?)

22a 〈Global variables 18a〉+≡
long tot_word_count, tot_line_count, tot_char_count;

/* total number of words, lines, and chars */

The present chunk, which does the counting that is wc’s raison d’être,
was actually one of the simplest to write. We look at each character and
change state if it begins or ends a word.

22b 〈Scan file 22b〉≡
while (1) {

〈Fill buffer if it is empty; break at end of file 22c〉
c = *ptr++;
if (c > ’ ’ && c < 0177) { /* visible ASCII codes */
if (!in_word) {

word_count++;
in_word = 1;

}
continue;

}
if (c == ’\n’) line_count++;
else if (c != ’ ’ && c != ’\t’) continue;
in_word = 0; /* c is newline, space, or tab */

}
Uses in word 21c, line count 21c, ptr 21c, and word count 21c.
This code is used on page 20a.

Buffered I/O allows us to count the number of characters almost for free.
22c 〈Fill buffer if it is empty; break at end of file 22c〉≡

if (ptr >= buf_end) {
ptr = buffer;
c = read(fd, ptr, buf_size);
if (c <= 0) break;
char_count += c;
buf_end = buffer + c;

}
Uses buf end 21c, buffer 21c, buf size 21b, char count 21c, fd 20b, and ptr 21c.
This code is used on page 22b.

22

It’s convenient to output the statistics by defining a new function wc print;
then the same function can be used for the totals. Additionally we must
decide here if we know the name of the file we have processed or if it was
just stdin.

23a 〈Write statistics for file 23a〉≡
wc_print(which, char_count, word_count, line_count);
if (file_count) printf(" %s\n", *argv); /* not stdin */
else printf("\n"); /* stdin */

Uses argv 18b, char count 21c, file count 19a, line count 21c, wc print 24, which 19a,
and word count 21c.

This code is used on page 20a.

23b 〈Update grand totals 23b〉≡
tot_line_count += line_count;
tot_word_count += word_count;
tot_char_count += char_count;

Uses char count 21c, line count 21c, and word count 21c.
This code is used on page 20a.

We might as well improve a bit on Unix’s wc by displaying the number
of files too.

23c 〈Print the grand totals if there were multiple files 23c〉≡
if (file_count > 1) {

wc_print(which, tot_char_count, tot_word_count, tot_line_count);
printf(" total in %d files\n", file_count);

}
Uses file count 19a, wc print 24, and which 19a.
This code is used on page 18b.

Here now is the function that prints the values according to the specified
options. The calling routine is supposed to supply a newline. If an invalid
option character is found we inform the user about proper usage of the
command. Counts are printed in 8-digit fields so that they will line up in
columns.

23d 〈Definitions 17c〉+≡
#define print_count(n) printf("%8ld", n)

Defines:
print count, used on page 24.

23

24 〈Functions 24〉≡
wc_print(which, char_count, word_count, line_count)

char *which; /* which counts to print */
long char_count, word_count, line_count; /* given totals */

{
while (*which)
switch (*which++) {

case ’l’: print_count(line_count);
break;

case ’w’: print_count(word_count);
break;

case ’c’: print_count(char_count);
break;

default:
if ((status & usage_error) == 0) {

fprintf(stderr, "\nUsage: %s [-lwc] [filename ...]\n", prog_name);
status |= usage_error;

}
}

}
Defines:

wc print, used on page 23.
Uses char count 21c, line count 21c, print count 23d, prog name 18a, status 18a,

usage error 17c, which 19a, and word count 21c.
This code is used on page 17a.

Incidentally, a test of this program against the system wc command on
a SPARCstation showed that the “official” wc was slightly slower. Further-
more, although that wc gave an appropriate error message for the options
‘-abc’, it made no complaints about the options ‘-labc’ ! Dare we suggest
that the system routine might have been better if its programmer had used
a more literate approach?

24

List of code chunks

〈* 17a〉
〈Close file 21a〉
〈Definitions 17c〉
〈Fill buffer if it is empty; break at end of file 22c〉
〈Functions 24〉
〈Global variables 18a〉
〈Header files to include 17b〉
〈If a file is given, try to open *(++argv); continue if unsuccessful 20d〉
〈Initialize pointers and counters 21d〉
〈Print the grand totals if there were multiple files 23c〉
〈Process all the files 20a〉
〈Scan file 22b〉
〈Set up option selection 19b〉
〈The main program 18b〉
〈Update grand totals 23b〉
〈Variables local to main 19a〉
〈Write statistics for file 23a〉

Index

OK: 17c, 18a
READ ONLY: 20c, 20d
argc: 18b, 19b, 20a
argv: 18b, 19b, 20d, 23a
buf end: 21c, 21d, 22c
buffer: 21c, 21d, 22c
buf size: 21b, 21c, 22c
cannot open file: 17c, 20d
char count: 21c, 21d, 22c, 23a,

23b, 24
fd: 20b, 20d, 21a, 22c
file count: 19a, 19b, 20d, 23a,

23c

in word: 21c, 21d, 22b
line count: 21c, 21d, 22b, 23a,

23b, 24
main: 18b
print count: 23d, 24
prog name: 18a, 18b, 20d, 24
ptr: 21c, 21d, 22b, 22c
status: 17c, 18a, 18b, 20d, 24
usage error: 17c, 24
wc print: 23a, 23c, 24
which: 19a, 19b, 23a, 23c, 24
word count: 21c, 21d, 22b, 23a,

23b, 24

25

