
SPIDERY WEB USER MANUAL 1

The Spidery WEB System of Structured Documentation

This memo describes how to write programs in the WEB language, using WEB systems generated by Spider.
This class of WEB systems will be referred to (collectively) as “Spidery WEB.” Most of the material is taken
verbatim from Donald Knuth’s original memo introducing WEB; new material (like this paragraph) appears
in slant type. Knuth’s original memo is available as Stanford University CS technical report number 980
(September 1983). Unlike Knuth’s, this memo is not accompanied by the full WEB documentation for Spidery
WEAVE and TANGLE, the programs that read WEB input and produce TEX output and code, respectively. Nor
does it contain the WEB documentation for Spider, the program that generates the language-dependent parts
of WEAVE and TANGLE. This memo should be accompanied by “A Spider User’s Guide,” which explains how
to use Spider to build a Spidery WEB system.

The philosophy behind WEB is that an experienced system programmer, who wants to provide the best
possible documentation of his or her software products, needs two things simultaneously: a language like
TEX for formatting, and a language for programming. For convenience, we’ll give this programming lan-
guage a name; let’s call it the “X” programming language. Neither type of language can provide the best
documentation by itself; but when both are appropriately combined, we obtain a system that is much more
useful than either language separately.

The structure of a software program may be thought of as a “web” that is made up of many interconnected
pieces. To document such a program, we want to explain each individual part of the web and how it relates
to its neighbors. The typographic tools provided by TEX give us an opportunity to explain the local structure
of each part by making that structure visible, and the programming tools provided by “X” make it possible
for us to specify the algorithms formally and unambiguously. By combining the two, we can develop a style
of programming that maximizes our ability to perceive the structure of a complex piece of software, and
at the same time the documented programs can be mechanically translated into a working software system
that matches the documentation.

Since WEB is an experimental system developed for internal use within the TEX project at Stanford, this
report is rather terse, and it assumes that the reader is an experienced programmer who is highly motivated
to read a detailed description of WEB’s rules. Spidery WEB is also an experimental system and the same
warning applies. Before continuing, you may want to read some more introductory material on Spider and
WEB. Here are some references worth looking at:

• Donald E. Knuth, “Literate Programming,” Computer Journal 27:2 (1984), 97–111.. The original
introduction of WEB.

• Jon L. Bentley, “Programming Pearls,” Communications of the ACM 29:5 (May 1986), 364–368
and 29:6 (June 1986), 471–483. Two columns on literate programming with WEB.

• Norman Ramsey, “Building a Language-Independent WEB,” Communications of the ACM, Septem-
ber 1989. An overview of how Spider and WEB work.

• Wayne Sewell, “Weaving a program: Literate programming in WEB,” Van Nostrand Reinhold, 1989.
In addition to these, there is a periodic column in the Communications of the ACM devoted to literate
programming.

Even if a less terse manual were to be written, the reader would have to be warned in advance that WEB

is not for beginners and it never will be: The user of WEB must be familiar with both TEX and “X”. When
one writes a WEB description of a software system, it is possible to make mistakes by breaking the rules
of WEB and/or the rules of TEX and/or the rules of “X”. In practice, all three types of errors will occur,
and you will get different error messages from the different language processors. In compensation for the
sophisticated expertise needed to cope with such a variety of languages, however, experience has shown
that reliable software can be created quite rapidly by working entirely in WEB from the beginning; and the
documentation of such programs seems to be better than the documentation obtained by any other known
method. Thus, WEB users need to be highly qualified, but they can get some satisfaction and perhaps even a
special feeling of accomplishment when they have successfully created a software system with this method.

To use WEB, you prepare a file called COB.WEB (say), and then you apply a system program called WEAVE

SPIDERY WEB USER MANUAL 2

to this file, obtaining an output file called COB.TEX. When TEX processes COB.TEX, your output will be
a “pretty printed” version of COB.WEB that takes appropriate care of typographic details like page layout
and the use of indentation, italics, boldface, etc.; this output will contain extensive cross-index information
that is gathered automatically. You can also submit the same file COB.WEB to another system program
called TANGLE, which will produce a file COB.X that contains the “X” code of your COB program. The “X”
compiler will convert COB.X into machine-language instructions corresponding to the algorithms that were
so nicely formatted by WEAVE and TEX. Finally, you can (and should) delete the files COB.TEX and COB.X,
because COB.WEB contains the definitive source code. Examples of the behavior of WEAVE and TANGLE are not
appended to this manual. The names WEAVE and TANGLE may vary, especially since there may be versions
for multiple languages. My site supports, in addition to the original TANGLE, CEETANGLE, AWKTANGLE, and
ADATANGLE.

Besides providing a documentation tool, WEB enhances the “X” language by providing a macro capability
together with the ability to permute pieces of the program text, so that a large system can be understood
entirely in terms of small modules and their local interrelationships. The TANGLE program is so named
because it takes a given web and moves the modules from their web structure into the order required by
“X”; the advantage of programming in WEB is that the algorithms can be expressed in “untangled” form,
with each module explained separately. The WEAVE program is so named because it takes a given web
and intertwines the TEX and “X” portions contained in each module, then it knits the whole fabric into a
structured document. (Get it? Wow.) Perhaps there is some deep connection here with the fact that the
German word for “weave” is “web”, and the corresponding Latin imperative is “texe”!

It is impossible to list all of the related work that has influenced the design of WEB, but the key contributions
should be mentioned here. (1) Myrtle Kellington, as executive editor for ACM publications, developed
excellent typographic standards for the typesetting of Algol programs during the 1960s, based on the original
designs of Peter Naur; the subtlety and quality of this influential work can be appreciated only by people who
have seen what happens when other printers try to typeset Algol without the advice of ACM’s copy editors.
(2) Bill McKeeman introduced a program intended to automate some of this task [Algorithm 268, “Algol 60
reference language editor,” CACM 8 (1965), 667–668]; and a considerable flowering of such programs has
occurred in recent years [see especially Derek Oppen, “Prettyprinting,” ACM TOPLAS 2 (1980), 465–483;
G. A. Rose and J. Welsh, “Formatted programming languages,” SOFTWARE Practice & Exper. 11 (1981),
651–669]. (3) The top-down style of exposition encouraged by WEB was of course chiefly influenced by Edsger
Dijkstra’s essays on structured programming in the late 1960s. The less well known work of Pierre-Arnoul
de Marneffe [“Holon programming: A survey,” Univ. de Liege, Service Informatique, Liege, Belgium, 1973;
135 pp.] also had a significant influence on the author as WEB was being formulated. (4) Edwin Towster has
proposed a similar style of documentation in which the programmer is supposed to specify the relevant data
structure environment in the name of each submodule [“A convention for explicit declaration of environments
and top-down refinement of data,” IEEE Trans. on Software Eng. SE–5 (1979), 374–386]; this requirement
seems to make the documentation a bit too verbose, although experience with WEB has shown that any
unusual control structure or data structure should definitely be incorporated into the module names on
psychological grounds. (5) Discussions with Luis Trabb Pardo in the spring of 1979 were extremely helpful
for setting up a prototype version of WEB that was called DOC. (6) Ignacio Zabala’s extensive experience with
DOC, in which he created a full implementation of TEX in Pascal that was successfully transported to many
different computers, was of immense value while WEB was taking its present form. (7) David R. Fuchs made
several crucial suggestions about how to make WEB more portable; he and Arthur L. Samuel coordinated the
initial installations of WEB on dozens of computer systems, making changes to the code so that it would be
acceptable to a wide variety of Pascal compilers. (8) The name WEB itself was chosen in honor of my wife’s
mother, Wilda Ernestine Bates.

The work on Spidery WEB would not have been possible without the help of Silvio Levy, who first ported
WEB to C. The name Spider was chosen because (in nature at least) webs are built by spiders.

The appendices to this report do not contain complete WEB programs for the Spider, WEAVE, and TANGLE

processors. A study of these examples, together with an attempt to write WEB programs by yourself, is the

SPIDERY WEB USER MANUAL 3

best way to understand why WEB has come to be like it is.

General rules. A WEB file is a long string of text that has been divided into individual lines. Unlike
original WEB, Spidery WEB respects the programmer’s choice of line breaks. A newline in code is normally
passed along through tangle and will appear in the resulting program. This is important in languages like
awk where line breaks are significant. In documentation, the exact line boundaries are not terribly crucial,
and a programmer can pretty much chop up the WEB file in whatever way seems to look best as the file is
being edited; but string constants and control texts must end on the same line on which they begin, since
this convention helps to keep errors from propagating. The line length of the input is limited and is rather
small.

Two kinds of material go into WEB files: TEX text and “X” text. A programmer writing in WEB should be
thinking both of the documentation and of the “X” program that he or she is creating; i.e., the programmer
should be instinctively aware of the different actions that WEAVE and TANGLE will perform on the WEB file.
TEX text is essentially copied without change by WEAVE, and it is entirely deleted by TANGLE, since the TEX
text is “pure documentation.” “X” text, on the other hand, is formatted by WEAVE and it is shuffled around
by TANGLE, according to rules that will become clear later. For now the important point to keep in mind is
that there are two kinds of text. Writing WEB programs is something like writing TEX documents, but with
an additional “X mode” that is added to TEX’s horizontal mode, vertical mode, and math mode.

A WEB file is built up from units called modules that are more or less self-contained. Each module has
three parts:

1) A TEX part, containing explanatory material about what is going on in the module.
2) A definition part, containing macro definitions that serve as abbreviations for “X” constructions that

would be less comprehensible if written out in full each time.
3) An “X” part, containing a piece of the program that TANGLE will produce. This “X” code should ideally

be about a dozen lines long, so that it is easily comprehensible as a unit and so that its structure
is readily perceived.

The three parts of each module must appear in this order; i.e., the TEX commentary must come first, then
the definitions, and finally the “X” code. Any of the parts may be empty.

A module begins with the pair of symbols ‘@ ’ or ‘@*’, where ‘ ’ denotes a blank space. A module ends at
the beginning of the next module (i.e., at the next ‘@ ’ or ‘@*’), or at the end of the file, whichever comes
first. The WEB file may also contain material that is not part of any module at all, namely the text (if any)
that occurs before the first module. Such text is said to be “in limbo”; it is ignored by TANGLE and copied
essentially verbatim by WEAVE, so its function is to provide any additional formatting instructions that may
be desired in the TEX output. Indeed, it is customary to begin a WEB file with TEX code in limbo that loads
special fonts, defines special macros, changes the page sizes, and/or produces a title page.

Modules are numbered consecutively, starting with 1; these numbers appear at the beginning of each
module of the TEX documentation, and they appear as bracketed comments at the beginning of the code
generated by that module in the “X” program.

Fortunately, you never mention these numbers yourself when you are writing in WEB. You just say ‘@ ’
or ‘@*’ at the beginning of each new module, and the numbers are supplied automatically by WEAVE and
TANGLE. As far as you are concerned, a module has a name instead of a number; such a name is specified by
writing ‘@<’ followed by TEX text followed by ‘@>’. When WEAVE outputs a module name, it replaces the ‘@<’
and ‘@>’ by angle brackets and inserts the module number in small type. Thus, when you read the output
of WEAVE it is easy to locate any module that is referred to in another module.

Spidery WEB supports a new kind of module called a “file module.” File modules open with @(instead of
@<, and the module name is taken to be the name of a file to which TANGLE will write the contents of the
module. When WEAVE outputs a file module name, it replaces the ‘@(’ and ‘@>’ by parentheses and sets the
entire name in typewriter font.

For expository purposes, a module name should be a good description of the contents of that module, i.e.,
it should stand for the abstraction represented by the module; then the module can be “plugged into” one

SPIDERY WEB USER MANUAL 4

or more other modules so that the unimportant details of its inner workings are suppressed. A module name
therefore ought to be long enough to convey the necessary meaning. Unfortunately, however, it is laborious
to type such long names over and over again, and it is also difficult to specify a long name twice in exactly
the same way so that WEAVE and TANGLE will be able to match the names to the modules. Therefore a module
name can be abbreviated after its first appearance in the WEB file, by typing ‘@<α...@>’, where α is any string
that is a prefix of exactly one module name that appears in the file. For example, ‘@<Clear the arrays@>’
can be abbreviated to ‘@<Clear...@>’ if no other module name begins with the five letters ‘Clear’. Module
names must otherwise match character for character, except that consecutive blank spaces and/or tab marks
are treated as equivalent to single spaces, and such spaces are deleted at the beginning and end of the name.
Thus, ‘@< Clear the arrays @>’ will also match the name in the previous example.

We have said that a module begins with ‘@ ’ or ‘@*’, but we didn’t say how it gets divided up into a TEX
part, a definition part, and an “X” part. The definition part begins with the first appearance of ‘@d’ or
‘@f’ in the module, and the “X” part begins with the first appearance of ‘@u’, ‘@<’, or ‘@(’.The options ‘@<’
and ‘@(’.stand for the beginning of a module name, which is the name of the module itself. An equals sign
(=) must follow the ‘@>’ at the end of this module name; you are saying, in effect, that the module name
stands for the “X” text that follows, so you say ‘〈module name 〉 = “X” text’. Alternatively, if the “X” part
begins with ‘@u’ instead of a module name, the current module is said to be unnamed. Note that module
names cannot appear in the definition part of a module, because the first ‘@<’ or ‘@(’.in a module signals
the beginning of its “X” part. Any number of module names might appear in the “X” part, however, once
it has started.

The general idea of TANGLE is to make an “X” program out of these modules in the following way: First all
the “X” parts of unnamed modules are copied down, in order; this constitutes the initial approximation T0

to the text of the program. (There should be at least one unnamed module, otherwise unless there are file
modules there will be no program.) Then all module names that appear in the initial text T0 are replaced
by the “X” parts of the corresponding modules, and this substitution process continues until no module
names remain. Then all defined macros are replaced by their equivalents, according to certain rules that are
explained later. All comments will have been removed from this “X” program except for the meta-comments
delimited by ‘@{’ and ‘@}’, as explained below, and except for the module-number comments that point to
the source location where each piece of the program text originated in the WEB file. Spidery WEB does not
support the use of the meta-comments ‘@{’ and ‘@}’. Their absence can be partially compensated for by
clever use of the “verbatim” control sequence ‘@=...@>’.

Incidentally, module numbers are automatically inserted as meta-comments into the “X” program, in order
to help correlate the outputs of WEAVE and TANGLE (see Appendix C). So are #line directives, the exact
workings of which are obscure (but see the “Spider User’s Guide” for more information).

If the same name has been given to more than one module, the “X” text for that name is obtained by
putting together all of the “X” parts in the corresponding modules. This feature is useful, for example, in a
module named ‘Global variables in the outer block’, since one can then declare global variables in whatever
modules those variables are introduced. When several modules have the same name, WEAVE assigns the first
module number as the number corresponding to that name, and it inserts a note at the bottom of that
module telling the reader to ‘See also sections so-and-so’; this footnote gives the numbers of all the other
modules having the same name as the present one. The “X” text corresponding to a module is usually
formatted by WEAVE so that the output has an equivalence sign in place of the equals sign in the WEB file;
i.e., the output says ‘〈module name 〉 ≡ “X” text’. However, in the case of the second and subsequent
appearances of a module with the same name, this ‘≡’ sign is replaced by ‘+≡’, as an indication that the
“X” text that follows is being appended to the “X” text of another module.

The general idea of WEAVE is to make a TEX file from the WEB file in the following way: The first line of the
TEX file will be ‘\input Xweb’; this will cause TEX to read in the macros that define WEB’s documentation
conventions for the “X” programming language. The next lines of the file will be copied from whatever TEX
text is in limbo before the first module. Then comes the output for each module in turn, possibly interspersed
with end-of-page marks. Finally, WEAVE will generate a cross-reference index that lists each module number

SPIDERY WEB USER MANUAL 5

in which each “X” identifier appears, and it will also generate an alphabetized list of the module names, as
well as a table of contents that shows the page and module numbers for each “starred” module.

What is a “starred” module, you ask? A module that begins with ‘@*’ instead of ‘@ ’ is slightly special
in that it denotes a new major group of modules. The ‘@*’ should be followed by the title of this group,
followed by a period. Such modules will always start on a new page in the TEX output, and the group title
will appear as a running headline on all subsequent pages until the next starred module. The title will also
appear in the table of contents, and in boldface type at the beginning of its module.

Spidery WEB supports a hack that makes the module structure appear more hierarchical in the table of
contents. If the title begins with the special character =, or one of the digits 1 through 4, it will be formatted
specially. This table shows the effect of the special titles:

Marker Level Page Eject? Other

@*= chapter yes Bold in toc
@* section yes
@*1 subsection yes
@*2 subsection no
@*3 subsubsection yes
@*4 subsubsection no

Caution: Do not use TEX control sequences in such titles, unless you know that the webmac macros will
do the right thing with them. The reason is that these titles are converted to uppercase when they appear
as running heads, and they are converted to boldface when they appear at the beginning of their modules,
and they are also written out to a table-of-contents file used for temporary storage while TEX is working;
whatever control sequences you use must be meaningful in all three of these modes.

Second caution: do not allow the titles to begin with a non-letter, unless the non-letter is the control
sequence \relax. The reason is that the first character of the titles is checked to see whether it is the special
character =, or one of the digits 1 through 4. A non-letter that is not one of these will only confuse the
formatter.

The TEX output produced by WEAVE for each module consists of the following: First comes the module
number (e.g., ‘\M123.’ at the beginning of module 123, except that ‘\N’ appears in place of ‘\M’ at the
beginning of a starred module). Then comes the TEX part of the module, copied almost verbatim except
as noted below. Then comes the definition part and the “X” part, formatted so that there will be a little
extra space between them if both are nonempty. The definition and “X” parts are obtained by inserting a
bunch of funny looking TEX macros into the “X” program; these macros handle typographic details about
fonts and proper math spacing, as well as line breaks and indentation.

When you are typing TEX text, you will probably want to make frequent reference to variables and other
quantities in your “X” code, and you will want those variables to have the same typographic treatment when
they appear in your text as when they appear in your program. Therefore the WEB language allows you to
get the effect of “X” editing within TEX text, if you place ‘|’ marks before and after the “X” material. For
example, suppose you are writing Pascal code and you want to say something like this:

The characters are placed into buffer , which is a packed array [1 → n] of char .

The TEX text would look like this in your WEB file:

The characters are placed into |buffer|, which is a |packed array [1..n] of char|.

And WEAVE translates this into something you are glad you didn’t have to type:

The characters are placed into \\{buffer},

which is a \&{packed} \&{array} $ [1\to\|n]$ \&{of} \\{char}.

SPIDERY WEB USER MANUAL 6

Incidentally, the cross-reference index that WEAVE would make, in the presence of a comment like this, would
include the current module number as one of the index entries for buffer and char , even though buffer and
char might not appear in the “X” part of this module. Thus, the index covers references to identifiers in
the explanatory comments as well as in the program itself; you will soon learn to appreciate this feature.
However, the identifiers packed and array and n and of would not be indexed, because WEAVE does not
make index entries for reserved words or single-letter identifiers. Such identifiers are felt to be so ubiquitous
that it would be pointless to mention every place where they occur.

Speaking of identifiers, the author of WEB thinks that IdentifiersSeveralWordsLong look terribly ugly when
they mix uppercase and lowercase letters. He recommends that identifiers several words long be written with
underline characters to get a much better effect. The WEAVE processor will properly alphabetize identifiers that
have embedded underlines when it makes the index. Using Spidery WEB, you’re out of luck if programming
language “X” doesn’t support underlines in identifiers.

Although a module begins with TEX text and ends with “X” text, we have noted that the dividing
line isn’t sharp, since “X” text can be included in TEX text if it is enclosed in ‘|...|’. Conversely, TEX
text also appears frequently within “X” text, because everything in “X” comments is treated as TEX text.
Furthermore, a module name consists of TEX text; thus, a WEB file typically involves constructions like ‘if x

= 0 then @<Empty the |buffer| array@>’ where we go back and forth between “X” and TEX conventions
in a natural way.

Macros. In the current implementation of Spidery WEB, a WEB programmer can define two kinds of macros
to make the programs shorter and more readable.

‘@d identifier = “X” text’ defines a simple macro, where the identifier will be replaced by the “X” text
when TANGLE produces its output.

‘@d identifier (formal parameters) = “X” text’ defines a parametric macro, where the identifier will be
replaced by the “X” text and where occurrences of the formal parameters in that “X” text will be replaced
by arguments. For C programmers, this is similar to the C macro processor, but the = sign is used to avoid
the need for bizarre lexical requirements. Whitespace can appear between a macro name and a list of formal
paramters, and newlines in macros need not be escaped with backslashes. A macro definition is terminated
by a following @d, @f, @u, @<, or @(.

Spidery WEB does not support a string pool file. Pleas for its restoration will be heard.

Control codes. We have seen several magic uses of ‘@’ signs in WEB files, and it is time to make a systematic
study of these special features. A WEB control code is a two-character combination of which the first is ‘@’.
In Spidery WEB the “magic at sign” need not be ‘@’; the person who built your WEB (with Spider) may have
defined it to be something else. By convention, people building Spidery WEBs use ‘@’ as the magic at sign,
except when it is deemed unsuitable for some reason, in which case cases they use ‘#’.

Here is a complete list of the legal control codes. The letters L, T , X , M , C, and/or S following each
code indicate whether or not that code is allowable in limbo, in TEX text, in “X” text, in module names, in
comments, and/or in strings. A bar over such a letter means that the control code terminates the present
part of the WEB file; for example, L means that this control code ends the limbo material before the first
module.

@@ [C, L, M, X , S, T] A double @ denotes the single character ‘@’. This is the only control code that is legal
in limbo, in comments, and in strings.

@ [L, X , T] This denotes the beginning of a new (unstarred) module. A tab mark or end-of-line (carriage
return) is equivalent to a space when it follows an @ sign.

@* [L, X , T] This denotes the beginning of a new starred module, i.e., a module that begins a new major
group. The title of the new group should appear after the @*, followed by a period. As explained above,
the first character of the title should be either a letter or the control sequence \relax, unless special
formatting is desired. Titles beginning with =, 1, 2, 3, or 4 are formatted specially. As explained above,

SPIDERY WEB USER MANUAL 7

TEX control sequences should be avoided in such titles unless they are quite simple. When WEAVE and
TANGLE read a @*, they print an asterisk followed by the current module number, so that the user can
see some indication of progress. The very first module should be starred.

@d [X , T] Macro definitions begin with @d (or @D), followed by the “X” text for one of the three kinds of
macros, as explained earlier.

@f [X , T] Format definitions begin with @f (or @F); they cause WEAVE to treat identifiers in a special way
when they appear in “X” text. The general form of a format definition is ‘@f l = r’, followed by
an optional comment enclosed in braces, where l and r are identifiers; WEAVE will subsequently treat
identifier l as it currently treats r. This feature allows a WEB programmer to invent new reserved words
and/or to unreserve some of “X”’s reserved identifiers. The definition part of each module consists
of any number of macro definitions (beginning with @d) and format definitions (beginning with @f),
intermixed in any order.

@u [X , T] The “X” part of an unnamed module begins with @u (or @U). This causes TANGLE to append
the following “X” code to the initial program text T0 as explained above. The WEAVE processor does
not cause a ‘@u’ to appear explicitly in the TEX output, so if you are creating a WEB file based on a
TEX-printed WEB documentation you have to remember to insert @u in the appropriate places of the
unnamed modules.

@< [X , T] A module name begins with @< followed by TEX text followed by @>; the TEX text should not
contain any WEB control sequences except @@, unless these control sequences appear in “X” text that
is delimited by |...|. The module name may be abbreviated, after its first appearance in a WEB file,
by giving any unique prefix followed by ..., where the three dots immediately precede the closing @>.
Module names may not appear in “X” text that is enclosed in |...|, nor may they appear in the
definition part of a module (since the appearance of a module name ends the definition part and begins
the “X” part).

@([X , T] A module beginning with @(is treated like one beginning with @<, except that the module name
is treated as the name of a file to which the module will be written. If such modules are used in other
modules the results are undefined.

@´ [X , T] This denotes an octal constant, to be formed from the succeeding digits. For example, if the
WEB file contains ‘@´100’, the TANGLE processor will treat this an equivalent to ‘64’; the constant will
be formatted as “ 1́00 ” in the TEX output produced via WEAVE. You should use octal notation only for
positive constants; don’t try to get, e.g., −1 by saying ‘@´777777777777’.

@" [X , T] A hexadecimal constant; ‘@"D0D0’ tangles to 53456 and weaves to ‘˝D0D0’.
@& [X] The @& operation causes whatever is on its left to be adjacent to whatever is on its right, in the “X”

output. No spaces or line breaks will separate these two items. However, the thing on the left should
not be a semicolon, since a line break might occur after a semicolon.

@^ [X , T] The “control text” that follows, up to the next ‘@>’, will be entered into the index together with
the identifiers of the “X” program; this text will appear in roman type. For example, to put the phrase
“system dependencies” into the index, you can type ‘@^system dependencies@>’ in each module that
you want to index as system dependent. A control text, like a string, must end on the same line of the
WEB file as it began. Furthermore, no WEB control sequences are allowed in a control text, not even @@.
(If you need an @ sign you can get around this restriction by typing ‘\AT!’.)

@. [X , T] The “control text” that follows will be entered into the index in typewriter type; see the rules
for ‘@^’, which is analogous.

@: [X , T] The “control text” that follows will be entered into the index in a format controlled by the TEX
macro ‘\9’, which the user should define as desired; see the rules for ‘@^’, which is analogous.

@t [X] The “control text” that follows, up to the next ‘@>’, will be put into a TEX \hbox and formatted
along with the neighboring “X” program. This text is ignored by TANGLE, but it can be used for various
purposes within WEAVE. For example, you can make comments that mix “X” and classical mathematics,

SPIDERY WEB USER MANUAL 8

as in ‘size < 215’, by typing ‘|size < @t2^{15}@>|’. A control text must end on the same line of
the WEB file as it began, and it may not contain any WEB control codes.

@= [X] The “control text” that follows, up to the next ‘@>’, will be passed verbatim to the “X” program.
@! [X , T] The module number in an index entry will be underlined if ‘@!’ immediately precedes the identifier

or control text being indexed. This convention is used to distinguish the modules where an identifier
is defined, or where it is explained in some special way, from the modules where it is used. A reserved
word or an identifier of length one will not be indexed except for underlined entries. Some Spidery
WEAVEs will insert implicit ‘@!’ tokens in places like function definitions or variable declarations. The
person who built your Spidery WEB should have documented these places; if not, they can be discovered
by examing the .spider file. The automatic definitions work well for some languages, but for the best
possible index you should insert your own ‘@!’ token before the defining instance of every identifier.

@? [X , T] This cancels an implicit (or explicit) ‘@!’, so that the next index entry will not be underlined.
This is not implemented in the current version of Spidery WEB.

@, [X] This control code inserts a thin space in WEAVE’s output; it is ignored by TANGLE. Sometimes you
need this extra space if you are using macros in an unusual way, e.g., if two identifiers are adjacent.

@/ [X] This control code causes a line break to occur within an “X” program formatted by WEAVE; it is
ignored by TANGLE. Line breaks are chosen automatically by TEX according to a scheme that works
99% of the time, but sometimes you will prefer to force a line break so that the program is segmented
according to logical rather than visual criteria. The line following such a line break is indented at the
same level as the line broken. Caution: ‘@/’ should be used only after statements or clauses, not in the
middle of an expression; use @| in the middle of expressions, in order to keep WEAVE’s parser happy.

@− [X] This control code makes WEAVE continue the current statement on the next line; it is ignored by
TANGLE. If is just like ‘@/’, except that the following line is indented, to show that it is a continuation
of the line broken.

@| [X] This control code specifies an optional line break in the midst of an expression. For example, if you
have a long condition between if and then, or a long expression on the right-hand side of an assignment
statement, you can use ‘@|’ to specify breakpoints more logical than the ones that TEX might choose
on visual grounds.

@# [X] This control code forces a line break, like @/ does, and it also causes a little extra white space to
appear between the lines at this break. You might use it, for example, between procedure definitions or
between groups of macro definitions that are logically separate but within the same module.

@+ [X] This control code cancels a line break that might otherwise be inserted by WEAVE, e.g., before the
word ‘else’, if you want to put a short if-then-else construction on a single line. It is ignored by TANGLE.

@; [X] Usually this control code is treated like a semicolon, for formatting purposes, except that it is
invisible. The person who built your WEB can redefine it, though, so check his documentation to make
sure.

You can use it, for example, after a module name when the “X” text represented by that module name
ends with a semicolon.
The last seven control codes (namely ‘@,’, ‘@/’, ‘@−’, ‘@|’, ‘@#’, ‘@+’, and ‘@;’) have no effect on the “X”
program output by TANGLE; they merely help to improve the readability of the TEX-formatted “X” that
is output by WEAVE, in unusual circumstances. WEAVE’s built-in formatting method is fairly good, but it is
incapable of handling all possible cases, because it must deal with fragments of text involving macros and
module names; these fragments do not necessarily obey “X”’s syntax. Although WEB allows you to override
the automatic formatting, your best strategy is not to worry about such things until you have seen what
WEAVE produces automatically, since you will probably need to make only a few corrections when you are
touching up your documentation.

Because of the rules by which every module is broken into three parts, the control codes ‘@d’, ‘@f’, and
‘@u’ are not allowed to occur once the “X” part of a module has begun.

SPIDERY WEB USER MANUAL 9

Additional features and caveats.
3. The TEX file output by WEAVE is broken into lines having at most 80 characters each. The algorithm

that does this line breaking is unaware of TEX’s convention about comments following ‘%’ signs on a line.
When TEX text is being copied, the existing line breaks are copied as well, so there is no problem with ‘%’
signs unless the original WEB file contains a line more than eighty characters long or a line with “X” text in
|...| that expands to more than eighty characters long. Such lines should not have ‘%’ signs.

4. “X” text is translated by a “bottom up” procedure that identifies each token as a “part of speech”
and combines parts of speech into larger and larger phrases as much as possible according to a special
prettyprinting grammar. The grammar and the translation process are explained in the “Spider User’s
Guide.” It is easy to learn the translation scheme for simple constructions like single identifiers and short
expressions, just by looking at a few examples of what WEAVE does, but the general mechanism is somewhat
complex because it must handle much more than “X” itself. Furthermore the output contains embedded
codes that cause TEX to indent and break lines as necessary, depending on the fonts used and the desired
page width. For best results it is wise to adhere to the following restrictions:
a) Comments in “X” text should appear only after statements or clauses; i.e., (if “X” were PASCAL)

after semicolons, after reserved words like then and do, or before reserved words like end and else.
Otherwise WEAVE’s parsing method may well get mixed up.

b) Don’t enclose long “X” texts in |...|, since the indentation and line breaking codes are omitted when
the |...| text is translated from “X” to TEX. Stick to simple expressions or statements.

5. Comments and module names are not permitted in |...| text. After a ‘|’ signals the change from
TEX text to “X” text, the next ‘|’ that is not part of a string or control text ends the “X” text.

6. Spidery WEB does not handle nested comments.
7. Reserved words of “X” must appear entirely in lowercase letters in the WEB file; otherwise their special

nature will not be recognized by WEAVE. This could be changed, but the author of Spidery WEB does not
believe in case-insensitivity for programming languages. You could, for example, have a macro named END
and it would not be confused with end.

However, you may not want to capitalize macro names just to distinguish them from other identifiers.
Here is a way to unreserve Pascal’s reserved word ‘type’ and to substitute another word ‘mtype’ in the WEB

file.
@d type(#) = mem[#].t
@d mtype = t @& y @& p @& e
@f mtype = type
@f type = true

In the output of TANGLE, the macro mtype now produces ‘TYPE’ and the macro type(x) now produces
‘MEM[X].T’. In the output of WEAVE, these same inputs produce mtype and type (x), respectively.

8. The @f feature allows you to define one identifier to act like another, and these format definitions are
carried out sequentially, as the example above indicates. However, a given identifier has only one printed
format throughout the entire document (and this format will even be used before the @f that defines it).
The reason is that WEAVE operates in two passes; it processes @f’s and cross-references on the first pass and
does the output on the second.

9. You may want some @f formatting that doesn’t correspond to any existing reserved word. In that
case, WEAVE could be extended by someone who built Spidery WEB to include new “reserved words” in its
vocabulary. (The “Spider User’s Guide” explains how.)

10. Sometimes it is desirable to insert spacing into “X” code that is more general than the thin space
provided by ‘@,’. The @t feature can be used for this purpose; e.g., ‘@t\hskip 1in@>’ will leave one inch of
blank space. Furthermore, ‘@t\4@>’ can be used to backspace by one unit of indentation, since the control
sequence \4 is defined in webmac to be such a backspace. (This control sequence is used, for example, at the
beginning of lines that contain labeled statements, so that the label will stick out a little at the left.)

11. WEAVE and TANGLE are designed to work with two input files, called web file and change file , where
change file contains data that overrides selected portions of web file . The resulting merged text is actually

APPENDIX G — NOTES ON FORMATTING 10

what has been called the WEB file elsewhere in this report.
Here’s how it works: The change file consists of zero or more “changes,” where a change has the form

‘@x〈old lines〉@y〈new lines〉@z’. The special control codes @x, @y, @z, which are allowed only in change files,
must appear at the beginning of a line; the remainder of such a line is ignored. The 〈old lines〉 represent
material that exactly matches consecutive lines of the web file ; the 〈new lines〉 represent zero or more lines
that are supposed to replace the old. Whenever the first “old line” of a change is found to match a line in
the web file , all the other lines in that change must match too.

Between changes, before the first change, and after the last change, the change file can have any number of
lines that do not begin with ‘@x’, ‘@y’, or ‘@z’. Such lines are bypassed and not used for matching purposes.

This dual-input feature is useful when working with a master WEB file that has been received from elsewhere
(e.g., TANGLE.WEB or WEAVE.WEB or TEX.WEB), when changes are desirable to customize the program for your
local computer system. You will be able to debug your system-dependent changes without clobbering the
master web file; and once your changes are working, you will be able to incorporate them readily into new
releases of the master web file that you might receive from time to time.

There are several multiple-changefile tools in the TEX community; check back issues of TUGboat for more
information.

Appendices.

Appendix G: How to use WEB macros. The macros in webkernel make it possible to produce a variety
of formats without editing the output of WEAVE, and the purpose of this appendix is to explain some of the
possibilities.

1. Three fonts have been declared in addition to the standard fonts of PLAIN format: You can say
‘{\sc stuff}’ to get stuff in small caps; and you can select the largish fonts \titlefont and \ttitlefont

in the title of your document, where \ttitlefont is a typewriter style of type.

2. When you mention an identifier in TEX text, you normally call it ‘|identifier|’. But you can also
say ‘\\{identifier}’. The output will look the same in both cases, but the second alternative doesn’t put
identifier into the index, since it bypasses WEAVE’s translation from “X” mode.

3. To get typewriter-like type, as when referring to ‘WEB’, you can use the ‘\.’ macro (e.g., ‘\.{WEB}’).
In the argument to this macro you should insert an additional backslash before the symbols listed as ‘special
string characters’ in the index to WEAVE, i.e., before backslashes and dollar signs and the like. A ‘\ ’ here will
result in the visible space symbol; to get an invisible space following a control sequence you can say ‘{ }’.

4. The three control sequences \pagewidth, \pageheight, and \fullpageheight can be redefined in
the limbo section at the beginning of your WEB file, to change the dimensions of each page. The standard
settings

\pagewidth=6.5in

\pageheight=8.7in

\fullpageheight=9in

were used to prepare the present report; \fullpageheight is \pageheight plus room for the additional
heading and page numbers at the top of each page. If you change any of these quantities, you should call
the macro \setpage immediately after making the change.

5. The \pageshift macro defines an amount by which right-hand pages (i.e., odd-numbered pages) are
shifted right with respect to left-hand (even-numbered) ones. By adjusting this amount you may be able to
get two-sided output in which the page numbers line up on opposite sides of each sheet.

6. The \title macro will appear at the top of each page in small caps. For example, Appendix D was
produced after saying ‘\def\title{WEAVE}’.

7. The first page usually is number 1; if you want some other starting page, just set \pageno to the desired
number. For example, the initial limbo section for Appendix D included the command ‘\pageno=16’.

APPENDIX G — NOTES ON FORMATTING 11

8. The macro \iftitle will suppress the header line if it is defined by ‘\titletrue’. The normal value
is \titlefalse except for the table of contents; thus, the contents page is usually unnumbered. If your
program is so long that the table of contents doesn’t fit on a single page, or if you want a number to appear
on the contents page, you should reset \pageno when you begin the table of contents.

Two macros are provided to give flexibility to the table of contents: \topofcontents is invoked just before
the contents info is read, and \botofcontents is invoked just after. For example, Appendix D was produced
with the following definitions:

\def\topofcontents{\null\vfill

\titlefalse % include headline on the contents page

\def\rheader{\mainfont Appendix D\hfil 15}

\centerline{\titlefont The {\ttitlefont WEAVE} processor}

\vskip 15pt \centerline{(Version 2.5)} \vfill}

Redefining \rheader, which is the headline for right-hand pages, suffices in this case to put the desired
information at the top of the page.

9. Data for the table of contents is written to a file that is read after the indexes have been TEXed;
there’s one line of data for every starred module. For example, when Appendix D was being generated, a
file containing

\Z { Introduction}{1}{16}

\Z { The character set}{11}{19}

and similar lines was created. The \topofcontents macro could redefine \Z so that the information appears
in another format.

10. Sometimes it is necessary or desirable to divide the output of WEAVE into subfiles that can be processed
separately. For example, the listing of TEX runs to more than 500 pages, and that is enough to exceed the
capacity of many printing devices and/or their software. When an extremely large job isn’t cut into smaller
pieces, the entire process might be spoiled by a single error of some sort, making it necessary to start
everything over.

Here’s a safe way to break a woven file into three parts: Say the pieces are α, β, and γ, where each piece
begins with a starred module. All macros should be defined in the opening limbo section of α, and copies of
this TEX code should be placed at the beginning of β and of γ. In order to process the parts separately, we
need to take care of two things: The starting page numbers of β and γ need to be set up properly, and the
table of contents data from all three runs needs to be accumulated.

The webmac macros include two control sequences \contentsfile and \readcontents that facilitate the
necessary processing. We include ‘\def\contentsfile{CONT1}’ in the limbo section of α, and we include
‘\def\contentsfile{CONT2}’ in the limbo section of β; this causes TEX to write the contents data for α
and β into CONT1.TEX and CONT2.TEX. Now in γ we say

\def\readcontents{\input CONT1 \input CONT2 \input CONTENTS};

this brings in the data from all three pieces, in the proper order.
Warning: life is a little different in Spidery WEB. TEX hackers should go straight to the source.
However, we still need to solve the page-numbering problem. One way to do it is to include the following

in the limbo material for β:

\message{Please type the last page number of part 1: }

\read−1to\\ \pageno=\\ \advance\pageno by 1

Then you simply provide the necessary data when TEX requests it; a similar construction is used at the
beginning of γ.

This method can, of course, be used to divide a woven file into any number of pieces.

APPENDIX G — NOTES ON FORMATTING 12

11. Sometimes it is nice to include things in the index that are typeset in a special way. For example,
we might want to have an index entry for ‘TEX’. WEAVE provides only two standard ways to typeset an index
entry (unless the entry is an identifier or a reserved word): ‘@^’ gives roman type, and ‘@.’ gives typewriter
type. But if we try to typeset ‘TEX’ in roman type by saying, e.g., ‘@^\TeX@>’, the backslash character gets
in the way, and this entry wouldn’t appear in the index with the T’s.

The solution is to use the ‘@:’ feature, declaring a macro that simply removes a sort key as follows:

\def\9#1{}

Now you can say, e.g., ‘@:TeX}{\TeX@>’ in your WEB file; WEAVE puts it into the index alphabetically, based on
the sort key, and produces the macro call ‘\9{TeX}{\TeX}’ which will ensure that the sort key isn’t printed.

A similar idea can be used to insert hidden material into module names so that they are alphabetized
in whatever way you might wish. Some people call these tricks “special refinements”; others call them
“kludges”.

12. The control sequence \modno is set to the number of the module being typeset.
13. If you want to list only the modules that have changed, together with the index, put the command

‘\let\maybe=\iffalse’ in the limbo section before the first module of your WEB file. It’s customary to make
this the first change in your change file.

