
A Spider User’s Guide

Norman Ramsey
Department of Computer Science

Princeton University

July 1989

Introduction

Donald Knuth developed the WEB system of structured documentation as
part of the TEX project [Knuth 84]. WEB enables a programmer to divide
his or her program into chunks (called modules), to associate text with each
chunk, and to present the chunks in in any order. In Knuth’s implemen-
tation, the chunks are pieces of PASCAL programs, and the chunks are
formatted using TEX.

The WEB idea suggests a way of combining any programming language
with any document formatting language, but until recently there was no
software support for writing anything but PASCAL programs using WEB.
In 1987, Silvio Levy rewrote the WEB system in C for C, while retaining
TEX as the formatting language [Levy 87]. I have has modified Levy’s im-
plementation by removing the parts that make C the target programming
language, and I have added a third tool, Spider, which complements WEAVE
and TANGLE. Spider reads a description of a programming language, and
writes source code for a WEAVE and TANGLE which support that language.
Using Spider, a C compiler, and an Awk interpreter, an experienced sys-
tems programmer can generate a WEB system for an Algol-like language in a
few hours.

This document explains how to use Spider to generate a WEB system
for any programming language. (The choice of programming language is
limited only by the lexical structure built into Spidery WEB, as we shall see.)
You should consult the companion document, “The Spidery WEB system of
structured documentation,” to learn how to use the generated WEB system.

1

Prerequisites If you are going to use Spider to build a WEB system, you
should be comfortable using WEB. To get an idea how WEB works, you should
have read Knuth’s introductory article on WEB [Knuth 84], as well as the WEB
users’ manual. (The WEB user’s manual is pretty heavy going, so you may
want to consult the Bibliography for more introductory material on WEB.
Wayne Sewell’s Weaving a Program: Literate Programming in WEB may be
helpful [Sewell 89].)

In what follows we will assume that you know what WEAVE and TANGLE
are, what input they expect, and what output they produce.

Plan of this guide We’ll begin with a review of weaving and tangling, so
that we can get an idea what is necessary to build a language-independent
WEB. Then we’ll present a discussion of the features of Spider that tell WEB
about the programming language. We’ll define these in detail and give some
examples, and then we’ll close with a complete description of the Spider
language and tools.

How WEAVE and TANGLE see the world

Both WEAVE and TANGLE operate on the same input, a WEB file. WEAVE must
examine this input and produce a TEX text, while TANGLE must produce
a program text from the same input. The input consists of TEX parts,
definition parts, and code parts. The TEX parts are the easiest to consider:
WEAVE just copies them and TANGLE throws them away. The definition parts
are a bit more complicated: WEAVE’s job is to typeset them, while TANGLE
must remember the definitions and expand them at the proper time. The
code parts are the most complex of all: WEAVE must prettyprint them, and
TANGLE must rearrange them into a coherent program text.

Lexical analysis in WEB Both WEAVE and TANGLE interpret the code parts
as a stream of tokens. Since not all programming languages have the same
tokens, it is Spider’s job to tell WEAVE and TANGLE how to tokenize the input.1

A Spidery WEB system can recognize the following kinds of tokens:

• identifiers

• numeric and string constants
1The current implementation of WEB’s lexical analysis is limited. It should be replaced

with something using regular expressions.

2

• newlines

• “pseudo-semicolons” (the token @;)

• reserved words

• non-alphanumeric tokens

TANGLE rearranges these tokens into one long program text, then writes
out the program text token by token. Normally, TANGLE puts no white space
between tokens, but it will put blanks between adjacent identifier, reserved
word, and numeric constant tokens. Thus the input

if 0 > x-y then z := -1;

will be written out as

if 0>x-y then z:=-1;

and not

if0>x-ythenz:=-1;

which wouldn’t parse. When it is desirable to have TANGLE translate the
tokens differently, each token can be given a tangleto attribute, which
specifies what program text is printed out for that token. For example, the
spider file used to generate C WEB forces the = tokento be printed out as
the string "= ", because in C the string "=-" can be ambiguous.

WEAVE must turn the token stream into a TEX text that will cause the
code to be prettyprinted. It does so in three steps:

1. WEAVE turns each token into a scrap. A scrap has two important prop-
erties: its syntactic category and its translation. The categories are
symbols in a prettyprinting grammar; that grammar tells WEAVE how
to combine the scraps with prettyprinting instructions. The transla-
tions are the TEX texts that will tell TEX exactly how to print the
scraps.

2. WEAVE reduces the scrap stream by combining scraps according to the
productions of its prettyprinting grammar. (WEAVE does a kind of shift-
reduce parsing of program fragments.) While combining the transla-
tions, WEAVE adds TEX text that will cause indenting, outdenting, line
breaking, and so on.

3

3. Ideally, WEAVE keeps reducing scraps until it has a single scrap with a
very long translation, but perhaps it will end up with an irreducible
sequence of scraps. In any case, after no more reductions can be done,
the translations of the remaining scraps are output one at a time.

Using Spider to tell WEB how to tokenize

Spider divides tokens into two classes; reserved words and other. The re-
served words as specified using the reserved and ilk commands; the other
tokens are specified using the token command. (This somewhat unusual
setup is dictated by the way WEAVE works; its advantage is that is is easy
to define a whole group of reserved words that will be treated identically.)
Here’s how it works: the reserved command designates a particular identi-
fier as a reserved word, and says what ilk it belongs to. The token and ilk
commands tell WEAVE and TANGLE what to do with a particular token, or
with all the reserved words of a particular ilk. For each token or ilk one can
specify the tangleto field, the token’s mathness (whether it has to be typeset
in math mode), and its category and translation (for conversion to scraps).
All but the category can have defaults, set with the defaults command.
Choice of category names is up to the user.

We will discuss the tokenization commands more later when we present
the syntax of Spider in detail. Meanwhile, here are some example tokeniza-
tion commands from the spider file for C:

token + category unorbinop
token - category unorbinop
token * category unorbinop
token = category equals translation <"\\leftarrow"> tangleto <"="-space>
token ~ category unop translation <"\\TI">
token & category unorbinop translation <"\\amp">
token ^ translation <"\\^"> category binop
token ? translation <"\\?"> category question
token % translation <"\\%"> category binop
token # translation <"\\#"> category sharp
token ! category unop translation <"\\neg">
token (category lpar
token) category rpar
token [category lpar
token] category rpar

4

token { translation <"\\{"> category lbrace
token } translation <"\\}"> category rbrace
token ++ category unop translation <"\\PP">
token -- category unop translation <"\\MM">
token != translation <"\\I"> category binop
token == translation <"\\S"> category binop
token && translation <"\\W"> category binop

ilk case_like category case
ilk int_like category int

reserved auto ilk int_like
reserved break ilk case_like
reserved case ilk case_like
reserved char ilk int_like

These show the definitions of some of the tokens used in C. Notice the
tangleto option is almost always left to default, and the translation op-
tion is often left to default.

Once the tokens are specified, and each has a tangleto string, we can
almost construct a TANGLE for the language. Before we can construct a
WEAVE, we have to tell it how to combine and reduce scraps.

Using Spider to tell WEAVE how to reduce scraps

The most intricate part of WEAVE is its mechanism for converting program-
ming language code into TEX code. WEAVE uses a simple bottom-up parsing
algorithm, since it must deal with fragmentary constructions whose overall
“part of speech” is not known.

The input is represented as a sequence of scraps, where each scrap of
information consists of two parts, its category and its translation. The cate-
gory is essentially a syntactic class, and the translation represents TEX code.
Rules of syntax and semantics tell us how to combine adjacent scraps into
larger ones, and if we are lucky an entire program text that starts out as
hundreds of small scraps will join together into one gigantic scrap whose
translation is the desired TEX code. If we are unlucky, we will be left with
several scraps that don’t combine; their translations will simply be output,
one by one.

5

The combination rules are given as context-sensitive productions that
are applied from left to right. Suppose that we are currently working on the
sequence of scraps s1 s2 . . . sn. We try first to find the longest production
that applies to an initial substring s1 s2 . . . ; but if no such productions
exist, we find to find the longest production applicable to the next substring
s2 s3 . . . ; and if that fails, we try to match s3 s4 . . . , et cetera.

A production applies if the category codes have a given pattern. For
example, if one of the productions is

open [math semi <"\\,"-opt-5>] --> open math

then it means that three consecutive scraps whose respective categories are
open, math, and semi are converted to two scraps whose categories are open
and math. The open scrap has not changed, while the string <"\\,"-opt-5>
indicates that the new math scrap has a translation composed of the transla-
tion of the original math scrap followed by the translation of the semi scrap
followed by ‘\,’ followed by ‘opt’ followed by ‘5’. (In the TEX file, this will
specify an additional thin space after the semicolon, followed by an optional
line break with penalty 50.) Translations are enclosed in angle brackets, and
may contain quoted strings (using the C conventions to escape backslashes
and so on), or may contain special keywords.

Before giving examples of useful productions, we’ll break to give the
detailed syntax of the Spider subset covered so far.

Syntax of spider files

Spider is an Awk program which converts a description of a language into
C code for WEAVE and TANGLE. Since Spider is an Awk program, its input is
a sequence of lines, and all Spider commands must fit on one line.

Comments and blank lines Because any character sequence can be a
token of a programming language, we can’t just designate a particular se-
quence as a “begin comment” marker. So in Spider there are no comments,
only comment lines. A comment line is one whose first character is “#”. The
Spider processor ignores comment lines and blank lines.

Fields Each command in the spider file consists of a sequence of fields.
These are just the Awk fields, and they are separated by white space. This

6

feature of Spider (inherited from Awk) forbids the use of white space within
a field.

Translations

Most fields in a Spider file are simple identifiers, or perhaps strings of non-
alphanumeric characters. The major exception is translations. Translations
are always surrounded by angle brackets (<>), and consist of a (possibly
empty) list of translation pieces. The pieces on a list are separated by
dashes (-). A piece is one of:

• A quoted string. This string may contain embedded quotes escaped
by “\”, but it must not contain embedded white space or an embedded
dash.

• The “self” marker, “*”, refers to the sequence of characters making
up the token being translated. The self marker is permitted only in
certain contexts, and its precise meaning depends on the context.

• A digit.

• A key word. The key words known to Spider are

space Stands for one space (" ").

dash Stands for a dash ("-").

The other key words are passed on to WEAVE.

WEAVE recognizes the following key words:

break space denotes an optional line break or an en space;

force denotes a line break;

big force denotes a line break with additional vertical space;

opt denotes an optional line break (with the continuation line in-
dented two ems with respect to the normal starting position)—
this code is followed by an integer n, and the break will occur
with penalty 10n;

backup denotes a backspace of one em;

cancel obliterates any break space or force or big force tokens
that immediately precede or follow it and also cancels any backup
tokens that follow it;

7

indent causes future lines to be indented one more em;
outdent causes future lines to be indented one less em.
math rel translates to \mathrel{

math bin translates to \mathbin{

math op translates to \mathop{

The only key words that will work properly in math mode are indent
and outdent, so when you’re defining the translations of tokens you
must use mathness no if your translations contain other key words.
You may use any recognized key words in the translations of a pro-
duction; there the mathness is automatically taken care of for you.

Here are some example translations:

<"\\"-space>
<indent-force>
<"{\\let\\\\=\\bf"-space>
<"}"-indent-"{}"-space>

Restricted translations In some cases, notably for a tangleto descrip-
tion, translations are restricted. A restricted translation is never converted
to typesetting code, but is always converted to an ASCII string, usually for
output by TANGLE, but sometimes for other things. A restricted translation
may contain only quoted strings and the keywords space and dash.

token commands

The syntax of the token command is:

〈command〉 ::= token 〈token-designator〉 〈token-descriptions〉
Where 〈token-descriptions〉 is a (possibly empty) list of token descriptions.

Token descriptions The token descriptions are

• tangleto 〈restricted translation〉
The 〈restricted translation〉 tells TANGLE what program text to write
out for this token. The only kinds of translation pieces valid in a
restricted translation are quoted strings and the special words space
and dash. If no tangleto description is present, TANGLE just writes
out the sequence of characters that constitute the token.

8

• translation 〈translation〉
Tells WEAVE what translation to assign when making this token into a
scrap. The self marker (*) stands for the sequence of characters that
were read in to make up the token. The translation often defaults to
translation <*>; Spider is set up to have this default initially.

• category 〈category-name〉
Tells WEAVE what category to assign when making this token into a
scrap. If you’re writing a Spider file, you may choose any category
names you like, subject only to the restriction that they not conflict
with other names known to Spider (e.g. predefined key words, names
of ilks, and so on). Using category names that are identical to reserved
words of the target programming language (or reserved words of C)
is not only supported, it is strongly encouraged, for clarity. Also,
when we get to the sample grammars later on, you will see some other
conventions we use for category names.

• mathness 〈mathness-indicator〉
where 〈mathness-indicator〉 is yes, no, or maybe. This indicates to
WEAVE whether the translation for this token needs to be typeset in
TEX’s math mode or not, or whether it doesn’t matter. When firing
productions, WEAVE will place math shift characters ($) in the TEX text
that guarantee the placement of tokens in the correct modes. Tokens
with the empty translation (<>) should always have mathness maybe,
lest they cause WEAVE to place two consecutive math shift characters.

• name 〈token-name〉
This should only be necessary in debugging Spider or WEB. It causes
the specified name to be attached to the token, so that a programmer
can search for that name in the C code generated by Spider.

Token designators Spider recognizes the following token designators:

identifier A token command using this designator tells WEAVE and TANGLE
what to do with identifier tokens. Unfortunately it is not possible to
specify with Spider just what an identifier is; that definition is hard-
wired into WEAVE and TANGLE. An identifier is the longest string match-

9

ing this regular expression2:

[a-zA-Z_][a-zA-Z0-9_]*

number In the current implementation of Spider and WEAVE, a token com-
mand using this designator covers the treatment of both numeric con-
stants and string constants. Like the identifiers, the definitions of
what constitutes a numeric or string constant cannot be changed. A
numeric constant is the longest string matching3:

[0-9]+(\.[0-9]*)?

A string constant is the longest string matching

\"([^"]*\\\")*[^"]*\"|’[^@\]’|’\\.’|’@@’

Carriage returns may appear in string constants if escaped by a back-
slash (\).

newline A token command using this descriptor tells WEAVE and TANGLE
how to treat a newline. We’ll see later how to make WEAVE ignore
newlines.

pseudo semi A token command using this descriptor tells WEAVE what to
do with the WEB control sequence @;. This control sequence is always
ignored by TANGLE.

〈characters〉 where none of the characters is alphanumeric. A token com-
mand using this descriptor defines the sequence of characters as a
token, and tells WEAVE and TANGLE what to do with that token. A
token may be a prefix of another token; WEAVE and TANGLE will prefer
the longer token to the shorter. Thus, in a C WEB, == will be read as
a single == token, not as two = tokens.

2The reader unfamiliar with the Unix notation for regular expressions should consult
the ed(1) man page.

3There ought to be some kind of WEB control sequence to support floating point notation
for those languages that have it.

10

Reserved word tokens

Reserved words are attached to a particular ilk using the reserved com-
mand.

reserved 〈reserved-word〉 [ilk 〈ilk-name〉]
If you’re writing a Spider file, you may choose any ilk names you like, subject
only to the restriction that they not conflict with other names known to
Spider (e.g. predefined key words, names of categories, and so on). The
convention, however, is to use ilk with like for a reserved word with, and
so on.4

The ilk and token commands have nearly identical syntax. The syntax
of the ilk command is:

〈command〉 ::= ilk 〈ilk-name〉 〈token-descriptions〉
In translations that appear in ilk commands, the self marker (*) desig-
nates the string of characters making up the reserved word, surrounded by
\&{...}, which makes the reserved words appear in bold face.

Syntax of the prettyprinting grammar

Defining the tokens of a language is somewhat tedious, but it is essentially
straightforward, and the definition usually does not need fine tuning. When
developing a new WEB with Spider, you will spend most of your time writing
the grammar that tells WEAVE how to reduce scraps. The grammar is defined
as a sequence of context-sensitive productions. Each production has the
form:

〈left context〉 [〈firing instructions〉] 〈right context〉
--> 〈left context〉 〈target category〉 〈right context〉

where the left and right contexts are (possibly empty) sequences of scrap
designators, the firing instructions are a sequence of scrap designators and
translations (containing at least one scrap designator), and the target cate-
gory is a category designator. If the left and right contexts are both empty,

4The existence of this convention seduced me into adding a pernicious feature to
Spider—if you omit the ilk from a reserved command, Spider will make an ilk name
by appending like to the name of the reserved word. Furthermore, if that ilk doesn’t
already exist, Spider will construct one. Don’t use this feature.

11

the square brackets ([]) can be omitted, and the production is context free.
The left and right contexts must be the same on both sides of the -->.

What does the production mean? Well, WEAVE is trying to reduce a
sequence of scraps. So what WEAVE does is look at the sequence, to find
out whether the left hand side of some production matches an initial subse-
quence of the scraps. WEAVE picks the first matching production, and fires
it, reducing the scraps described in the firing instructions to a single scrap,
and it gives the new scrap the target category. The translation of the new
scrap is formed by concatenating the translations in the firing instructions,
where a scrap designator stands for the translation of the designated scrap.

Here is the syntax that describes contexts, firing instructions, scrap des-
ignators, and so on.

〈left context〉 ::= 〈scrap designators〉
〈right context〉 ::= 〈scrap designators〉
〈firing instruction〉 ::= 〈scrap designator〉
〈firing instruction〉 ::= 〈translation〉
〈scrap designator〉 ::= ?
〈scrap designator〉 ::= [!]〈category name〉[*]
〈scrap designator〉 ::= [!]〈category alternatives〉[*]
〈category alternatives〉 ::= (〈optional alternatives〉〈category name〉)
〈optional alternative〉 ::= 〈category name〉|
〈target category〉 ::= #〈integer〉
〈target category〉 ::= 〈category name〉

Matching the left hand side of a production When does a sequence
of scraps match the left hand side of a production? For matching purposes,
we can ignore the translations and the square brackets ([]), and look at the
left hand side just as a sequence of scrap designators. A sequence of scraps
matches a sequence of scrap designators if and only if each scrap on the
sequence matches the corresponding scrap designator. Here are the rules for
matching scrap designators (we can ignore starring5):

• Every scrap matches the designator ?.

• A scrap matches 〈marked category〉 if and only if its category is the
same as the category of the designator.

5A category name is said to be starred if it has the optional *.

12

• A scrap matches !〈marked category〉 if and only if its category is not
the same as the category of the designator. (The ! indicates negation.)

• A scrap matches a list of category alternatives if and only if its category
is on the list of alternatives.

• A scrap matches a negated list of category alternatives if and only if
its category is not on the list of alternatives.

Firing a production Once a match is found, WEAVE fires the produc-
tion by replacing the subsequence of scraps matching the firing instructions.
WEAVE replaces this subsequence with a new scrap whose category is the
target category, and whose translation is the concatenation of all the trans-
lations in the firing instructions. (When the new translation is constructed,
the translations of the old scraps are included at the positions of the cor-
responding scrap designators.) If the target category is not given by name,
but rather by number (#n), WEAVE will take the category of the nth scrap
in the subsequence that matches the left hand side of the production, and
make that the target category.

Side effects of firing a production When a production fires, WEAVE
will underline the index entry for the first identifier in any starred scrap.

If no initial subsequence matches any production If the initial sub-
sequence of scraps does not match the left hand side of any production,
WEAVE will try to match the subsequence beginning with the second scrap,
and so on, until a match is found. Once a match is found, WEAVE fires the
production, changing its sequence of scraps. It then starts all over again
at the beginning of the new sequence, looking for a match.6 If no subse-
quence of the scraps matches any production, then the sequence of scraps
is irreducible, and WEAVE writes out the translations of the scraps, one at a
time.

Examples of WEAVE grammars

This all must seem very intimidating, but it’s not really. In this section we
present some grammar fragments and explain what’s going on.

6The implementation is better than that; Spider figures out just how much WEAVE must
backtrack to get the same effect as returning to the beginning.

13

Short examples

? ignore_scrap --> #1

This production should appear in every grammar, because Spidery WEAVE
expects category ignore_scrap to exist with roughly this semantics. (For
example, all comments generate scraps of category ignore scrap.) Any
scrap of category ignore_scrap essentially doesn’t affect the reduction of
scraps: it is absorbed into the scrap to its left.

token newline category newline translation <>
newline --> ignore_scrap

This token definition and production, combined with the previous produc-
tion, causes WEAVE to ignore all newlines.

For this next example, from the C grammar, you will need to know that
math represents a mathematical expression, semi a semicolon, and stmt a
statement or sequence of statements.

math semi --> stmt
stmt <force> stmt --> stmt

The first production says that a mathematical expression, followed by a
semicolon, should be treated as a statement. The second says that two
statements can be combined to make a single statement by putting a line
break between them.

Expressions This more extended example shows the treatment of expres-
sions in Awk. This is identical to the treatment of expressions in C and in
several other languages. We will use the following categories:

math A mathematical expression

binop A binary infix operator

unop A unary prefix or postfix operator

unorbinop An operator that could be binary infix or unary prefix

To show you how these might be used, here are some sample token definitions
using these categories:

14

token + category unorbinop
token - category unorbinop
token * category binop
token / category binop
token < category binop
token > category binop
token , category binop translation <",\\,"-opt-3>
token = category binop translation <"\\K">
token != translation <"\\I"> category binop
token == name eq_eq translation <"\\S"> category binop
token ++ name gt_gt category unop translation <"\\uparrow">
token -- name lt_lt category unop translation <"\\downarrow">

Notice that the translation for the comma specifies a thin space and an
optional line break after the comma. The translations of =, !=, and ==
produce ←, 6=, and ≡.

Here is the grammar for expressions.

math (binop|unorbinop) math --> math
(unop|unorbinop) math --> math
math unop --> math
math <"\\"-space> math --> math

In Awk there is no concatenation operator; concatenation is by juxtaposi-
tion. The last production tells WEAVE to insert a space between two juxta-
posed expressions.

So far we haven’t dealt with parentheses, but that’s easily done:

token (category open
token) category close
token [category open
token] category close
open math close --> math

Now this grammar just given doesn’t handle the Awk or C += feature
very well; x+=1 comes out as x+ ← 1, and x/=2 is irreducible! Here’s the
cure; first, we make a new category for assignment:

token = category equals translation <"\\K">

And then we write productions that reduces assignment (possibly preceded
by another operator) to a binary operator:

15

<"\\buildrel"> (binop|unorbinop) <"\\over{"> equals <"}"> --> binop
equals --> binop

Notice that, given the rules stated above, the second production can fire
only if equals is not preceded by an operator. On input x+=1, the first
production fires, and we have the translation x

+← 1.

Conditional statements Here is the grammar for (possibly nested) con-
ditional statements in Awk.

if <"\\"-space> math --> ifmath
ifmath lbrace --> ifbrace
ifmath newline --> ifline
ifbrace <force> stmt --> ifbrace
ifbrace <outdent-force> close else <"\\"-space> if --> if
ifbrace <outdent-force> close else lbrace --> ifbrace
ifbrace <outdent-force> close else newline --> ifline
ifbrace <outdent-force> close --> stmt
(ifline|ifmath) <indent-force> stmt <outdent> --> stmt

It relies on the following token definitions:

ilk if_like category if
reserved if
ilk else_like category else
reserved else
token { translation <"\\;\\{"-indent> category lbrace
token } translation <"\\}\\"-space> category close
token newline category newline translation <>

Handling preprocessor directives in C Here is a simplified version of the grammar
that handles C preprocessor directives. It puts the directives on the left hand margin,
and correctly handles newlines escaped with backslashes. (The full version is also able to
distinguish <...> bracketing a file name from the use of the same symbols to mean “less
than” and “greater than.”)

control sequence \8 puts things on the left margin
<"\\8"> sharp <"{\\let\\\\=\\bf"-space> math <"}"-indent-"{}"-space> --> preproc
preproc backslash <force-"\\8\\hskip1em"-space> newline --> preproc
<force> preproc <force-outdent> newline --> ignore_scrap
preproc math --> preproc
newline --> ignore_scrap

16

The \let in the first production makes the identifier following the #
come out in bold face.

Using context-dependent productions

So far we’ve been able to do a lot without using the context-dependent
features of Spider productions. (For example, the entire spider file for
Awk is written using only context-free productions.) Now we’ll show some
examples that use the context-dependence.

In the grammar for Ada, a semicolon is used as a terminator for state-
ments. But semicolons are also used as separators in parameter declarations.
The first two productions here find the statements, but the third production
supersedes them when a semicolon is seen in a parenthesized list.

semi --> terminator
math terminator --> stmt
open [math semi] --> open math

Underlining the index entry for the name of a declared function
In SSL, function declarations begin with the type of the function being
declared, followed by the name of that function. The following production
causes the index entry for that function to be underlined, so that we can
look up the function name in the index and easily find the section in which
the function is declared:

decl simp [simp*] --> decl simp math

Where we’ve relied on

token identifier category simp mathness yes

Conditional expressions Suppose we want to format conditional expres-
sions (for example in C) like this:

〈condition〉
? 〈expression〉
: 〈expression〉

The problem is that it’s hard to know when the conditional expression ends.
It’s essentially a question of precedence, and what we’re going to do is look
ahead until we see an operator with sufficiently low precedence that it ter-
minates a conditional expression. In SSL a conditional expression can be

17

terminated by a semicolon, a right parenthesis, a comma, or a colon. We’ll
use the right context to do the lookahead.

token ? translation <"\\?"> category question
token : category colon

<indent-force> question math <force> colon --> condbegin
[condbegin math <outdent>] (semi|close|comma|colon) --> math (semi|close|comma|colon)

Debugging a prettyprinting grammar

WEAVE has two tracing modes that can help you debug a prettyprinting
grammar. The control sequence @1 turns on partial tracing, and @2 turns
on a full trace. @0 turns tracing back off again. In the partial tracing mode,
WEAVE applies all the productions as many times as possible, and then it
prints out the irreducible scraps that remain. If the scraps reduce to a
single scrap, no diagnostics are printed.

When a scrap is printed, WEAVE prints a leading + or -, the name of
the category of that scrap, and a trailing + or -. The + indicates that TEX
should be in math mode, and the - that TEX should not be in math mode,
at the beginning and end of the scrap’s translation, respectively. (You can
see the translations by looking at the .tex file, since that’s where they’re
written out.)

For beginners, the full trace is more helpful. It prints out the following
information every time a production is fired:

• The number of the production just fired (from productions.list);

• The sequence of scraps WEAVE is now trying to reduce;

• A * indicating what subsequence WEAVE will try to reduce next.

A good way to understand how prettyprinting grammars work is to take a
productions.list file, and look at a full trace of the corresponding WEAVE.
Or, if you prefer, you can simulate by hand the action of WEAVE on a sequence
of scraps.

The rest of the Spider language

The tokens and the grammar are not quite the whole story. Here’s the rest
of the truth about what you can do with Spider.

18

Naming the target language

When a Spidery WEAVE or TANGLE starts up, it prints the target language
for which it was generated, and the date and time of the generation. The
language command is used to identify the language being targeted. Its
syntax is

language 〈language-name〉 [extension 〈extension-name〉]
[version 〈version-name〉]

The extension name is the extension used (in place of .web) by TANGLE
to write out the program text for the unnamed module. The extension is
also used to construct a language-specific file of TEX macros to be used by
WEAVE, so different languages should always have different extensions. If
the extension is not given it defaults to the language name. If the version
information is given, it too will be printed out at startup.

The c.spider file I use for Unix has

language C extension c

Defining TEX macros

In addition to the “kernel” WEB macros stored in webkernel.tex, you may
want to create some TEX macros of your own for use in translations. Any
macro definitions you put between lines saying macros begin and macros
end will be included verbatim in the TEX macro file for this language. That
macro file will automatically be \input by every TEX file generated by this
WEAVE.

For example, the C grammar includes productions to handle preprocessor
directives. These directives may include file names that are delimited by
angle brackets. I wanted to use the abbreviations \LN and \RN for left and
right angle brackets, so I included

macros begin
\let\LN\langle
\let\RN\rangle
macros end

in the c.spider file.

19

Setting default token information

It’s possible to set default values for the translation and mathness prop-
erties of tokens, so that they don’t have to be repeated. This is done with
the default command, whose syntax is:

default 〈token descriptions〉
The initial defaults (when Spider begins execution) are translation <*>
and mathness maybe.

Specifying the treatment of modules

WEB introduces a new kind of token that isn’t in any programming language,
and that’s the module name (@<...@> or @(...@>). TANGLE’s job is to
convert the module names to program text, and when TANGLE is finished no
module names remain. But WEAVE has to typeset the module names, and
we need to tell WEAVE what category to give a scrap created from a module
name. We allow two different categories, one for the definition of the module
name (at the beginning of a module), and one for a use of a module name.
The syntax of the module command is:

module [definition 〈category name〉] [use 〈category name〉]
The c.spider file contains the line

module definition decl use math

Determining the at sign

When generating a WEB system with Spider, you’re not required to use “@” as
the “magic at sign” that introduces WEB control sequences. By convention,
however, we use “@” unless that is deemed unsuitable. If “@” is unsuitable,
we use “#.” Since Spider writes C WEB code for WEAVE and TANGLE, it writes
a lot of @ signs. I didn’t when to have to escape each one, so I chose “#” for
Awk WEB’s at sign:

at_sign #

The at sign defaults to “@” if left unspecified.

20

Changing control sequences Changing the at sign changes the meaning
of one or two control sequences. This is more easily illustrated by example
than explained. Suppose we change the at sign to #. Then in the resulting
WEB two control sequences have new meanings:

Stands for a # in the input, by analogy with @@ in normal WEB. You will
need this when defining TEX macros that take parameters.

#@ This is the new name of the control sequence normally represented by
@#. You would use #@ to get a line break followed by vertical white
space.

If you change the at sign to something other than @ or #, the above will still
hold provided you substitute your at sign for #.

Comments in the programming language

We have to tell WEAVE and TANGLE how to recognize comments in our target
programming language, since comment text is treated as TEX text by WEAVE
and is ignored by TANGLE. The syntax of the comment command is

comment begin 〈restricted translation〉
end (〈restricted translation〉|newline)

The restricted translations can include only quoted strings, space, and dash.
They give the character sequences that begin and end comments. If com-
ments end with newlines the correct incantation is end newline.

If the comment character is the same as the at sign, it has to be doubled
in the WEB file to have any effect. For reasons that I’ve forgotten, Spider is too
dumb to figure this out and you must double the comment character in the
Spider file. This is not totally unreasonable since any at sign that actually
appears in a WEB file will have to be double to be interpreted correctly.

WEAVE uses the macros \commentbegin and \commentend at the begin-
ning and end of comments, so you can define these to be whatever you like
(using the macros command) if you don’t like Spider’s defaults. Spider is
smart enough to escape TEX’s special characters in coming up with these
defaults.

Here’s a real-world ugly example of how things really are, from the
spider file for Awk:

comment begin <"##"> end newline

21

macros begin
\def\commentbegin{\#} % we don’t want \#\#
macros end

Controlling line numbering

A compiler doesn’t get to see WEB files directly; it has to read the output of
TANGLE. Error messages labelled with line numbers from a tangled file aren’t
very helpful, so Spidery TANGLE does something to improve the situation: it
writes #line directives into its output, in the manner of the C preprocessor.
(TANGLE also preserves the line breaking of the WEB source, so that the #line
information will be useful.) For systems like Unix with cc and dbx, both
compile-time and run-time debugging can be done in terms of the WEB source,
and the intermediate programming language source need never be consulted.

Not all compilers support line numbering with #line directives, so Spider
provides a line command to change the format of the #line directives. If
your compiler doesn’t support #line, you can use the line command to
turn the line number information into a comment.7 The syntax is:

line begin 〈restricted translation〉 end 〈restricted translation〉
The begin translation tells what string to put in front of the file name and
line number information; the end translation tells what to put afterward.
The defaults (which are set for C) are

line begin <"#line"> end <"">

Here’s an example from the Ada Spider file, which makes the line number
information into an Ada comment:

line begin <"--"-space-"line"> end <"">

Showing the date of generation

When Spidery WEAVE and TANGLE start up, they print the date and time at
which their Spider file was processed. This is done through the good offices
of Spider’s date command, which is

date 〈date〉
7There should be a command that turns off line numbering.

22

where 〈date〉 looks like "Fri Dec 11 11:31:18 EST 1987" or some such.
Normally you never need to use the date command, because one is inserted
automatically by the Spider tools, but if you’re porting Spider to a non-Unix
machine you need to know about it.

Spider’s error messages

Spider makes a lot of attempts to detect errors in a Spider specification.
Spider’s error messages are intended to be self-explanatory, but I don’t know
how well they succeed. In case you run into trouble, here are the error
conditions Spider tries to detect:

• Garbled commands, lines with bad fields in them, or commands with
unused fields. Any command with a field Spider can’t follow or with
an extra field is ignored from the bad field onward, but the earlier
fields may have an effect. Any production with a bad field or other
error is dropped completely.

• Missing language command.

• macros or comment command before language command. Spider uses
the extension information from the language command to determine
the name of the file to which the macros will be written, and the
comment command causes Spider to write macros telling TEX what to
do at the beginning and end of comments.

• Contexts don’t match on the left and right sides of a production.

• A numbered target token doesn’t fall in the range defined by the left
hand side of its production.

• Some category is never appended. This means there is no way to create
a scrap with this category. Spider only looks to see that each category
appears at least once as the category of some token or as the category
of the target token in some production, so Spider might fail to detect
this condition (if there is some production that can never fire).

• Some category is never reduced. This means that the category never
appears in a scrap designator from the firing instructions of a produc-
tion. If a category is never reduced, Spider only issues a warning, and
does not halt the compilation process with an error.

23

The append and reduce checks will usually catch you if you misspell a
category name.

• You defined more tokens than WEAVE and TANGLE can handle.

• You forgot token information for identifiers, numeric constants, new-
lines, pseudo-semicolons (@;), module definitions, or module uses.

• Some ilk has no translation, or there is some ilk of which there are no
reserved words.

Spider’s output files

Spider writes many output files, and you may want to look at them to figure
out what’s going on. Here is a partial list (you can find a complete list by
consulting spider.web):

cycle.test Used to try to detect potential loops in the grammar. Such
loops can cause WEAVE to run indefinitely (until it runs out of memory)
on certain inputs. Discussed below with the Spider tools.

spider.slog A verbose discussion of everything Spider did while it was
processing your file. To be consulted when things go very wrong.

*web.tex The macros specific to the generated WEB.

productions.list A numbered list of all the productions. This list is
invaluable when you are trying to debug a grammar using Spidery
WEAVE’s tracing facilities (@2).

Using Spider to make WEB (the Spider tools)

Many of the Spider tools do error checking, like:

• Check to see there are no duplicate names among the categories, ilks,
and translation keywords.

• Check the translation keywords against a list of those recognized by
WEAVE, and yelps if trouble happens.

• Try to determine whether there is a “production cycle” that could
cause WEAVE to loop infinitely by firing the productions in the cycle
one after another.

24

I’m not going to say much about how to do all this, or how to make WEAVE
and TANGLE; instead I’m going to show you a Makefile and comment on it
a little bit. Since right now Spidery WEB is available only on Unix systems,
chances are you have the Makefile and can just type “make tangle” or
“make weave.” If not, reading the Makefile is still your best bet to figure
out what the tools do.

We assume that you are making WEAVE and TANGLE in some directory, and
that the “master sources” for Spidery WEB are kept in some other directory.
Some of the Makefile macros deserve special mention:

THETANGLE Name of the TANGLE we will generate.

THEWEAVE Name of the WEAVE we will generate.

SPIDER Name of the Spider input file.

DEST The directory in which the executables defined by $(TANGLE) and $(WEAVE)
will be placed.

WEBROOT The directory that is the root of the Spidery WEB distribution.

MASTER The location of the “master sources.” This should always be different
from the directory in which make is called, or havoc will result.

CTANGLE The name of the program used to tangle C code.

AWKTANGLE The name of the program used to tangle Awk code.

MACROS The name of a directory in which to put TEX macro definitions (a
*web.tex file.

Usually we will only be interested in two commands: “make weave” and
“make tangle.” It’s safe to use “make clean” only if you use the current
directory for nothing exception spidering; “make clean” is really vicious.

The line that’s really of interest is the line showing the dependency for
grammar.web. First we run Spider. Then we check for bad translation
keywords and for potential cycles in the prettyprinting grammar. We check
for duplicate names, and then finally (if everything else works), we put the
*web.tex file in the right place.

Here’s $(MASTER)/WebMakefile:

25

Copyright 1989 by Norman Ramsey and Odyssey Research Associates.
To be used for research purposes only.
For more information, see file COPYRIGHT in the parent directory.

HOME=/u/nr# # Make no longer inherits environment vars
THETANGLE=tangle
THEWEAVE=weave
SPIDER=any.spider
#
DVI=dvi
CFLAGS=-DDEBUG -g -DSTAT

CPUTYPE is a grim hack that attempts to solve the problem of multiple
cpus sharing a file system. In my environment I have to have different
copies of object and executable for vax, sun3, next, iris, and other
cpu types. If you will be using Spidery WEB in a homogeneous processor
environment, you can just set CPUTYPE to a constant, or eliminate it
entirely.
#
In my environment, the ’cputype’ program returns a string that
describes the current processor. That means that the easiest thing
for you to do is to define a ’cputype’ program that does something
sensible. A shell script that says ’echo "vax"’ is fine.

CPUTYPE=‘cputype‘

Change the following three directories to match your installation
#
the odd placement of # is to prevent any trailing spaces from slipping in

WEBROOT=$(HOME)/web/src# # root of the WEB source distribution
DEST=$(HOME)/bin/$(CPUTYPE)# # place where the executables go
MACROS=$(HOME)/tex/macros# # place where the macros go

MASTER=$(WEBROOT)/master# # master source directory
OBDIR=$(MASTER)/$(CPUTYPE)# # common object files

TANGLESRC=tangle
CTANGLE=ceetangle -I$(MASTER)
CWEAVE=ceeweave -I$(MASTER)
AWKTANGLE=awktangle -I$(MASTER)
COMMONOBJS=$(OBDIR)/common.o $(OBDIR)/pathopen.o
COMMONC=$(MASTER)/common.c $(MASTER)/pathopen.c
COMMONSRC=$(COMMONC) $(MASTER)/spider.awk

26

Our purpose is to make tangle and weave

web: tangle weave

tangle: $(COMMONOBJS) $(TANGLESRC).o
cc $(CFLAGS) -o $(DEST)/$(THETANGLE) $(COMMONOBJS) $(TANGLESRC).o

weave: $(COMMONOBJS) weave.o
cc $(CFLAGS) -o $(DEST)/$(THEWEAVE) $(COMMONOBJS) weave.o

source: $(TANGLESRC).c $(COMMONSRC) # make tangle.c and common src, then clean
if [-f WebMakefile]; then exit 1; fi # don’t clean the master!
if [-f spiderman.tex]; then exit 1; fi # don’t clean the manual
-rm -f tangle.web weave.* common.* # remove links that may be obsolete
-rm -f *.unsorted *.list grammar.web outtoks.web scraps.web
-rm -f cycle.test spider.slog
-rm -f *.o *.tex *.toc *.dvi *.log *.makelog *~ *.wlog *.printlog

Here is how we make the common stuff

$(MASTER)/common.c: $(MASTER)/common.web # no change file
$(CTANGLE) $(MASTER)/common

$(OBDIR)/common.o: $(MASTER)/common.c
cc $(CFLAGS) -c $(MASTER)/common.c
mv common.o $(OBDIR)

$(MASTER)/pathopen.c: $(MASTER)/pathopen.web # no change file
$(CTANGLE) $(MASTER)/pathopen
mv pathopen.h $(MASTER)

$(OBDIR)/pathopen.o: $(MASTER)/pathopen.c
cc $(CFLAGS) -c $(MASTER)/pathopen.c
mv pathopen.o $(OBDIR)

Now we make the tangle and weave source locally

$(TANGLESRC).c: $(MASTER)/$(TANGLESRC).web $(MASTER)/common.h grammar.web

27

-/bin/rm -f $(TANGLESRC).web
ln $(MASTER)/$(TANGLESRC).web $(TANGLESRC).web
chmod -w $(TANGLESRC).web
$(CTANGLE) $(TANGLESRC)

weave.c: $(MASTER)/weave.web $(MASTER)/common.h grammar.web
-/bin/rm -f weave.web
ln $(MASTER)/weave.web weave.web
chmod -w weave.web
$(CTANGLE) weave

Here’s where we run SPIDER to create the source

grammar.web: $(MASTER)/cycle.awk $(MASTER)/spider.awk $(SPIDER)
echo "date" ‘date‘ | cat - $(SPIDER) | awk -f $(MASTER)/spider.awk
cat $(MASTER)/transcheck.list trans_keys.unsorted | awk -f $(MASTER)/transcheck.awk
awk -f $(MASTER)/cycle.awk < cycle.test
sort *.unsorted | awk -f $(MASTER)/nodups.awk
mv *web.tex $(MACROS)

We might have to make spider first.

$(MASTER)/spider.awk: $(MASTER)/spider.web
$(AWKTANGLE) $(MASTER)/spider
mv cycle.awk nodups.awk transcheck.awk $(MASTER)
rm junk.list

$(MASTER)/cycle.awk: $(MASTER)/cycle.web # making spider also makes cycle
$(AWKTANGLE) $(MASTER)/cycle

This cleanup applies to every language

clean:
if [-f WebMakefile]; then exit 1; fi # don’t clean the master!
if [-f spiderman.tex]; then exit 1; fi # don’t clean the manual
-rm -f tangle.* weave.* common.* # remove links that may be obsolete
-rm -f *.unsorted *.list grammar.web outtoks.web scraps.web
-rm -f cycle.test spider.slog
-rm -f *.c *.o *.tex *.toc *.dvi *.log *.makelog *~ *.wlog *.printlog

28

booting the new distribution
boot:
cd ../master; rm -f *.o; for i in $(COMMONC); do \
cc $(CFLAGS) -c $$i; \
mv *.o $(OBDIR) ; \
done; cd ../c
cc $(CFLAGS) -c $(TANGLESRC).c; \
cc $(CFLAGS) -o $(DEST)/$(THETANGLE) $(COMMONOBJS) $(TANGLESRC).o

Getting your own Spidery WEB

At this time, Spidery WEB has been tested only on Unix machines. It should
be easy to port to any machine having a C compiler and an Awk inter-
preter, but undoubtedly some changes will be necessary. The full Spider
distribution, including this manual, is available by anonymous ftp from
princeton.edu: ftp/pub/spiderweb.tar.Z. You should pick a directory
to install Spider in, untar the distribution, and follow the directions in the
README file. The directory you have picked becomes WEBROOT.

If the Makefile in the distribution differs from the one given above, the
one in the distribution should be considered the correct one.

A real Spider file

I have tried to use real examples to illustrate the use of Spider. I include
here, as an extended example, the complete Spider file for the Awk language.
Those who cannot easily study the distribution may find it useful to study
this.

Copyright 1989 by Norman Ramsey and Odyssey Research Associates.
To be used for research purposes only.
For more information, see file COPYRIGHT in the parent directory.

language AWK extension awk

at_sign #

module definition stmt use stmt
use as stmt is unavoidable since tangle introduces line breaks

29

comment begin <"##"> end newline
macros begin
\def\commentbegin{\#} % we don’t want \#\#
macros end

line begin <"#line"> end <"">

default translation <*> mathness yes

token identifier category math mathness yes
token number category math mathness yes
token newline category newline translation <> mathness maybe
token pseudo_semi category ignore_scrap mathness no translation <opt-0>

token \ category backslash translation <> mathness maybe
token + category unorbinop
token - category unorbinop
token * category binop
token / category binop
token < category binop
token > category binop
token >> category binop translation <"\\GG">
token = category equals translation <"\\K">
token ~ category binop translation <"\\TI">
token !~ category binop translation <"\\not\\TI">
token & category binop translation <"\\amp">
token % translation <"\\%"> category binop
token (category open
token [category lsquare
token) category close
token] category close
token { translation <"\\;\\{"-indent> category lbrace
token } translation <"\\}\\"-space> category close
token , category binop translation <",\\,"-opt-3>

token ; category semi translation <";"-space-opt-2> mathness no
stuff with semi can be empty in for statements
open semi --> open
semi semi --> semi
semi close --> close
semi --> binop

token : category colon
token | category bar

30

token != name not_eq translation <"\\I"> category binop
token <= name lt_eq translation <"\\L"> category binop
token >= name gt_eq translation <"\\G"> category binop
token == name eq_eq translation <"\\S"> category binop
token && name and_and translation <"\\W"> category binop
token || name or_or translation <"\\V"> category binop
token -> name minus_gt translation <"\\MG"> category binop
token ++ name gt_gt category unop translation <"\\uparrow">
token -- name lt_lt category unop translation <"\\downarrow">
preunop is for unary operators that are prefix only
token $ category preunop translation <"\\DO"> mathness yes

default mathness yes translation <*>

ilk pattern_like category math
reserved BEGIN ilk pattern_like
reserved END ilk pattern_like

ilk if_like category if
reserved if
ilk else_like category else
reserved else

ilk print_like category math
math forces space between this and other math...
reserved print ilk print_like
reserved printf ilk print_like
reserved sprintf ilk print_like

ilk functions category unop mathness yes
reserved length ilk functions
reserved substr ilk functions
reserved index ilk functions
reserved split ilk functions
reserved sqrt ilk functions
reserved log ilk functions
reserved exp ilk functions
reserved int ilk functions

ilk variables category math mathness yes
reserved NR ilk variables
reserved NF ilk variables
reserved FS ilk variables

31

reserved RS ilk variables
reserved OFS ilk variables
reserved ORS ilk variables

ilk for_like category for
reserved for ilk for_like
reserved while ilk for_like

ilk in_like category binop translation <math_bin-*-"}"> mathness yes
translation <"\\"-space-*-"\\"-space>
reserved in ilk in_like

ilk stmt_like category math
reserved break ilk stmt_like
reserved continue ilk stmt_like
reserved next ilk stmt_like
reserved exit ilk stmt_like

backslash newline --> math
The following line must be changed to make a backslash
backslash <"\\backslash"> --> math

math (binop|unorbinop) math --> math
<"\\buildrel"> (binop|unorbinop) <"\\over{"> equals <"}"> --> binop
equals --> binop
(unop|preunop|unorbinop) math --> math
unorbinop can only act like unary op as *prefix*, not postfix
math unop --> math
math <"\\"-space> math --> math
concatenation

math newline --> stmt
newline --> ignore_scrap

stmt <force> stmt --> stmt

(open|lsquare) math close --> math

math lbrace --> lbrace
lbrace <force> stmt --> lbrace
lbrace <outdent-force> close --> stmt

if <"\\"-space> math --> ifmath

32

ifmath lbrace --> ifbrace
ifmath newline --> ifline
ifbrace <force> stmt --> ifbrace
ifbrace <outdent-force> close else <"\\"-space> if --> if
ifbrace <outdent-force> close else lbrace --> ifbrace
ifbrace <outdent-force> close else newline --> ifline
ifbrace <outdent-force> close --> stmt
(ifline|ifmath) <indent-force> stmt <outdent-force> else <"\\"-space> if --> if
(ifline|ifmath) <indent-force> stmt <outdent-force> else lbrace --> ifbrace
(ifline|ifmath) <indent-force> stmt <outdent-force> else newline --> ifline
(ifline|ifmath) <indent-force> stmt <outdent-force> else --> ifmath
(ifline|ifmath) <indent-force> stmt <outdent> --> stmt

for <"\\"-space> math --> formath
formath lbrace --> forbrace
formath newline --> forline
forbrace <force> stmt --> forbrace
forbrace <outdent-force> close --> stmt
(forline|formath) <indent-force> stmt <outdent> --> stmt

? ignore_scrap --> #1

Bibliography

References

[Bentley 87] Jon L. Bentley, “Programming Pearls,” Communications of the
ACM 29:5(May 1986), 364–?, and 29:6(June 1986), 471–483.
Two columns on literate programming. The first is an introduc-
tion, and the second is an extended example by Donald Knuth,
with commentary by Douglas MacIlroy.

[Knuth 83] Donald E. Knuth, “The WEB system of structured documenta-
tion” Technical Report 980, Stanford Computer Science, Stan-
ford, California, September 1983. The manual for the original
WEB.

[Knuth 84] Donald E. Knuth, “Literate Programming,” The Computer
Journal 27:2(1984), 97–111. The original introduction to lit-
erate programming with WEB.

33

[Levy 87] Silvio Levy, “Web Adapted to C, Another Approach” TUG-
Boat 8:2(1987), 12–13. A short note about the C implementa-
tion of WEB, from which Spidery WEB is descended.

[Sewell 89] Wayne Sewell, “Weaving a program: Literate programming in
WEB,” Van Nostrand Reinhold, 1989.

34

