g1 GB_DIJK INTRODUCTION 1

Important: Before reading GB_DIJK, please read or at least skim the program for GB.GRAPH.

1. Introduction. The GraphBase demonstration routine dijkstra(uu,vv, gg,hh) finds a shortest path
from vertex uu to vertex vv in graph gg, with the aid of an optional heuristic function hh. This function
implements a version of Dijkstra’s algorithm, a general procedure for determining shortest paths in a directed
graph that has nonnegative arc lengths [E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik 1 (1959), 269-271].

If hh is null, the length of every arc in gg must be nonnegative. If hh is non-null, hh should be a function
defined on the vertices of the graph such that the length d of an arc from u to v always satisfies the condition

d > hh(u) — hh(v).

In such a case, we can effectively replace each arc length d by d — hh(u) + hh(v), obtaining a graph with
nonnegative arc lengths. The shortest paths between vertices in this modified graph are the same as they
were in the original graph.

The basic idea of Dijkstra’s algorithm is to explore the vertices of the graph in order of their distance
from the starting vertex wu, proceeding until vv is encountered. If the distances have been modified by a
heuristic function hh such that hh(u) happens to equal the true distance from u to vv, for all u, then all
of the modified distances on shortest paths to vv will be zero. This means that the algorithm will explore
all of the most useful arcs first, without wandering off in unfruitful directions. In practice we usually don’t
know the exact distances to vv in advance, but we can often compute an approximate value hh(u) that will
help focus the search.

If the external variable verbose is nonzero, dijkstra will record its activities on the standard output file by
printing the distances from wu to all vertices it visits.

After dijkstra has found a shortest path, it returns the length of that path. If no path from wu to vv exists
(in particular, if vv is A), it returns —1; in such a case, the shortest distances from uwu to all vertices reachable
from wu will have been computed and stored in the graph. An auxiliary function, print_dijkstra_result(vv),
can be used to display the actual path found, if one exists.

Examples of the use of dijkstra appear in the LADDERS demonstration module.

2. This C module is meant to be loaded as part of another program. It has the following simple structure:

#include "gb_graph.h" /* define the standard GraphBase data structures */
(Preprocessor definitions)

Priority queue procedures 16)

Global declarations 8)

The digkstra procedure 9)

The print_dijkstra_result procedure 14)

(
(
(
(

3. Users of GB_DIJK should include the header file gb_dijk.h:
(gb_dijk.h 3)=
extern long dijkstra(); /* procedure to calculate shortest paths */
#define print_dijkstra_result p_dijkstra_result /* shorthand for linker =/
extern void print_dijkstra_result(); /* procedure to display the answer */

See also sections 5, 6, 7, and 25.

2 THE MAIN ALGORITHM GB_DIJK 84

4. The main algorithm. As Dijkstra’s algorithm proceeds, it “knows” shortest paths from wu to more
and more vertices; we will call these vertices “known.” Initially only wu itself is known. The procedure
terminates when vv becomes known, or when all vertices reachable from uu are known.

Dijkstra’s algorithm looks at all vertices adjacent to known vertices. A vertex is said to have been “seen”
if it is either known or adjacent to a vertex that’s known.

The algorithm proceeds by learning to know all vertices in a greater and greater radius from the starting
point. Thus, if v is a known vertex at distance d from uu, every vertex at distance less than d from wu will
also be known. (Throughout this discussion the word “distance” actually means “distance modified by the
heuristic function”; we omit mentioning the heuristic because we can assume that the algorithm is operating
on a graph with modified distances.)

The algorithm maintains an auxiliary list of all vertices that have been seen but aren’t yet known. For
every such vertex v, it remembers the shortest distance d from uu to v by a path that passes entirely through
known vertices except for the very last arc.

This auxiliary list is actually a priority queue, ordered by the d values. If v is a vertex of the priority
queue having the smallest d, we can remove v from the queue and consider it known, because there cannot
be a path of length less than d from wu to v. (This is where the assumption of nonnegative arc length is
crucial to the algorithm’s validity.)

5. To implement the ideas just sketched, we use several of the utility fields in vertex records. Each vertex v
has a dist field v~dist, which represents its true distance from uu if v is known; otherwise v~dist represents
the shortest distance from wu discovered so far.

Each vertex v also has a backlink field v-backlink, which is non-A if and only if v has been seen. In that
case v~backlink is a vertex one step “closer” to uu, on a path from uu to v that achieves the current distance
v~dist. (Exception: Vertex wu has a backlink pointing to itself.) The backlink fields thereby allow us to
construct shortest paths from wu to all the known vertices, if desired.

#define dist =z.1 /* distance from wu, modified by hh, appears in vertex utility field z */
#define backlink y.V /* pointer to previous vertex appears in utility field y */

(gb_dijk.h 3)+4=
#define dist =z.1
#define backlink y.V

6. The priority queue is implemented by four procedures:
init_queue(d) makes the queue empty and prepares for subsequent keys > d.
enqueue(v,d) puts vertex v in the queue and assigns it the key value v~dist = d.
requeue (v, d) takes vertex v out of the queue and enters it again with the smaller key value v~dist = d.

del_min () removes a vertex with minimum key from the queue and returns a pointer to that vertex. If
the queue is empty, A is returned.

These procedures are accessed via external pointers, so that the user of GB_DIJK can supply alternate
queueing methods if desired.

(gb_dijk.h 3)+4=

extern void (xinit_queue)(); /* create an empty priority queue for dijkstra */
extern void (xenqueue)(); /* insert a new element in the priority queue x/
extern void (xrequeue)(); /* decrease the key of an element in the queue */
extern Vertex x(xdel_min)(); /* remove an element with smallest key =/

7. The heuristic function might take awhile to compute, so we avoid recomputation by storing hh(v) in
another utility field v~hh_val once we’ve evaluated it.

#define hhval x.1 /* computed value of hh(v) */

(gb_dijk.h 3) 4=
#define hh_val x=.1

68 GB_DIJK THE MAIN ALGORITHM 3

8. If no heuristic function is supplied by the user, we replace it by a dummy function that simply returns
0 in all cases.

(Global declarations 8) =
long dummy(v)
Vertex xv;
{ return 0; }
See also section 15.

This code is used in section 2.

9. Here now is dikstra:

(The digkstra procedure 9) =
long dijkstra(uu, vv, gg, hh)
Vertex xuu; /* the starting point x/
Vertex xvv; /* the ending point */
Graph xgg; /* the graph they belong to */
long (xhh)(); /* heuristic function */
{ register Vertex xt; /* current vertex of interest */

if (hh = A) hh = dummy; /* change to default heuristic */
(Make uu the only vertex seen; also make it known 10);
t = uu;
if (verbose) (Print initial message 12);
while (t # vv) {
(Put all unseen vertices adjacent to t into the queue, and update the distances of other vertices
adjacent to ¢ 11);
t = (xdel_min)();
if (t=A) return —1; /* if the queue becomes empty, there’s no way to get to vv */
if (verbose) (Print the distance to t 13);

}

return vv-dist — vv~hh_val + wu-hh_val; /* true distance from uu to vv */

}

This code is used in section 2.

10. As stated above, a vertex is considered seen only when its backlink isn’t null, and known only when it
is seen but not in the queue.

(Make wu the only vertex seen; also make it known 10) =
for (t = gg~vertices + gg-n — 1; t > gg-vertices; t——) t-backlink = A;
uu~backlink = uu;
uu~dist = 0;
wu~hh_val = (xhh)(uu);
(xinit_queue)(01,); /* make the priority queue empty */

This code is used in section 9.

4 THE MAIN ALGORITHM GB_DIJK §11

11. Here we help the C compiler in case it hasn’t got a great optimizer.

(Put all unseen vertices adjacent to ¢ into the queue, and update the distances of other vertices adjacent
tot 11) =
{ register Arc xa; /* an arc leading from ¢ */
register long d = t-dist — t-hh_val;
for (a = t~arcs; a; a = a~-next) {
register Vertex xv = a~tip; /* a vertex adjacent to t */
if (v-backlink) { /* v has already been seen */
register long dd = d + a~len 4+ v-hh_val;
if (dd < v~dist) {
v~backlink = t;
(xrequeue) (v, dd); /* we found a better way to get there */

} else { /* v hasn’t been seen before x/
v~hh_val = (xhh)(v);
v~backlink = t;
(xenqueve) (v, d + a~len + v-hh_val);
}
}
}

This code is used in section 9.

12. The dist fields don’t contain true distances in the graph; they represent distances modified by the
heuristic function. The true distance from uu to vertex v is v~dist — v~hh_val + vu~hh_val.

When printing the results, we show true distances. Also, if a nontrivial heuristic is being used, we give the
hh value in brackets; the user can then observe that vertices are becoming known in order of true distance
plus hh value.

(Print initial message 12) =
{ printf ("Distances_ from %s", uu-name);
if (hh # dummy) printf (", [%1d]", vu~hh_val);
printf (":\n");

This code is used in section 9.

13. (Print the distance to t 13) =
{ printf ("Luhlduto %s", t=dist — t~hh_val + uu~hh_val,t-name);
if (hh # dummy) printf (", [%1d]", t=hh_val);
printf ("Lvia %s\n", t-backlink-name);

}

This code is used in section 9.

§14 GB_DIJK THE MAIN ALGORITHM 5

14. After dijkstra has found a shortest path, the backlinks from vv specify the steps of that path. We
want to print the path in the forward direction, so we reverse the links.

We also unreverse them again, just in case the user didn’t want the backlinks to be trashed. Indeed, this
procedure can be used for any vertex vv whose backlink is non-null, not only the vv that was a parameter
to dykstra.

List reversal is conveniently regarded as a process of popping off one stack and pushing onto another.

#define print_dijkstra_result p_dijkstra_result /* shorthand for linker x/

(The print_dijkstra_result procedure 14) =
void print_dijkstra_result(vv)

Vertex *vv; /* ending vertex */
{ register Vertex *t, *p, *q; /* registers for reversing links x/
t=Ap=wv;

if (—p-backlink) {
printf ("Sorry, ksuis unreachable.\n", p~name);
return;

do { /* pop an item from p to t */
q = p-backlink;
pbacklink = t;
t=p;
pP=q
} while (¢t # p); /% the loop stops with ¢t = p = uu */
do {
printf ("%101d_%s\n", t~dist — t~hh_val + p~hh_val, t-name);
t = t=backlink;
} while (¢);
t=p;
do { /* pop an item from t to p */
q = t=backlink;
t=backlink = p;
p=1
t=gq;
} while (p # w);
}

This code is used in section 2.

6 PRIORITY QUEUES GB_DIJK §15

15. Priority queues. Here we provide a simple doubly linked list for queueing; this is a convenient
default, good enough for applications that aren’t too large. (See MILES_SPAN for implementations of other
schemes that are more efficient when the queue gets large.)

The two queue links occupy two of a vertex’s remaining utility fields.

#define llink 0.V /* llink is stored in utility field v of a vertex */
#define rlink w.V /* rlink is stored in utility field w of a vertex */

(Global declarations 8) +=

void (xinit_queue)() = init_dlist; /* create an empty dlist */

void (xenqueue)() = enlist; /* insert a new element in dlist */

void (xrequeue)() = reenlist; /* decrease the key of an element in dlist */
Vertex *(xdel_min)() = del_first; /* remove element with smallest key =/

16. There’s a special list head, from which we get to everything else in the queue in decreasing order of
keys by following llink fields.

The following declaration actually provides for 128 list heads. Only the first of these is used here, but
we’ll find something to do with the other 127 later.

(Priority queue procedures 16) =
Vertex head[128]; /* list-head elements that are always present */
void init_dlist(d)
long d;

head-llink = head-rlink = head;
head~dist = d — 1; /* a value guaranteed to be smaller than any actual key */
}
See also sections 17, 18, 19, 21, 22, 23, and 24.

This code is used in section 2.

17. It seems reasonable to assume that an element entering the queue for the first time will tend to have
a larger key than the other elements.

Indeed, in the special case that all arcs in the graph have the same length, this strategy turns out to
be quite fast. For in that case, every vertex is added to the end of the queue and deleted from the front,
without any requeueing; the algorithm produces a strict first-in-first-out queueing discipline and performs a
breadth-first search.

(Priority queue procedures 16) +=
void enlist (v, d)
Vertex *uv;
long d;
{ register Vertex xt = head~llink;
v~dist = d;
while (d < t~dist) t = t-llink;
v=llink = t;
(v-rlink = t-rlink)~llink = v;
t-rlink = v;

}

§18 GB_DIJK PRIORITY QUEUES 7

18. (Priority queue procedures 16) +=
void reenlist (v, d)

Vertex xv;
long d;
{ register Vertex xt = v-llink;
(t-rlink = v-rlink ~llink = v-llink; /* remove v x/
v-dist = d; /* we assume that the new dist is smaller than it was before */
while (d < t~dist) t = t-llink;
v-llink = t;
(v-rlink = t-rlink)~llink = v;
t-rlink = v;

}

19. (Priority queue procedures 16) +=
Vertex xdel_first()
{ Vertex xt;
t = head~rlink;
if (t = head) return A;
(head~rlink = t-rlink)~llink = head;
return t;

}

8 A SPECIAL CASE GB_DIJK §20

20. A special case. When the arc lengths in the graph are all fairly small, we can substitute another
queueing discipline that does each operation quickly. Suppose the only lengths are 0, 1, ..., k — 1; then we
can prove easily that the priority queue will never contain more than k different values at once. Moreover,
we can implement it by maintaining k doubly linked lists, one for each key value mod k.

For example, let £k = 128. Here is an alternate set of queue commands, to be used when the arc lengths
are known to be less than 128.

21. (Priority queue procedures 16) +=
long master_key; /* smallest key that may be present in the priority queue x*/
void init_128 (d)
long d;
{ register Vertex su;
master_key = d;
for (u = head; u < head + 128; u++) wu~llink = u~rlink = u;

}

22. If the number of lists were not a power of 2, we would calculate a remainder by division instead of by
logical-anding.
(Priority queue procedures 16) +=
Vertex xdel_128 ()
{ long d;
register Vertex xu, xt;
for (d = master_key; d < master_key + 128; d++) {
u = head + (d & #71); /* that’s d % 128 x/
t = u~rlink;
if (t#u) { /+ we found a nonempty list with minimum key */
master_key = d;
(u~rlink = t-rlink)~llink = u;
return t; /* incidentally, t~dist = d */
}
}

return A; /x all 128 lists are empty */

}

23. (Priority queue procedures 16) +=
void eng_128 (v,d)
Vertex xv; /* new vertex for the queue */
long d; [its dist =/
{ register Vertex *u = head + (d & #7£);
v~dist = d;
(v-llink = u~llink)-rlink = v;
v-rlink = u;
u~llink = v;

}

§24 GB_DIJK A SPECIAL CASE 9

24. All of these operations have been so simple, one wonders why the lists should be doubly linked. Single
linking would indeed be plenty—if we didn’t have to support the requeue operation.

But requeueing involves deleting an arbitrary element from the middle of its list. And we do seem to need
two links for that.

In the application to Dijkstra’s algorithm, the new d will always be master_key or more. But we want to
implement requeueing in general, so that this procedure can be used also for other algorithms such as the
calculation of minimum spanning trees (see MILES.SPAN).

(Priority queue procedures 16) +=
void req-128 (v,d)
Vertex xv; /* vertex to be moved to another list */
long d; /x its new dist */
{ register Vertex *u = head + (d & #7£);
(v-llink~rlink = v-rlink)~llink = v-llink; /* remove v */
v-dist = d; /* the new dist is smaller than it was before x/
(v-llink = u~llink)~rlink = v;
v-rlink = u;
u~llink = v;
if (d < master_key) master_key = d; /* not needed for Dijkstra’s algorithm x*/

}

25. The user of GB_DIJK needs to know the names of these queueing procedures if changes to the defaults
are made, so we’d better put the necessary info into the header file.
(gb_dijk.h 3)+4=

extern void nit_dlist();

extern void enlist();

extern void reenlist();

extern Vertex xdel_first();

extern void init_128();

extern Vertex xdel 128();

extern void eng_128();

extern void req_-128();

10 INDEX GB_DIJK §26

26. Index. Here is a list that shows where the identifiers of this program are defined and used.

a: 11.

arcs: 11.

backlink: 5, 10, 11, 13, 14.

d: ﬂ; m; H; ﬁ; 2; 27 Ea %

dd: 11.

del_first: 15, 19, 25.

del-min: 6, 9, 15.

del_128: 22, 25.

dijkstra: 1, 3, 6, 9, 14.

Dijkstra, Edsger Wijbe: 1.

dist: 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18,
22, 23, 24.

dummy: 8, 9, 12, 13.

enlist: 15, 17, 25.

enq-128: 23, 25.

enqueue: 6, 11, 15.

gg: 1,9, 10.

head: 16, 17, 19, 21, 22, 23, 24.

hh: 1,5,7,9, 10, 11, 12, 13.

hh_val: 7,9, 10, 11, 12, 13, 14.

indt_dlist: 15, 16, 25.

mit_queue: 6, 10, 15.

init_128: 21, 25.

len: 11.

llink: 15, 16, 17, 18, 19, 21, 22, 23, 24.

master_key: 21, 22, 24.

name: 12, 13, 14.

nexrt: 11.

p: 14.

p-digkstra_result: 3, 14.

print_digkstra_result: 1, 3, 14.

printf: 12, 13, 14.

q: 14.

reenlist: 15, 18, 25.

req-128: 24, 25.

requeue: 6, 11, 15, 24.

rlink: 15, 16, 17, 18, 19, 21, 22, 23, 24.

t 9, 14, 17, 18, 19, 22.

tip: 11.

u: ﬁa 2; E; %

wu: 1,4, 5,9, 10, 12, 13, 14.

vl §7 ua H; ﬁ; E; %

verbose: 1, 9.

vertices: 10.

vw: 1, 4, 9, 14.

GB_DIJK NAMES OF THE SECTIONS 11

(Global declarations 8, 15) Used in section 2.

(Make wu the only vertex seen; also make it known 10) Used in section 9.

(Print initial message 12) Used in section 9.

(Print the distance to ¢ 13) Used in section 9.

(Priority queue procedures 16, 17, 18, 19, 21, 22, 23, 24) Used in section 2.

(Put all unseen vertices adjacent to ¢ into the queue, and update the distances of other vertices adjacent
to ¢ 11) Used in section 9.

(The dijkstra procedure 9) Used in section 2.

(The print_dijkstra_result procedure 14) Used in section 2.

(gb_dijk.h 3,5,6,7,25)

January 12, 1994 at 23:12

GB_DIJK

Section Page

Introduction 1 1
The main algorithm 4 2
Priority queues 15 6
A Special CaSe . ..o 20 8
IndeX .o 26 10

(© 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

