
Pictures in TEX with METAFONT
mfpic.tex Version: 0.2.10.8 alfa
Program Date: Tue 28 May 1996

Principal Author: Dr Thomas E. Leathrum
Alfatest version by: Geoffrey Tobin (G.Tobin@latrobe.edu.au)

Document Date: Tue 28 May 1996

• WHY?

Tom got the idea for mfpic mostly out of a feeling of frustration. Different output
mechanisms for printing or viewing TEX DVI files each have their own ways to include
pictures. More often than not, there are provisions for including PostScript data into a
DVI file using TEX \special’s. However, this technique seems far from TEX’s ideal of
device-independence, and besides, different TEX output drivers handle these \special’s
in different ways. The same problems arise with including tpic \special’s.

LATEX’s picture environment has a hopelessly limited supply of available objects to
draw—if you want to draw a graph of a polynomial curve, you’re out of luck.

There is, of course, PICTEX, which is wonderfully flexible and general, but its most
obvious feature is its speed—or rather lack of it. Processing a single picture in PICTEX
can often take several minutes.

It occurred to Tom that it might be possible to take advantage of the fact that META-
FONT is designed for drawing things. The result of pursuing this idea is mfpic, a set of
macros for TEX and METAFONT which incorporate METAFONT-drawn pictures into
a TEX file.

The nature of the macros, from the user’s point of view, is very much like PICTEX.
We do not pretend that mfpic has anything like the scope of PICTEX, but it should suit
most purposes for drawing small graphs and including them in your TEX documents.

• AUTHOR.

mfpic was written primarily by Tom Leathrum (moth@bluejay.atl.ga.us) during
the late (northern hemisphere) spring and summer of 1992, while at Dartmouth College.
Different versions were being written and tested for nearly two years after that, during
which time Tom finished his Ph.D. and took a job at Berry College, in Rome, GA. Between
fall of 1992 and fall of 1993, much of the development was carried out by others. Those
who helped most in this process are credited in the Acknowledgements.

• MANIFEST.

Eighteen files are included in this mfpic alfa test distribution:

Acknowl.tex Some people whose work has helped mfpic
CHANGES.tex History of changes to mfpic
CTAN.sites A list of CTAN sites, mirrors and shadows
MANIFEST List of these files, with sizes and dates
Makefile.dist Distribution Makefile
NOTE Some concerns
README2 An overview of this distribution

1

grafbase.mf The METAFONT macros
grafdoc.tex Plain TEXdocumentation for grafbase.mf
header.tex Definitions used in the documentation files
lapictures.tex A LATEX2e version of pictures.tex
mf-revu.tex A sketchy review of METAFONT programming
mfpic.tex The TEX macros
mfpic-IS.gt Brief explanation of what MFpic is and does
mfpicdoc.tex This document, processable in plain TEX
objects.tex Contains at least one picture of each object
pictures.tex A few more complicated pictures
skip-pix.tex Tests effect of TEX’s \leftskip

Information on how to set up a few specific configurations of computers, and some
contributed code and METAFONT documentation, are separately available.

• SETTING UP and PROCESSING.

Setting up TEX and METAFONT to process these files will, to an extent, depend
on your local installation. The biggest problem you are likely to have, regardless of your
installation, will be convincing TEX and its output drivers to find METAFONT’s output
files.

To process the sample file, first run TEX on the sample file pictures.tex. TEX will
complain that it can’t find the file pics.tfm, but will continue processing the file anyway.
When the file is finished processing, you will now have a file called pics.mf. This is the
METAFONT file containing the descriptions of the pictures for pictures.tex. You need
to run METAFONT on pics.mf, with \mode=localfont set up. (Read your META-
FONT manual to see how to do this.) Now that you have the font and font metric files
generated by METAFONT, reprocess the file pictures.tex with TEX. The resulting
DVI file should now be complete, and you should be able to print and view it at your
computer (assuming your viewer and print driver have been set up to be able to find the
font generated by pics.mf).

These three steps of processing—processing with TEX, processing with METAFONT,
and reprocessing with TEX—may not always be necessary. In particular, if you change the
TeX document without making any changes at all to the pictures, then there will be no
need to repeat either of the last two steps.

There is also a somewhat subtle circumstance under which you can skip the third
step—if you change the picture in such a way as not to affect the font metric file, then you
do not have to reprocess with TEX, because the original metric used for the first step will
put the pictures in the right places. The only mfpic macros that affect the font metric file
are the macros listed in the Files and Environments section below.

• HOW IT WORKS.

When you run TEX on the file pictures.tex, TEX generates a file pics.mf. This file
is formed by \write commands in the mfpic macros. The user should never have to read
or change the file pics.mf directly—the mfpic macros take care of it.

Be prepared for overfull hboxes, due to the fact that in pictures.tex the diagrams’

2

\tcaption’s are deliberately too wide for the specified widths of the \mfpic pictures.
The user familiar with METAFONT will notice, by looking at the mfpic macros,

that the mfpic drawing macros translate almost directly into simple METAFONT draw
commands. The \tlabel’s and \tcaption’s, however, are placed on the graph by TEX,
not METAFONT.

Multiline tlabels may be specified by explicit line breaks, which are indicated by the
\\ command.

• THE MACROS.

• Beware!
Due to the current method by which line breaks in the TEX file are preserved in the

METAFONT file, it is necessary to commence the argument of a command on the same
line as the command, for example THIS works:

\cyclic { point1, point2 }
AS does this:

\cyclic { point1,
point2 }

AND this:
\cyclic {

point1,
point2 }

BUT this does NOT (it causes the whole argument to be omitted from the METAFONT
file) :

\cyclic
{ point1,
point2 }

• Files and Environments.

\opengraphsfile{〈font〉}. . .\closegraphsfile
These macros open and close the METAFONT file which will contain the pictures

to be included in this document. The name of the file will be 〈font〉.mf. If the 〈font〉
parameter is changed, you will have to reprocess the TEX file after processing 〈font〉.mf.
\mfpic[〈xscale〉][〈yscale〉]{〈xneg〉}{〈xpos〉}{〈yneg〉}{〈ypos〉}. . .\endmfpic

These macros open and close the mfpic environment in which the rest of the macros
below make sense. The \mfpic macro also sets up the local coordinate system for the
picture. The 〈xscale〉 and 〈yscale〉 parameters establish the length of a coordinate sys-
tem unit, as a multiple of the TEX dimension \mfpicunit. At least one scale parameter
must be specified, but if only one is specified, then they are assumed to be equal. The
〈xneg〉 and 〈xpos〉 parameters establish the lower and upper (resp.) bounds for the x-
axis coordinates; similarly, 〈yneg〉 and 〈ypos〉 establish the bounds for the y-axis. These
bounds are expressed in local units—in other words, the actual width of the picture will
be (〈xpos〉−〈xneg〉)·〈xscale〉 times \mfpicunit, its height (〈ypos〉−〈yneg〉)·〈yscale〉 times
\mfpicunit, and its depth zero. These scales and bounds are used primarily to establish
the metric for the character containing the picture described within the environment. If

3

any of these parameters are changed, the 〈font〉.tfm file will be affected, so you will have
to reprocess the TEX file after processing 〈font〉.mf.
• Using mfpic with LATEX.

In LATEX, instead of using the \mfpic and \endmfpic macros, you may prefer to use
\begin{mfpic} and \end{mfpic}. Due to the way that LATEX has been designed, \be-
gin{command} effectively means \command, and \end{command} effectively means \end-
command, for any TEX command.

A LATEX version of the sample file, lapictures.tex, has also been provided.
Be prepared for overfull hboxes, due to the fact that the diagrams’ \tcaption’s are

deliberately too wide for the specified widths of the \mfpic pictures.

Note that the \opengraphsfile and \closegraphsfile macros should be used un-
der those names in LATEX too, as they do not quite possess a \command. . .\endcommand
structure.

This version of mfpic should be compatible with the LaTeX center environment.

The rest of the mfpic macros do not affect the font metric file (〈font〉.tfm), and so if
these commands are changed or added in your document, you will not have to repeat the
third step of processing (reprocessing with TEX) to complete your TEX document.

For the remainder of the macros, the numerical parameters are expressed in the units
of the local coordinate system specified by \mfpic, unless otherwise indicated.

• Figures.

METAFONT Pairs.

Since many of the arguments of the mfpic drawing commands are sent to META-
FONT to be interpreted, it’s useful to know something about METAFONT concepts.

In particular, METAFONT has pair objects, which may be constants or variables.
Pair constants have the form (x,y). Pairs are two-dimensional rectangular (cartesian)
quantities, and are clearly useful for representing both points and vectors on the plane.

To shorten the descriptions of mfpic macros, we herein often represent each pair by
a brief name, such as p, v or c, the meanings of which are usually obvious in the context
of the macro. The succinctness of this notation also helps us to think geometrically rather
than only of coordinates.

Points, Lines, and Rectangles.

\point[〈ptsize〉] [〈p0〉,〈p1〉,. . .]
Draws small disks centered at the points 〈p0〉, 〈p1〉, and so on. If the optional argument

〈ptsize〉 is present, it determines the diameter of the disks, which otherwise equals the TEX
dimension \pointsize. The default value of \pointsize is 2 points. The disks have a
filled interior if \pointfilled is true, otherwise their interior is erased.

\polyline{〈p0〉,〈p1〉,. . .} \lines{〈p0〉,〈p1〉,. . .}
Draws the line segment with endpoints at 〈p0〉 and 〈p1〉, then the line segment with

endpoints at 〈p1〉 and 〈p2〉, etc. The result is an open polygonal path through the specified

4

points, in the specified order.

\polygon{〈p0〉,〈p1〉,. . .} Draws a closed polygon with vertices at the specified points.

\rect{〈p0〉,〈p1〉}
Draws the rectangle specified by the points 〈p0〉 and 〈p1〉, these being any two opposite

corners of the rectangle.

Axes and Axis Marks.

\axes
Draws the x and y axes for the coordinate system. The axes extend the full width and

height of the mfpic environment. The length of the arrowhead on each axis is determined
by the TEX dimension \axisheadlen. The default value of \axisheadlen is 5 points. The
shape of the arrowhead is determined as in the \arrow macro.

\xmarks{〈x0〉,〈x1〉,. . .} and \ymarks{〈y0〉,〈y1〉,. . .}
These macros place hash marks on the x and y axes (resp.) at the places indicated by

the values in the list. The length of the hash marks is determined by the TEX dimension
\hashlen. The default value of \hashlen is 4 points.

Circles and Ellipses.

\circle{〈c〉,〈r〉}
Draws a circle centered at the point 〈c〉 and with radius 〈r〉.

\ellipse[〈θ〉]{〈c〉,〈rx〉,〈ry〉}
Draws an ellipse with the x radius 〈rx〉 and y radius 〈ry〉, centered at the point

〈c〉. The optional parameter 〈θ〉 provides a way of rotating the ellipse by 〈θ〉 degrees
counterclockwise around its center.

Curves.

\curve{〈p0〉,〈p1〉,. . .}
Draws a METAFONT Bézier path through the specified points, in the specified order.

\cyclic{〈p0〉,〈p1〉,. . .}
Draws a cyclic (i.e., closed) METAFONT Bézier curve through the specified points,

in the specified order.

Circular Arcs.

\arc[〈format〉]{. . .}
Draws a circular arc specified as determined by the 〈format〉 optional parameter—

this macro is unusual in that the optional 〈format〉 parameter determines the format of
the other parameter, as indicated below:

\arc[s]{〈p0〉,〈p1〉,〈sweep〉}
(Point-Sweep Form —this is the default format.) Draws a circular arc starting from

the point 〈p0〉, ending at the point 〈p1〉, and covering an arc angle of 〈sweep〉 degrees,
measured counterclockwise around the center of the circle. If, for example, the points 〈p0〉
and 〈p1〉 lie on a horizontal line with 〈p0〉 to the left, and 〈sweep〉 is between 0 and 180
(degrees), then the center of the circle will be above the horizontal line (in order for the

5

angle to be counterclockwise). Negative values of 〈sweep〉 give arcs curving in the other
direction.

\arc[t]{〈p0〉,〈p1〉,〈p2〉}
(Three-Point Form.) Draws the circular arc which passes through all three points

given.

\arc[p]{〈c〉,〈r〉,〈θ1〉,〈θ2〉}
(Polar Form.) Draws the circular arc with center 〈c〉 and radius 〈r〉, starting at the

angle 〈θ1〉 and ending at the angle 〈θ2〉, where both angles are measured counterclockwise
from the positive x axis.

\arc[c]{〈c〉,〈p1〉,〈θ〉}
(Center-Point Form.) Draws the circular arc with center 〈c〉, starting at the point

〈p1〉, and sweeping an angle of 〈θ〉 around the center from that point. (This is actually
mfpic’s internal way of handling arcs—all other formats are translated to this format
before drawing.)

Polar Coordinates.

\plr{(〈r0〉,〈θ0〉), (〈r1〉,〈θ1〉), . . .}
Replaces the specified list of polar coordinate pairs by the equivalent list of rectangular

(cartesian) coordinate pairs. Through \plr, commands designed for rectangular coordi-
nates can be applied to data represented in polar coordinates—and to data containing
both rectangular and polar coordinate pairs.

Other Figures.

\turtle{〈p0〉,〈v1〉,〈v2〉,. . .}
Draws a line segment, starting from the point 〈p0〉, and extending along the (2-

dimensional vector) displacement 〈v1〉. It then draws a line segment from the previous
segment’s endpoint, along displacement 〈v2〉. This process continues for all listed displace-
ments, similarly to “turtle graphics”.

\sector{〈c〉,〈r〉,〈θ1〉,〈θ2〉}
Draws the sector, from the angle 〈θ1〉 to the angle 〈θ2〉 inside the circle with center at

the point 〈c〉 and radius 〈r〉, where both angles are measured in degrees counterclockwise
from the direction parallel to the x axis. The sector forms a closed path.

• Shape-Modifier Macros.

Some mfpic macros operate as shape-modifier macros—for example, if you want to
put an arrowhead on a line segment, you could write: {\arrow\lines{(0,0),(1,0)}}.
The example illustrates two modifiers that are switches; these apply from when they are
used until the end of the innermost enclosing TeX scope. All but one of the mfpic modifier
macros are described here.

For the purposes of these macros, a distinction must be made in the figure macros
between “open” and “closed” paths. Note that a path that merely returns to its starting
point is not automatically closed; such a path is open, and must be explicitly closed, for
example by \closed (see below). (On the METAFONT level, path closure is achieved by

6

some variant of ..cycle). The (already) closed paths are: \rect, \circle, \ellipse,
\cyclic, \plrregion and \btwnfcn (below).

Closure of Paths.

\lclosed
Makes each open path into a closed path by adding a line segment between the end-

points of the path.

\bclosed
\sclosed
\cbclosed

These macros are similar to \lclosed, except that they close each open path by
drawing a Bézier, or a smooth curve (as in the smooth case in the \curve macro), or a
cubic B-spline, respectively, between the path’s endpoints.

Reversal, Accumulation and Connection of Paths.

\reverse. . .
Turns a path around, reversing its orientation. This will affect both the direction

of arrows (e.g. bi-directional arrows can be coded with \arrow\reverse\arrow. . . —here
the first \arrow modifier applies to the reversed path), and the order of endpoints for a
\connect. . .\endconnect environment (below).

\patharr{〈pv〉}. . .\endpatharr
This pair of macros, acting as an environment, accumulate all enclosing paths, in

order, into a path array named 〈pv〉.
Note: In LATEX, this pair of macros can be used in the form of a LATEX-style environ-

ment called patharr —as in \begin{patharr}. . .\end{patharr}.

\connect. . .\endconnect
This pair of macros, acting as an environment, add line segments from the trailing

endpoint of one open path to the leading endpoint of the next path, in the given order.
The result is a connected, open path.

Note 1: \connect and \endconnect are jointly implemented using the the patharr
environment with a METAFONT path array named ‘nexus’.

Note 2: In LATEX, this pair of macros canbe used in the form of a LATEX-style envi-
ronment called connect — as in \begin{connect}. . .\end{connect}.

Drawing.

\draw. . .
Draws the subsequent path using a solid outline. When mfpic is loaded, this is the

initial way in which a path is rendered by default, if no rendering prefix is given. (See the
description of \setrender below.)

\dashed. . .
Draws dashed segments along the path specified in the next command. The length

of the dashes is the value of the TEX dimension \dashlen. The space between the dashes
is the value of the TEX dimension \dashspace. Adjusts the space between the dashes by

7

as much as dashspace
n , where n is the number of spaces appearing in the curve, in order to

have the proper dashes at the ends. The dashes at the ends are half of \dashlen long.

\dotted. . .
Draws dots along the specified path. The size of the dots is the value of the TEX

dimension \dotsize. The space between the dots is the value of the TEX dimension
\dotspace.

Arrows.

\arrow[l〈headlen〉][r〈rotate〉][b〈backset〉]. . .
Draws an arrowhead at the endpoint of the open path (or at the last key point of

the closed path) that follows. The optional parameter 〈headlen〉 determines the length of
the arrowhead. The default is the value of the TEX dimension \headlen. The optional
parameter 〈rotate〉 allows the arrowhead to be rotated counterclockwise around its point
an angle of 〈rotate〉 degrees. The default is 0 degrees. The optional parameter 〈backset〉
allows the arrowhead to be “set back” from its original point, thus allowing e.g. double
arrowheads. This parameter is in the form of a TEX dimension—its default value is 0 points.
If an arrowhead is both rotated and set back, the rotation affects the direction in which
the arrowhead is set back. The optional parameters may appear in any order, but the
indicated key character for each parameter must always appear.

Shading, Filling, Erasing, Hatching.

The shading macros can all be used to shade the interior of closed paths, even if the
paths cross themselves. Shading an open curve is technically an error, but the META-
FONT code in grafbase.mf responds by drawing the path and not doing any filling.

\gfill. . .
Fills in the subsequent closed path.

\gclear. . .
Erases everything inside the subsequent closed path.

\shade[〈shadesp〉]. . .
Shades the interior of the subsequent closed path with dots. The diameter of the dots

is set by the macro \shadewd. The optional argument specifies the space between dots,
which defaults to the TEX dimension \shadespace. If \shadespace is 0 points (or less),
the closed path is filled, as with \gfill.

\thatch[〈hatchsp〉,〈angle〉]. . .
Shades a closed path using lines at the specified angle. The thickness of the lines is set

by the macro \hatchwd. In the optional argument, 〈hatchsp〉 specifies the space between
lines, which defaults to the TEX dimension \hatchspace. If \hatchspace is 0 points (or
less), the closed path is filled, as with \gfill. The 〈angle〉 defaults to 0 degrees. Either
both optional arguments must be present, or both must be absent.

\lhatch[〈hatchsp〉]. . .
Draws lines shading in the subsequent closed path in a “left-oblique hatched” (upper

left to lower right) pattern. The thickness of the lines is set by the macro \hatchwd. The

8

optional 〈hatchsp〉 argument is as in \thatch.

\rhatch[〈hatchsp〉]. . .
Draws lines shading in the subsequent closed path in a “right-oblique hatched” (lower

left to upper right) pattern. The thickness of the lines is set by the macro \hatchwd. The
optional 〈hatchsp〉 argument is as in \thatch.

\hatch[〈hatchsp〉]. . .
\xhatch[〈hatchsp〉]. . .

Draws lines shading in the subsequent closed path in a “cross-hatched” pattern. The
thickness of the lines is set by the macro \hatchwd. The optional 〈hatchsp〉 argument is
as in \thatch.

Changing the Default Rendering.

Rendering is the process of converting a geometric description into a drawing. In
METAFONT, this means producing a bitmap (METAFONT calls this a picture), either
by stroking (drawing) a path using a particular pen), or by filling a closed path.

\setrender{〈TEX commands〉} Initially, mfpic uses the \draw command (stroking) as
the default operation when a figure is to be rendered. However, this can be changed to
any combination of (rendering and/or other!) TEX commands, by using the \setrender
command. This is a local redefinition, so it can be enclosed in braces to restrict its range.

Examples.

It may be instructive, for the purpose of seeing how the syntax of shape-modifier
switches works, to consider two examples:

{\ shade\ draw\ lclosed\ lines[...]}
which shades inside a polygon and draws its outline; and

{\ shade\ lclosed\ draw\ lines[...]}
which shades inside the polygon, and draws all of the outline except the line segment
supplied by \lclosed.

• Affine Transforms.

Coordinate transformations that keep parallel lines in parallel are called affine trans-
forms. These include translation, rotation, reflection, scaling and skewing (slanting). For
the METAFONT coordinate system only—that is, for paths, but not for \tlabel’s (let
alone \tcaption’s)—mfpic provides the ability to apply METAFONT affine transforms.
Transforms can be localised to any group of METAFONT paths (this is implemented
using a METAFONT path array, paths).

Rotation of Paths.

\rotatepath{(〈x〉,〈y〉),〈θ〉}
Rotates the following path by 〈θ〉 degrees about point (〈x〉,〈y〉).
Affine Transforms of the METAFONT Coordinate System.

\coords. . .\endcoords
All affine transforms are restricted to the innermost enclosing \coords. . .\endcoords

9

pair. If there is no such enclosure, then the transforms will apply globally, and even across
mfpic environments, so be careful to remember to enclose transforms!

Note: In LATEX, a coords environment may be used.

\applyT{〈transformer〉}
Apply the METAFONT 〈transformer〉 to the current coordinate system. For exam-

ple, the mfpic TEX macro \zslant#1 is implemented as \applyT{zslanted #1} where
the argument #1 is a METAFONT pair, such as (x, y).

Transforms provided by mfpic.

\rotate{θ} Rotates around origin by θ degrees
\rotatearound{p}{θ} Rotates around point p by θ degrees
\turn[p]{θ} Rotates around point p (origin is default) by θ degrees
\mirror{p1}{p2}
\reflectabout{p1}{p2} Reflects about the line p1 . . . p2

\shift{p} Shifts origin by the vector p
\scale{s} Scales uniformly by a factor of s
\xscale{s} Scales only X by a factor of s
\yscale{s} Scales only Y by a factor of s
\zscale{p} Scales uniformly by magnitude of p, and rotates by angle of p
\xslant{s} Skew in X direction by the multiple s of Y
\yslant{s} Skew in Y direction by the multiple s of X
\zslant{s} See zslanted in grafdoc.tex
\boost{χ} Special relativity boost by χ
\xyswap Reflects in the line Y = X

• Functions and Plotting.

\fdef{〈fcn〉}(〈param1〉,〈param2〉,. . .)[〈mf-expr〉]
Defines a METAFONT function 〈fcn〉 of the parameters 〈param1〉, 〈param2〉, . . .,

by the METAFONT expression 〈mf-expr〉 in which the only free parameters are those
named. The return type of the function is the same as the type of the expression.

The expression 〈mf-expr〉 is passed directly into the corresponding METAFONT
macro and interpreted there, so METAFONT’s rules for algebraic expressions apply.

Operations available include +, -, *, /, and ** (x**y= xy), with (and) for grouping.
Functions available include round, floor, ceiling, abs, sqrt, sind, cosd, mlog, and
mexp. (Notes: The METAFONT trigonometric functions sind and cosd take arguments
in degrees; mlog(x)= 256 lnx, and mexp is its inverse. There are other operations and
functions available, but these are the most useful for plotting purposes.) You can also
define the function 〈fcn〉 by cases, using the METAFONT conditional expression

if 〈boolean〉: 〈expr〉 else: 〈expr〉 fi.
Relations available for the 〈boolean〉 part of the expression include =, <, >, <=, and >=.

Complicated functions can be defined by a compound expression, which is a series of
METAFONT statements, followed by an expression, all enclosed in the METAFONT
commands begingroup and endgroup. METAFONT functions can call METAFONT
functions, recursively.

10

The plotting macros take two or more arguments. They have an optional first argu-
ment, 〈spec〉, which determines whether a function is drawn smooth (as a METAFONT
Bézier curve), or polygonal (as line segments)—if 〈spec〉 is s , the function will be smooth;
if 〈spec〉 is p, the function will be polygonal; the default 〈spec〉 depends on the purpose of
the macro.

One compulsory argument contains three values 〈min〉, 〈max〉 and 〈step〉. The inde-
pendent variable of a function starts at the value 〈min〉 and steps by 〈step〉 until reaching
〈max〉.

There are one or more subsequent arguments, denoted 〈fcn〉, each of which is a META-
FONT function.

\function[〈spec〉]{〈xmin〉,〈xmax〉,〈step〉}{〈fcn〉}
Plots 〈fcn〉, a METAFONT numeric function of one numeric argument. The default

value for the optional parameter 〈spec〉 is s.

\parafcn[〈spec〉]{〈tmin〉,〈tmax〉,〈step〉}{〈pfcn〉}
Plots the parametric path determined by (x(t), y(t)) =〈pfcn(t)〉, where 〈pfcn〉 is a

METAFONT function of one numeric argument, returning a METAFONT pair (such
as (x, y)). The default value for the optional parameter 〈spec〉 is s.

\plrfcn[〈spec〉]{〈θmin〉,〈θmax〉,〈θstep〉}{〈fcn〉}
Plots the polar function determined by r =〈fcn〉(θ), where 〈fcn〉 is a METAFONT

numeric function of one numeric argument, and θ varies from 〈θmin〉 to 〈θmax〉 in steps
of 〈θstep〉. Each θ value is interpreted as an angle measured in degrees. The default value
for the optional parameter 〈spec〉 is s.

\btwnfcn[〈spec〉]{〈xmin〉,〈xmax〉,〈step〉}{〈fcn0〉}{〈fcn1〉}
Draws the region between the two METAFONT functions 〈fcn0〉 and 〈fcn1〉, these

being numeric functions of one numeric argument. The region is bounded also by the
vertical lines at 〈xmin〉 and 〈xmax〉. Unlike the previous function macros, the default value
for 〈spec〉 is p —this macro is intended to be used for shading between functions, a task
for which smoothness is usually unnecessary.

\plrregion[〈spec〉]{〈θmin〉,〈θmax〉,〈θstep〉}{〈fcn〉}
Plots the polar region determined by r =〈fcn〉(θ), where 〈fcn〉 is a METAFONT

numeric function of one numeric argument. The θ values are angles (measured in degrees),
varying from 〈θmin〉 to 〈θmax〉 in steps of 〈θstep〉. The region is also bounded by the
angles 〈θmin〉 and 〈θmax〉, i.e. by the line segments joining the origin to the endpoints
of the function. The default value for 〈spec〉 is p —this macro is intended to be used for
shading the region, a task for which smoothness is usually unnecessary.

• Labels and Captions.

The next two macros do not affect the METAFONT file (〈font〉.mf) at all, but are
added to the picture by TEX. Therefore, if these macros are changed or added in your
document, there is no need to repeat either of the last two steps (processing with META-
FONT or reprocessing with TEX) in order to complete your TEX document.

11

\tlabel[〈trans〉](〈x〉,〈y〉){〈label text〉}
Places a TEX label on the graph. (Not to be confused with LaTeX’s \label command.)

Without the [〈trans〉] parameter, the tlabel is placed with the lower left-hand corner of
the tlabel at the point (〈x〉,〈y〉).

Note the different format of the point specification from the other mfpic macros—this
is because \tlabel does not use METAFONT to place the tlabel, but instead uses TEX
\kern commands.

The optional parameter [〈trans〉] specifies the relative placement of the tlabel with
respect to the point (〈x〉,〈y〉) — 〈trans〉 is a two-character sequence where the first char-
acter is one of t (top), c (center), or b (bottom), to specify vertical placement, and the
second character is one of l (left), c (center), or r (right), to specify horizontal placement.
The default translation is equivalent to specifying [bl].

If the tlabel goes beyond the bounds of the graph in any direction, the box containing
the graph is expanded to make room for the tlabel.

\tcaption[〈maxwd〉,〈linewd〉]{〈caption text〉}
Places a TEX caption at the bottom of the graph. (Not to be confused with LaTeX’s

similar \caption command.) The macro will automatically break lines which are too much
wider than the graph —if the tcaption line exceeds 〈maxwd〉 times the width of the graph,
then lines will be broken to form lines at most 〈linewd〉 times the width of the graph. The
default settings for 〈maxwd〉 and 〈linewd〉 are 1.2 and 1.0, respectively.

If the tcaption and graph have different widths, the two are centered relative to each
other. If the tcaption takes multiple lines, then the lines are both left- and right-justified
(except for the last line), but the first line is not indented.

In a tcaption, Explicit line breaks may be specified by using the \\ command.

• Saving an mfpic picture.
Summary: \savepic\foo causes the next \mfpic picture to be saved in the box

\b\foo. (The \savepic command should not be issued before the previous \mfpic picture
ends!) The picture is placed by\foo; this also empties the box. To place the same picture
twice, copy it with \copypic\foo.

\savepic〈\foo〉
Allocates a box \b\foo (the second \ is part of the name) and defines \foo to expand

to \box\b\foo.

\copypic〈bsl foo〉
Effects a \copy\b\foo, to copy the mfpic picture that’s been saved in the box \b\foo

by a \savepic〈\foo〉 command.

• Parameters.

There are many parameters in mfpic which the user can modify to obtain different
effects, such as different arrowhead size or shape. Most of these parameters have been
described already in the context of macros they modify, but they are all described together
here.

Most of the parameters are stored by TEX as dimensions, and so are available globally,
even if there is no METAFONT file open; changes to them are subject to the usual TEX

12

rules of scope. Some parameters, however, are stored by METAFONT, so the macros
to change them will have no effect unless a METAFONT file is open, and the changes
are subject to METAFONT’s rules of scope—to the mfpic user, this means that changes
inside the \mfpic . . . \endmfpic environment are local to that environment, but other
TEX groupings have no effect on scope.

\mfpicunit
This TEX dimension stores the basic unit length for mfpic pictures—the x and y scales

in the \mfpic macro are multiples of this unit. The default value is 1 point.

\pointsize
This TEX dimension stores the diameter of the circle drawn by the \point macro.

The default value is 2 points.

\pointfilled
This TEX boolean value determines whether the circle drawn by \point will be filled

(if true) or open (outline drawn, background erased). The default value is true.

\pen{〈drawpensize〉}
Establishes the width of the normal drawing pen. The default, at the start of each

mfpic environment, is 0.5 points. The 〈drawpensize〉 is stored by METAFONT. The
shading dots and hatching pen are unaffected by this.

\shadewd{〈dotdiam〉}
Sets the diameter of the dots used in the shading macro. The drawing and hatching

pens are unaffected by this.

\hatchwd{〈hatchpensize〉}
Sets the line thickness used in the hatching macros. The drawing pen and shading

dots are unaffected by this.

\headlen
This TEX dimension stores the length of the arrowhead drawn by the \arrow macro.

The default value is 3 points.

\axisheadlen
This TEX dimension stores the length of the arrowhead drawn by the \axes macro.

The default value is 5 points.

\headshape{〈hdwdr〉}{〈hdten〉}{〈hfilled〉}
Establishes the shape of the arrowhead drawn by the \arrow and \axes macros. The

value of 〈hdwdr〉 is the ratio of the width of the arrowhead to its length; 〈hdten〉 is the
tension of the Bézier curves; and 〈hfilled〉 is a METAFONT boolean value indicating
whether the arrowheads are to be filled (if true) or open. The default values are 1, 1,
false, respectively. The 〈hdwdr〉, 〈hdten〉 and 〈hfilled〉 values are stored by METAFONT.
Setting 〈hdten〉 to “infinity” will make the sides of the arrowheads straight lines.

\dashlen, \dashspace
These TEX dimensions store, respectively, the length of dashes and the length of spaces

between dashes, for lines drawn by the \dotted macro. The \dotted macro may adjust

13

the space between the dashes by as much as dashspace
n , where n is the number of spaces

appearing in the line segment, in order not to have partial dashes at the ends. The default
values are both 4 points.

\dashlineset, \dotlineset
These macros provide convenient standard settings for the \dashlen and \dashspace

dimensions. The macro \dashlineset sets both values to 4 points; the macro \dotlineset
sets \dashlen to 1 point and \dashspace to 2 points.

\hashlen
This TEX dimension stores the length of the axis hash marks drawn by the \xmarks

and \ymarks macros. The default value is 4 points.

\shadespace
This TEX dimension establishes the spacing between dots drawn by the \shade macro.

The default value is 1 point.

\darkershade, \lightershade
These macros both multiply the \shadespace dimension by constant factors, 5

6 and
6
5

respectively, to provide convenient standard settings for several levels of shading.

\hatchspace
This TEX dimension establishes the spacing between lines drawn by the \hatch macro.

The default value is 3 points.

• For Power Users Only.

\mfsrc{〈metafont code〉}
Writes the 〈metafont code〉 directly to the METAFONT file, using a TEX \write

command. This can have some rather bizarre consequences, though, so using it is not
recommended to the unwary.

\noship
This modifier macro turns off character shipping (by METAFONT to the TFM and

GF files) for the duration of the innermost enclosing group (eg, for the mfpic environment).
This is useful if all one wishes to do in the current mfpic environment is to make tiles (see
below).

\store{〈path variable〉}{〈path〉}
Store the following 〈path〉 in the specified METAFONT 〈path variable〉 (any valid

METAFONT variable name will do) for later processing by the \mfobj macro.

\mfobj{〈path expression〉}
Use the METAFONT 〈path expression〉 as a path.

Examples of use of \store and \mfobj:

\store{f}{\circle{. . .}}
\dotted\mfobj{f}
\hatch\mfobj{f}
\store{f}{\curve{. . .}}

14

\store{g}{\curve{. . .}}
\store{h}{\mfobj{f..g..cycle}}
\dotted\mfobj{f}
\dotted\mfobj{g}
\shade\mfobj{h}

\tile{〈tilename〉,〈unit〉,(〈wd〉,〈ht〉),〈clip〉}. . .\endtile
In this environment, all drawing commands contribute to a tile. A tile is a rectangular

picture which may be used to fill the interior of closed paths. The units of drawing are
given by 〈unit〉, the tile’s horizontal dimensions are 0 to 〈wd〉, its vertical dimensions 0 to
〈ht〉, and if 〈clip〉 is true then all drawing is clipped to be within the tile’s boundary.

By using this macro, you can design your own fill patterns (to use them, see the \tess
macro below), but please take some care with the æsthetics!

\tess{〈tilename〉}. . .
Tile the interior of each closed path with a tesselation comprised of tiles of the type

specified by 〈tilename〉. There is no default 〈tilename〉; you must make all your own tiles.
Tiling an open curve is technically an error, but the METAFONT code responds by
drawing the path and not doing any tiling.

\mftitle{〈title〉}
Write the string 〈title〉 to the METAFONT file, and use it as a METAFONT mes-

sage. (See The METAFONTbook, chapter 22 Strings, page 187, for two uses of this.)

\tmtitle{〈title〉}
Write the text 〈title〉 to the TEX document, and to the log file, and use it implicitly

in \mftitle.

\newfdim{〈fdim〉}
Create a new global font dimension, named 〈fdim〉, which can be used almost like an

ordinary TEX dimension. The exception is that the TEX commands \advance, \multiply
and \divide cannot be applied directly to font dimensions; however, the font dimension
can be copied to a temporary TEX dimension register, which can then be manipulated
and copied back. Also beware that \newfdim uses font dimensions from a single font, the
dummy font, which most TEX systems ought to have. (You’ll know if yours doesn’t, because
mfpic will fail upon loading!) Also, implementations of TEX differ in the number of font
dimensions allowed per font. Hopefully, mfpic won’t exceed your local TEX’s limit.

• ACKNOWLEDGEMENTS.

Tom would like to thank all of the people at Dartmouth as well as out in the network
world for testing mfpic and sending him back comments. He would particularly like to
thank:

Geoffrey Tobin (G.Tobin@latrobe.edu.au) for his many suggestions, especially about
cleaning up the METAFONT code, enforcing dimensions, fixing the dotted line compu-
tations, and speeding up the shading routines (through this process, Geoffrey and Tom
managed to teach each other many of the subtleties of METAFONT), and for keeping
track of mfpic for nearly a year while Tom finished his thesis;

15

Bryan Green (bgreen@sanjuan.uvic.ca) for his many suggestions, some of which (in-
cluding his rewriting the \tcaption macro) ultimately led to the current version’s ability
to put graphs in-line or side-by-side; and

Uwe Bonnes (bon@lte.e-technik.uni-erlangen.de) and Jaromir Kuben (vabo@muni.cz),
who worked out re-writes of mfpic during Tom’s working hiatus and who each contributed
several valuable ideas.

Some credit also belongs to Anthony Stark (ajs@merck.com), whose work on a FIG to
METAFONT converter has had a serious impact on the development of many of mfpic’s
capabilities.

Finally, Tom would like to thank Alan Vlach, the other TEXnician at Berry College,
for helping him decide on the format of many of the macros, and for helping with testing.

• CHANGES HISTORY.

See the file CHANGES.tex for the history of changes to mfpic.

16

