
§1 GB GATES INTRODUCTION 1

Important: Before reading GB GATES, please read or at least skim the program for GB GRAPH.

1. Introduction. This GraphBase module provides six external subroutines:

risc , a routine that creates a directed acyclic graph based on the logic of a simple RISC
computer;

prod , a routine that creates a directed acyclic graph based on the logic of parallel
multiplication circuits;

print gates , a routine that outputs a symbolic representation of such directed acyclic
graphs;

gate eval , a routine that evaluates such directed acyclic graphs by assigning boolean
values to each gate;

partial gates , a routine that extracts a subgraph by assigning random values to some
of the input gates;

run risc , a routine that can be used to play with the output of risc .

Examples of the use of these routines can be found in the demo programs TAKE RISC and MULTIPLY.
〈 gb_gates.h 1 〉 ≡
#define print gates p gates /∗ abbreviation for Procrustean linkers ∗/

extern Graph ∗risc(); /∗ make a network for a microprocessor ∗/
extern Graph ∗prod (); /∗ make a network for high-speed multiplication ∗/
extern void print gates (); /∗ write a network to standard output file ∗/
extern long gate eval (); /∗ evaluate a network ∗/
extern Graph ∗partial gates (); /∗ reduce network size ∗/
extern long run risc (); /∗ simulate the microprocessor ∗/
extern unsigned long risc state []; /∗ the output of run risc ∗/

See also sections 2 and 50.

2 INTRODUCTION GB GATES §2
2. The directed acyclic graphs produced by GB GATES are GraphBase graphs with special conventions
related to logical networks. Each vertex represents a gate of a network, and utility field val is a boolean
value associated with that gate. Utility field typ is an ASCII code that tells what kind of gate is present:
’I’ denotes an input gate, whose value is specified externally.
’&’ denotes an AND gate, whose value is the logical AND of two or more previous gates (namely, 1 if all

those gates are 1, otherwise 0).
’|’ denotes an OR gate, whose value is the logical OR of two or more previous gates (namely, 0 if all those

gates are 0, otherwise 1).
’^’ denotes an XOR gate, whose value is the logical EXCLUSIVE-OR of two or more previous gates (namely,

their sum modulo 2).
’~’ denotes an inverter, whose value is the logical complement of the value of a single previous gate.
’L’ denotes a latch, whose value depends on past history; it is the value that was assigned to a subsequent

gate when the network was most recently evaluated. Utility field alt points to that subsequent gate.
Latches can be used to include “state” information in a circuit; for example, they correspond to registers of
the RISC machine constructed by risc . The prod procedure does not use latches.

The vertices of the directed acyclic graph appear in a special “topological” order convenient for evaluation:
All the input gates come first, followed by all the latches; then come the other types of gates, whose values
are computed from their predecessors. The arcs of the graph run from each gate to its arguments, and all
arguments to a gate precede that gate.

If g points to such a graph of gates, the utility field g~outs points to a list of Arc records, denoting
“outputs” that might be used in certain applications. For example, the outputs of the graphs created by
prod correspond to the bits of the product of the numbers represented in the input gates.

A special convention is used so that the routines will support partial evaluation: The tip fields in the
output list either point to a vertex or hold one of the constant values 0 or 1 when regarded as an unsigned
long integer.
#define val x.I /∗ the field containing a boolean value ∗/
#define typ y.I /∗ the field containing the gate type ∗/
#define alt z.V /∗ the field pointing to another related gate ∗/
#define outs zz .A /∗ the field pointing to the list of output gates ∗/
#define is boolean (v) ((unsigned long) (v) ≤ 1) /∗ is a tip field constant? ∗/
#define the boolean (v) ((long) (v)) /∗ if so, this is its value ∗/
#define tip value (v) (is boolean (v) ? the boolean (v) : (v)~val)
#define AND ’&’

#define OR ’|’

#define NOT ’~’

#define XOR ’^’

〈 gb_gates.h 1 〉 +≡
#define val x.I /∗ the definitions are repeated in the header file ∗/
#define typ y.I
#define alt z.V
#define outs zz .A
#define is boolean (v) ((unsigned long) (v) ≤ 1)
#define the boolean (v) ((long) (v))
#define tip value (v) (is boolean (v) ? the boolean (v) : (v)~val)
#define AND ’&’

#define OR ’|’

#define NOT ’~’

#define XOR ’^’

§3 GB GATES INTRODUCTION 3

3. Let’s begin with the gate eval procedure, because it is quite simple and because it illustrates the
conventions just explained. Given a gate graph g and optional pointers in vec and out vec , the procedure
gate eval will assign values to each gate of g. If in vec is non-null, it should point to a string of characters,
each ’0’ or ’1’, that will be assigned to the first gates of the network, in order; otherwise gate eval assumes
that all input gates have already received appropriate values and it will not change them. New values are
computed for each gate after the bits of in vec have been consumed.

If out vec is non-null, it should point to a memory area capable of receiving m + 1 characters, where m is
the number of outputs of g; a string containing the respective output values will be deposited there.

If gate eval encounters an unknown gate type, it terminates execution prematurely and returns the value
−1. Otherwise it returns 0.
〈The gate eval routine 3 〉 ≡

long gate eval (g, in vec , out vec)
Graph ∗g; /∗ graph with gates as vertices ∗/
char ∗in vec ; /∗ string for input values, or Λ ∗/
char ∗out vec ; /∗ string for output values, or Λ ∗/

{ register Vertex ∗v; /∗ the current vertex of interest ∗/
register Arc ∗a; /∗ the current arc of interest ∗/
register char t; /∗ boolean value being computed ∗/
if (¬g) return −2; /∗ no graph supplied! ∗/
v = g~vertices ;
if (in vec) 〈Read a sequence of input values from in vec 4 〉;
for (; v < g~vertices + g~n; v++) {

switch (v~typ) { /∗ branch on type of gate ∗/
case ’I’: continue; /∗ this input gate’s value should be externally set ∗/
case ’L’: t = v~alt~val ; break;

〈Compute the value t of a classical logic gate 6 〉;
default: return −1; /∗ unknown gate type! ∗/
}
v~val = t; /∗ assign the computed value ∗/

}
if (out vec) 〈Store the sequence of output values in out vec 5 〉;
return 0;

}
This code is used in section 7.

4. 〈Read a sequence of input values from in vec 4 〉 ≡
while (∗in vec ∧ v < g~vertices + g~n) (v++)~val = ∗in vec++ − ’0’;

This code is used in section 3.

5. 〈Store the sequence of output values in out vec 5 〉 ≡
{

for (a = g~outs ; a; a = a~next) ∗out vec++ = ’0’ + tip value (a~ tip);
∗out vec = 0; /∗ terminate the string ∗/

}
This code is used in section 3.

4 INTRODUCTION GB GATES §6
6. 〈Compute the value t of a classical logic gate 6 〉 ≡
case AND: t = 1;

for (a = v~arcs ; a; a = a~next) t &= a~ tip~val ;
break;

case OR: t = 0;
for (a = v~arcs ; a; a = a~next) t |= a~ tip~val ;
break;

case XOR: t = 0;
for (a = v~arcs ; a; a = a~next) t ⊕= a~ tip~val ;
break;

case NOT: t = 1 − v~arcs~ tip~val ;
break;

This code is used in section 3.

7. Here now is an outline of the entire GB GATES module, as seen by the C compiler:
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ and we will use the GB GRAPH data structures ∗/
〈Preprocessor definitions 〉
〈Private variables 12 〉
〈Global variables 48 〉
〈 Internal subroutines 11 〉
〈The gate eval routine 3 〉
〈The print gates routine 49 〉;
〈The risc routine 8 〉
〈The run risc routine 43 〉
〈The prod routine 66 〉
〈The partial gates routine 84 〉

§8 GB GATES THE RISC NETLIST 5

8. The RISC netlist. The subroutine call risc (regs) creates a gate graph having regs registers; the value
of regs must be between 2 and 16, inclusive, otherwise regs is set to 16. This gate graph describes the circuitry
for a small RISC computer, defined below. The total number of gates turns out to be 1400+115∗ regs ; thus
it lies between 1630 (when regs = 2) and 3240 (when regs = 16). EXCLUSIVE-OR gates are not used; the
effect of xoring is obtained where needed by means of ANDs, ORs, and inverters.

If risc cannot do its thing, it returns Λ (NULL) and sets panic code to indicate the problem. Otherwise
risc returns a pointer to the graph.
#define panic (c) { panic code = c; gb trouble code = 0; return Λ; }
〈The risc routine 8 〉 ≡

Graph ∗risc(regs)
unsigned long regs ; /∗ number of registers supported ∗/

{ 〈Local variables for risc 9 〉
〈 Initialize new graph to an empty graph of the appropriate size 16 〉;
〈Add the RISC data to new graph 17 〉;
if (gb trouble code) {

gb recycle (new graph);
panic (alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}
This code is used in section 7.

9. 〈Local variables for risc 9 〉 ≡
Graph ∗new graph ; /∗ the graph constructed by risc ∗/
register long k, r; /∗ all-purpose indices ∗/

See also sections 18, 20, 25, 28, 33, 37, and 40.

This code is used in section 8.

6 THE RISC NETLIST GB GATES §10

10. This RISC machine works with 16-bit registers and 16-bit data words. It cannot write into memory,
but it assumes the existence of an external read-only memory. The circuit has 16 outputs, representing the
16 bits of a memory address register. It also has 17 inputs, the last 16 of which are supposed to be set to the
contents of the memory address computed on the previous cycle. Thus we can run the machine by accessing
memory between calls of gate eval . The first input bit, called RUN, is normally set to 1; if it is 0, the other
inputs are effectively ignored and all registers and outputs will be cleared to 0. Input bits for the memory
appear in “little-endian order,” that is, least significant bit first; but the output bits for the memory address
register appear in “big-endian order,” most significant bit first.

Words read from memory are interpreted as instructions having the following format:

DST MOD OP A SRC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The SRC and A fields specify a “source” value. If A = 0, the source is SRC, treated as a 16-bit signed number
between −8 and +7 inclusive. If A = 1, the source is the contents of register DST plus the (signed) value of
SRC. If A = 2, the source is the contents of register SRC. And if A = 3, the source is the contents of the
memory location whose address is the contents of register SRC. Thus, for example, if DST = 3 and SRC = 10,
and if r3 contains 17 while r10 contains 1009, the source value will be −6 if A = 0, or 17 − 6 = 11 if A = 1,
or 1009 if A = 2, or the contents of memory location 1009 if A = 3.

The DST field specifies the number of the destination register. This register receives a new value based
on its previous value and the source value, as prescribed by the operation defined in the OP and MOD fields.
For example, when OP = 0, a general logical operation is performed, as follows: Suppose the bits of MOD
are called µ11µ10µ01µ00 from left to right. Then if the kth bit of the destination register currently is equal
to i and the kth bit of the source value is equal to j, the general logical operator changes the kth bit of
the destination register to µij . If the MOD bits are, for example, 1010, the source value is simply copied to
the destination register; if MOD = 0110, an exclusive-or is done; if MOD = 0011, the destination register is
complemented and the source value is effectively ignored.

The machine contains four status bits called S (sign), N (nonzero), K (carry), and V (overflow). Every
general logical operation sets S equal to the sign of the new result transferred to the destination register;
this is bit 15, the most significant bit. A general logical operation also sets N to 1 if any of the other 15
bits are 1, to 0 if all of the other bits are 0. Thus S and N both become zero if and only if the new result
is entirely zero. Logical operations do not change the values of K and V; the latter are affected only by the
arithmetic operations described below.

The status of the S and N bits can be tested by using the conditional load operator, OP = 2: This operation
loads the source value into the destination register if and only if MOD bit µij = 1, where i and j are the
current values of S and N, respectively. For example, if MOD = 0011, the source value is loaded if and only if
S = 0, which means that the last value affecting S and N was greater than or equal to zero. If MOD = 1111,
loading is always done; this option provides a way to move source to destination without affecting S or N.

A second conditional load operator, OP = 3, is similar, but it is used for testing the status of K and V

instead of S and N. For example, a command having MOD = 1010, OP = 3, A = 1, and SRC = 1 adds the
current overflow bit to the destination register. (Please take a moment to understand why this is true.)

We have now described all the operations except those that are performed when OP = 1. As you might
expect, our machine is able to do rudimentary arithmetic. The general addition and subtraction operators
belong to this final case, together with various shift operators, depending on the value of MOD.

Eight of the OP = 1 operations set the destination register to a shifted version of the source value: MOD = 0
means “shift left 1,” which is equivalent to multiplying the source by 2; MOD = 1 means “cyclic shift left 1,”
which is the same except that it also adds the previous sign bit to the result; MOD = 2 means “shift left 4,”
which is equivalent to multiplying by 16; MOD = 3 means “cyclic shift left 4”; MOD = 4 means “shift right 1,”
which is equivalent to dividing the source by 2 and rounding down to the next lower integer if there was a
remainder; MOD = 5 means “unsigned shift right 1,” which is the same except that the most significant bit is
always set to zero instead of retaining the previous sign; MOD = 6 means “shift right 4,” which is equivalent
to dividing the source by 16 and rounding down; MOD = 7 means “unsigned shift right 4.” Each of these shift

§10 GB GATES THE RISC NETLIST 7

operations affects S and N, as in the case of logical operations. They also affect K and V, as follows: Shifting
left sets K to 1 if and only if at least one of the bits shifted off the left was nonzero, and sets V to 1 if and
only if the corresponding multiplication would cause overflow. Shifting right 1 sets K to the value of the bit
shifted out, and sets V to 0; shifting right 4 sets K to the value of the last bit shifted out, and sets V to the
logical OR of the other three lost bits. The same values of K and V arise from cyclic or unsigned shifts as
from ordinary shifts.

When OP = 1 and MOD = 8, the source value is added to the destination register. This sets S, N, and V

as you would expect; and it sets K to the carry you would get if you were treating the operands as 16-bit
unsigned integers. Another addition operation, having MOD = 9, is similar, but the current value of K is also
added to the result; in this case, the new value of N will be zero if and only if the 15 non-sign bits of the
result are zero and the previous values of S and N were also zero. This means that you can use the first
addition operation on the lower halves of a 32-bit number and the second operation on the upper halves,
thereby obtaining a correct 32-bit result, with appropriate sign, nonzero, carry, and overflow bits set. Higher
precision (48 bits, 64 bits, etc.) can be obtained in a similar way.

When OP = 1 and MOD = 10, the source value is subtracted from the destination register. Again, S, N,
K, and V are set; the K value in this case represents the “borrow” bit. An auxiliary subtraction operation,
having MOD = 11, subtracts also the current value of K, thereby allowing for correct 32-bit subtraction.

The operations for OP = 1 and MOD = 12, 13, and 14 are “reserved for future expansion.” Actually they
will never change, however, since this RISC chip is purely academic. If you check out the logic below, you
will find that they simply set the destination register and the four status bits all to zero.

A final operation, called JUMP, will be explained momentarily. It has OP = 1 and MOD = 15. It does not
affect S, N, K, or V.

If the RISC is made with fewer than 16 registers, the higher-numbered ones will effectively contain zero
whenever their values are fetched. But if you use them as destination registers, you will set S, N, K, and V

as if actual numbers were being stored.
Register 0 is different from the other 15 registers: It is the location of the current instruction. Therefore

if you change the contents of register 0, you are changing the control flow of the program. If you do not
change register 0, it automatically increases by 1.

Special treatment occurs when A = 3 and SRC = 0. In such a case, the normal rules given above say that
the source value should be the contents of the memory location specified by register 0. But that memory
location holds the current instruction; so the machine uses the following location instead, as a 16-bit source
operand. If the contents of register 0 are not changed by such a two-word instruction, register 0 will increase
by 2 instead of 1.

We have now discussed everything about the machine except the operation of the JUMP command. This
command moves the source value to register 0, thereby changing the flow of control. Furthermore, if DST 6= 0,
it also sets register DST to the location of the instruction following the JUMP. Assembly language programmers
will recognize this as a convenient way to jump to a subroutine.

Example programs can be found in the TAKE RISC module, which includes a simple subroutine for
multiplication and division.

8 THE RISC NETLIST GB GATES §11

11. A few auxiliary functions will ameliorate the task of constructing the RISC logic. First comes a routine
that “christens” a new gate, assigning it a name and a type. The name is constructed from a prefix and a
serial number, where the prefix indicates the current portion of logic being created.
〈 Internal subroutines 11 〉 ≡

static Vertex ∗new vert (t)
char t; /∗ the type of the new gate ∗/

{ register Vertex ∗v;
v = next vert ++;
if (count < 0) v~name = gb save string (prefix);
else {

sprintf (name buf , "%s%ld", prefix , count);
v~name = gb save string (name buf);
count ++;

}
v~typ = t;
return v;

}
See also sections 13, 14, 15, 38, and 51.

This code is used in section 7.

12. #define start prefix (s) strcpy (prefix , s); count = 0
#define numeric prefix (a, b) sprintf (prefix , "%c%ld:", a, b); count = 0;
〈Private variables 12 〉 ≡

static Vertex ∗next vert ; /∗ the first vertex not yet assigned a name ∗/
static char prefix [5]; /∗ prefix string for vertex names ∗/
static long count ; /∗ serial number for vertex names ∗/
static char name buf [100]; /∗ place to form vertex names ∗/

This code is used in section 7.

§13 GB GATES THE RISC NETLIST 9

13. Here are some trivial routines to create gates with 2, 3, or more arguments. The arcs from such a gate
to its inputs are assigned length 100. Other routines, defined below, assign length 1 to the arc between an
inverter and its unique input. This convention makes the lengths of shortest paths in the resulting network
a bit more interesting than they would otherwise be.
#define DELAY 100L

〈 Internal subroutines 11 〉 +≡
static Vertex ∗make2 (t, v1 , v2)

char t; /∗ the type of the new gate ∗/
Vertex ∗v1 , ∗v2 ;

{ register Vertex ∗v = new vert (t);
gb new arc(v, v1 , DELAY);
gb new arc(v, v2 , DELAY);
return v;

}
static Vertex ∗make3 (t, v1 , v2 , v3)

char t; /∗ the type of the new gate ∗/
Vertex ∗v1 , ∗v2 , ∗v3 ;

{ register Vertex ∗v = new vert (t);
gb new arc(v, v1 , DELAY);
gb new arc(v, v2 , DELAY);
gb new arc(v, v3 , DELAY);
return v;

}
static Vertex ∗make4 (t, v1 , v2 , v3 , v4)

char t; /∗ the type of the new gate ∗/
Vertex ∗v1 , ∗v2 , ∗v3 , ∗v4 ;

{ register Vertex ∗v = new vert (t);
gb new arc(v, v1 , DELAY);
gb new arc(v, v2 , DELAY);
gb new arc(v, v3 , DELAY);
gb new arc(v, v4 , DELAY);
return v;

}
static Vertex ∗make5 (t, v1 , v2 , v3 , v4 , v5)

char t; /∗ the type of the new gate ∗/
Vertex ∗v1 , ∗v2 , ∗v3 , ∗v4 , ∗v5 ;

{ register Vertex ∗v = new vert (t);
gb new arc(v, v1 , DELAY);
gb new arc(v, v2 , DELAY);
gb new arc(v, v3 , DELAY);
gb new arc(v, v4 , DELAY);
gb new arc(v, v5 , DELAY);
return v;

}

10 THE RISC NETLIST GB GATES §14

14. We use utility field w.V to store a pointer to the complement of a gate, if that complement has been
formed. This trick prevents the creation of excessive gates that are equivalent to each other. The following
subroutine returns a pointer to the complement of a given gate.
#define bar w.V /∗ field pointing to complement, if known to exist ∗/
#define even comp(s, v) ((s) & 1 ? v : comp(v))
〈 Internal subroutines 11 〉 +≡

static Vertex ∗comp(v)
Vertex ∗v;

{ register Vertex ∗u;
if (v~bar) return v~bar ;
u = next vert ++;
u~bar = v; v~bar = u;
sprintf (name buf , "%s~", v~name);
u~name = gb save string (name buf);
u~ typ = NOT;
gb new arc(u, v, 1L);
return u;

}

15. To create a gate for the EXCLUSIVE-OR of two arguments, we can either construct the OR of two ANDs
or the AND of two ORs. We choose the former alternative:
〈 Internal subroutines 11 〉 +≡

static Vertex ∗make xor (u, v)
Vertex ∗u, ∗v;

{ register Vertex ∗t1 , ∗t2 ;
t1 = make2 (AND, u, comp(v));
t2 = make2 (AND, comp(u), v);
return make2 (OR, t1 , t2);

}

16. OK, let’s get going.
〈 Initialize new graph to an empty graph of the appropriate size 16 〉 ≡

if (regs < 2 ∨ regs > 16) regs = 16;
new graph = gb new graph (1400 + 115 ∗ regs);
if (new graph ≡ Λ) panic (no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph~id , "risc(%lu)", regs);
strcpy (new graph~util types , "ZZZIIVZZZZZZZA");
next vert = new graph~vertices ;

This code is used in section 8.

17. 〈Add the RISC data to new graph 17 〉 ≡
〈Create the inputs and latches 19 〉;
〈Create gates for instruction decoding 21 〉;
〈Create gates for fetching the source value 22 〉;
〈Create gates for the general logic operation 26 〉;
〈Create gates for the conditional load operations 27 〉;
〈Create gates for the arithmetic operations 41 〉;
〈Create gates that bring everything together properly 29 〉;
if (next vert 6= new graph~vertices + new graph~n) panic (impossible);

/∗ oops, we miscounted; this should be impossible ∗/
This code is used in section 8.

§18 GB GATES THE RISC NETLIST 11

18. Internal names will make it convenient to refer to the most important gates. Here are the names of
inputs and latches.
〈Local variables for risc 9 〉 +≡

Vertex ∗run bit ; /∗ the RUN input ∗/
Vertex ∗mem [16]; /∗ 16 bits of input from read-only memory ∗/
Vertex ∗prog ; /∗ first of 10 bits in the program register ∗/
Vertex ∗sign ; /∗ the latched value of S ∗/
Vertex ∗nonzero ; /∗ the latched value of N ∗/
Vertex ∗carry ; /∗ the latched value of K ∗/
Vertex ∗overflow ; /∗ the latched value of V ∗/
Vertex ∗extra ; /∗ latched status bit: are we doing an extra memory cycle? ∗/
Vertex ∗reg [16]; /∗ the least-significant bit of a given register ∗/

19. #define first of (n, t) new vert (t); for (k = 1; k < n; k++) new vert (t);
〈Create the inputs and latches 19 〉 ≡

strcpy (prefix , "RUN"); count = −1; run bit = new vert (’I’);
start prefix ("M"); for (k = 0; k < 16; k++) mem [k] = new vert (’I’);
start prefix ("P"); prog = first of (10, ’L’);
strcpy (prefix , "S"); count = −1; sign = new vert (’L’);
strcpy (prefix , "N"); nonzero = new vert (’L’);
strcpy (prefix , "K"); carry = new vert (’L’);
strcpy (prefix , "V"); overflow = new vert (’L’);
strcpy (prefix , "X"); extra = new vert (’L’);
for (r = 0; r < regs ; r++) {

numeric prefix (’R’, r);
reg [r] = first of (16, ’L’);

}
This code is used in section 17.

12 THE RISC NETLIST GB GATES §20

20. The order of evaluation of function arguments is not defined in C, so we introduce a few macros that
force left-to-right order.
#define do2 (result , t, v1 , v2)

{ t1 = v1 ; t2 = v2 ;
result = make2 (t, t1 , t2); }

#define do3 (result , t, v1 , v2 , v3)
{ t1 = v1 ; t2 = v2 ; t3 = v3 ;

result = make3 (t, t1 , t2 , t3); }
#define do4 (result , t, v1 , v2 , v3 , v4)

{ t1 = v1 ; t2 = v2 ; t3 = v3 ; t4 = v4 ;
result = make4 (t, t1 , t2 , t3 , t4); }

#define do5 (result , t, v1 , v2 , v3 , v4 , v5)
{ t1 = v1 ; t2 = v2 ; t3 = v3 ; t4 = v4 ; t5 = v5 ;

result = make5 (t, t1 , t2 , t3 , t4 , t5); }
〈Local variables for risc 9 〉 +≡

Vertex ∗t1 , ∗t2 , ∗t3 , ∗t4 , ∗t5 ; /∗ temporary holds to force evaluation order ∗/
Vertex ∗tmp [16]; /∗ additional holding places for partial results ∗/
Vertex ∗imm ; /∗ is the source value immediate (a given constant)? ∗/
Vertex ∗rel ; /∗ is the source value relative to the current destination register? ∗/
Vertex ∗dir ; /∗ should the source value be fetched directly from a source register? ∗/
Vertex ∗ind ; /∗ should the source value be fetched indirectly from memory? ∗/
Vertex ∗op ; /∗ least significant bit of OP ∗/
Vertex ∗cond ; /∗ most significant bit of OP ∗/
Vertex ∗mod [4]; /∗ the MOD bits ∗/
Vertex ∗dest [4]; /∗ the DEST bits ∗/

21. The sixth line of the program here can be translated into the logic equation

op = (extra ∧ prog) ∨ (extra ∧ mem [6]) .

Once you see why, you’ll be able to read the rest of this curious code.
〈Create gates for instruction decoding 21 〉 ≡

start prefix ("D");
do3 (imm , AND, comp(extra), comp (mem [4]), comp (mem [5])); /∗ A = 0 ∗/
do3 (rel , AND, comp(extra),mem [4], comp(mem [5])); /∗ A = 1 ∗/
do3 (dir , AND, comp(extra), comp(mem [4]),mem [5]); /∗ A = 2 ∗/
do3 (ind , AND, comp(extra),mem [4],mem [5]); /∗ A = 3 ∗/
do2 (op , OR,make2 (AND, extra , prog),make2 (AND, comp(extra),mem [6]));
do2 (cond , OR,make2 (AND, extra , prog + 1),make2 (AND, comp(extra),mem [7]));
for (k = 0; k < 4; k++) {

do2 (mod [k], OR,make2 (AND, extra , prog + 2 + k),make2 (AND, comp(extra),mem [8 + k]));
do2 (dest [k], OR,make2 (AND, extra , prog + 6 + k),make2 (AND, comp(extra),mem [12 + k]));

}
This code is used in section 17.

§22 GB GATES THE RISC NETLIST 13

22. 〈Create gates for fetching the source value 22 〉 ≡
start prefix ("F");
〈Set old dest to the present value of the destination register 23 〉;
〈Set old src to the present value of the source register 24 〉;
〈Set inc dest to old dest plus SRC 39 〉;
for (k = 0; k < 16; k++)

do4 (source [k], OR,make2 (AND, imm ,mem [k < 4 ? k : 3]),make2 (AND, rel , inc dest [k]),
make2 (AND, dir , old src [k]),make2 (AND, extra ,mem [k]));

This code is used in section 17.

23. Here and in the immediately following section we create OR gates old dest [k] and old src [k] that might
have as many as 16 inputs. (The actual number of inputs is regs .) All other gates in the network will have
at most five inputs.
〈Set old dest to the present value of the destination register 23 〉 ≡

for (r = 0; r < regs ; r++)
do4 (dest match [r], AND, even comp(r, dest [0]), even comp(r � 1, dest [1]),

even comp(r � 2, dest [2]), even comp(r � 3, dest [3]));
for (k = 0; k < 16; k++) {

for (r = 0; r < regs ; r++)
tmp [r] = make2 (AND, dest match [r], reg [r] + k);

old dest [k] = new vert (OR);
for (r = 0; r < regs ; r++) gb new arc (old dest [k], tmp [r], DELAY);

}
This code is used in section 22.

24. 〈Set old src to the present value of the source register 24 〉 ≡
for (k = 0; k < 16; k++) {

for (r = 0; r < regs ; r++)
do5 (tmp [r], AND, reg [r] + k, even comp(r,mem [0]), even comp(r � 1,mem [1]), even comp(r � 2,

mem [2]), even comp (r � 3,mem [3]));
old src [k] = new vert (OR);
for (r = 0; r < regs ; r++) gb new arc (old src [k], tmp [r], DELAY);

}
This code is used in section 22.

25. 〈Local variables for risc 9 〉 +≡
Vertex ∗dest match [16]; /∗ dest match [r] ≡ 1 iff DST = r ∗/
Vertex ∗old dest [16]; /∗ contents of destination register before operation ∗/
Vertex ∗old src [16]; /∗ contents of source register before operation ∗/
Vertex ∗inc dest [16]; /∗ old dest plus the SRC field ∗/
Vertex ∗source [16]; /∗ source value for the operation ∗/
Vertex ∗log [16]; /∗ result of general logic operation ∗/
Vertex ∗shift [18]; /∗ result of shift operation, with carry and overflow ∗/
Vertex ∗sum [18]; /∗ old dest plus source plus optional carry ∗/
Vertex ∗diff [18]; /∗ old dest minus source minus optional borrow ∗/
Vertex ∗next loc [16]; /∗ contents of register 0, plus 1 ∗/
Vertex ∗next next loc [16]; /∗ contents of register 0, plus 2 ∗/
Vertex ∗result [18]; /∗ result of operating on old dest and source ∗/

14 THE RISC NETLIST GB GATES §26

26. 〈Create gates for the general logic operation 26 〉 ≡
start prefix ("L");
for (k = 0; k < 16; k++)

do4 (log [k], OR,
make3 (AND,mod [0], comp(old dest [k]), comp (source [k])),
make3 (AND,mod [1], comp(old dest [k]), source [k]),
make3 (AND,mod [2], old dest [k], comp(source [k])),
make3 (AND,mod [3], old dest [k], source [k]));

This code is used in section 17.

27. 〈Create gates for the conditional load operations 27 〉 ≡
start prefix ("C");
do4 (tmp [0], OR,

make3 (AND,mod [0], comp(sign), comp (nonzero)),
make3 (AND,mod [1], comp(sign),nonzero),
make3 (AND,mod [2], sign , comp(nonzero)),
make3 (AND,mod [3], sign ,nonzero));

do4 (tmp [1], OR,
make3 (AND,mod [0], comp(carry), comp(overflow)),
make3 (AND,mod [1], comp(carry), overflow),
make3 (AND,mod [2], carry , comp(overflow)),
make3 (AND,mod [3], carry , overflow));

do3 (change , OR, comp(cond),make2 (AND, tmp [0], comp(op)),make2 (AND, tmp [1], op));
This code is used in section 17.

28. 〈Local variables for risc 9 〉 +≡
Vertex ∗change ; /∗ is the destination register supposed to change? ∗/

29. Hardware is like software except that it performs all the operations all the time and then selects only
the results it needs. (If you think about it, this is a profound observation about economics, society, and
nature. Gosh.)
〈Create gates that bring everything together properly 29 〉 ≡

start prefix ("Z");
〈Create gates for the next loc and next next loc bits 30 〉;
〈Create gates for the result bits 31 〉;
〈Create gates for the new values of registers 1 to regs 34 〉;
〈Create gates for the new values of S, N, K, and V 35 〉;
〈Create gates for the new values of the program register and extra 32 〉;
〈Create gates for the new values of register 0 and the memory address register 36 〉;

This code is used in section 17.

30. 〈Create gates for the next loc and next next loc bits 30 〉 ≡
next loc [0] = comp (reg [0]); next next loc [0] = reg [0];
next loc [1] = make xor (reg [0] + 1, reg [0]); next next loc [1] = comp(reg [0] + 1);
for (t5 = reg [0] + 1, k = 2; k < 16; t5 = make2 (AND, t5 , reg [0] + k++)) {

next loc [k] = make xor (reg [0] + k,make2 (AND, reg [0], t5));
next next loc [k] = make xor (reg [0] + k, t5);

}
This code is used in section 29.

§31 GB GATES THE RISC NETLIST 15

31. 〈Create gates for the result bits 31 〉 ≡
jump = make5 (AND, op ,mod [0],mod [1],mod [2],mod [3]); /∗ assume cond = 0 ∗/
for (k = 0; k < 16; k++) {

do5 (result [k], OR,
make2 (AND, comp(op), log [k]),
make2 (AND, jump ,next loc [k]),
make3 (AND, op , comp(mod [3]), shift [k]),
make5 (AND, op ,mod [3], comp(mod [2]), comp(mod [1]), sum [k]),
make5 (AND, op ,mod [3], comp(mod [2]),mod [1], diff [k]));

do2 (result [k], OR,
make3 (AND, cond , change , source [k]),
make2 (AND, comp(cond), result [k]));

}
for (k = 16; k < 18; k++) /∗ carry and overflow bits of the result ∗/

do3 (result [k], OR,
make3 (AND, op , comp(mod [3]), shift [k]),
make5 (AND, op ,mod [3], comp(mod [2]), comp(mod [1]), sum [k]),
make5 (AND, op ,mod [3], comp(mod [2]),mod [1], diff [k]));

This code is used in section 29.

32. The program register prog and the extra bit are needed for the case when we must spend an extra
cycle to fetch a word from memory. On the first cycle, ind is true, so a “result” is calculated but not actually
used. On the second cycle, extra is true.

A slight optimization has been introduced in order to make the circuit a bit more interesting: If a
conditional load instruction occurs with indirect addressing and a false condition, the extra cycle is not
taken. (The next next loc values were computed for this reason.)
#define latchit (u, latch) (latch)~alt = make2 (AND, u, run bit)

/∗ u & run bit is new value for latch ∗/
〈Create gates for the new values of the program register and extra 32 〉 ≡

for (k = 0; k < 10; k++) latchit (mem [k + 6], prog + k);
do2 (nextra , OR,make2 (AND, ind , comp(cond)),make2 (AND, ind , change));
latchit (nextra , extra);
nzs = make4 (OR,mem [0],mem [1],mem [2],mem [3]);
nzd = make4 (OR, dest [0], dest [1], dest [2], dest [3]);

This code is used in section 29.

33. 〈Local variables for risc 9 〉 +≡
Vertex ∗jump ; /∗ is this command a JUMP, assuming cond is false? ∗/
Vertex ∗nextra ; /∗ must we take an extra cycle? ∗/
Vertex ∗nzs ; /∗ is the SRC field nonzero? ∗/
Vertex ∗nzd ; /∗ is the DST field nonzero? ∗/

34. 〈Create gates for the new values of registers 1 to regs 34 〉 ≡
t5 = make2 (AND, change , comp(ind)); /∗ should destination register change? ∗/
for (r = 1; r < regs ; r++) {

t4 = make2 (AND, t5 , dest match [r]); /∗ should register r change? ∗/
for (k = 0; k < 16; k++) {

do2 (t3 , OR,make2 (AND, t4 , result [k]),make2 (AND, comp(t4), reg [r] + k));
latchit (t3 , reg [r] + k);

}
}

This code is used in section 29.

16 THE RISC NETLIST GB GATES §35

35. 〈Create gates for the new values of S, N, K, and V 35 〉 ≡
do4 (t5 , OR,

make2 (AND, sign , cond),
make2 (AND, sign , jump),
make2 (AND, sign , ind),
make4 (AND, result [15], comp (cond), comp (jump), comp(ind)));

latchit (t5 , sign);
do4 (t5 , OR,

make4 (OR, result [0], result [1], result [2], result [3]),
make4 (OR, result [4], result [5], result [6], result [7]),
make4 (OR, result [8], result [9], result [10], result [11]),
make4 (OR, result [12], result [13], result [14],

make5 (AND,make2 (OR,nonzero , sign), op ,mod [0], comp(mod [2]),mod [3])));
do4 (t5 , OR,

make2 (AND,nonzero , cond),
make2 (AND,nonzero , jump),
make2 (AND,nonzero , ind),
make4 (AND, t5 , comp(cond), comp (jump), comp(ind)));

latchit (t5 ,nonzero);
do5 (t5 , OR,

make2 (AND, overflow , cond),
make2 (AND, overflow , jump),
make2 (AND, overflow , comp(op)),
make2 (AND, overflow , ind),
make5 (AND, result [17], comp (cond), comp (jump), comp(ind), op));

latchit (t5 , overflow);
do5 (t5 , OR,

make2 (AND, carry , cond),
make2 (AND, carry , jump),
make2 (AND, carry , comp(op)),
make2 (AND, carry , ind),
make5 (AND, result [16], comp (cond), comp (jump), comp(ind), op));

latchit (t5 , carry);
This code is used in section 29.

§36 GB GATES THE RISC NETLIST 17

36. As usual, we have left the hardest case for last, hoping that we will have learned enough tricks to
handle it when the time of reckoning finally arrives.

The most subtle part of the logic here is perhaps the case of a JUMP command with A = 3. We want to
increase register 0 by 1 during the first cycle of such a command, if SRC = 0, so that the result will be correct
on the next cycle.
〈Create gates for the new values of register 0 and the memory address register 36 〉 ≡

skip = make2 (AND, cond , comp (change)); /∗ false conditional? ∗/
hop = make2 (AND, comp(cond), jump); /∗ JUMP command? ∗/
do4 (normal , OR,

make2 (AND, skip , comp(ind)),
make2 (AND, skip ,nzs),
make3 (AND, comp(skip), ind , comp(nzs)),
make3 (AND, comp(skip), comp(hop),nzd));

special = make3 (AND, comp(skip), ind ,nzs);
for (k = 0; k < 16; k++) {

do4 (t5 , OR,
make2 (AND,normal ,next loc [k]),
make4 (AND, skip , ind , comp(nzs),next next loc [k]),
make3 (AND, hop , comp(ind), source [k]),
make5 (AND, comp(skip), comp(hop), comp (ind), comp(nzd), result [k]));

do2 (t4 , OR,
make2 (AND, special , reg [0] + k),
make2 (AND, comp(special), t5));

latchit (t4 , reg [0] + k);
do2 (t4 , OR,

make2 (AND, special , old src [k]),
make2 (AND, comp(special), t5));

{ register Arc ∗a = gb virgin arc ();
a~ tip = make2 (AND, t4 , run bit);
a~next = new graph~outs ;
new graph~outs = a; /∗ pointer to memory address bit ∗/

}
} /∗ arcs for output bits will appear in big-endian order ∗/

This code is used in section 29.

37. 〈Local variables for risc 9 〉 +≡
Vertex ∗skip ; /∗ are we skipping a conditional load operation? ∗/
Vertex ∗hop ; /∗ are we doing a JUMP? ∗/
Vertex ∗normal ; /∗ is this a case where register 0 is simply incremented? ∗/
Vertex ∗special ;

/∗ is this a case where register 0 and the memory address register will not coincide? ∗/

18 SERIAL ADDITION GB GATES §38

38. Serial addition. We haven’t yet specified the parts of risc that deal with addition and subtraction;
somehow, those parts wanted to be separate from the rest. To complete our mission, we will use subroutine
calls of the form ‘make adder (n, x, y, z, carry , add)’, where x and y are n-bit arrays of input gates and z is
an (n+1)-bit array of output gates. If add 6= 0, the subroutine computes x+ y, otherwise it computes x− y.
If carry 6= 0, the carry gate is effectively added to y before the operation.

A simple n-stage serial scheme, which reduces the problem of n-bit addition to (n − 1)-bit addition, is
adequate for our purposes here. (A parallel adder, which gains efficiency by reducing the problem size from
n to n/φ, can be found in the prod routine below.)

The handy identity x − y = x + y is used to reduce subtraction to addition.
〈 Internal subroutines 11 〉 +≡

static void make adder (n, x, y, z, carry , add)
unsigned long n; /∗ number of bits ∗/
Vertex ∗x[], ∗y[]; /∗ input gates ∗/
Vertex ∗z[]; /∗ output gates ∗/
Vertex ∗carry ; /∗ add this to y, unless it’s null ∗/
char add ; /∗ should we add or subtract? ∗/

{ register long k;
Vertex ∗t1 , ∗t2 , ∗t3 , ∗t4 ; /∗ temporary storage used by do4 ∗/
if (¬carry) {

z[0] = make xor (x[0], y[0]);
carry = make2 (AND, even comp(add , x[0]), y[0]);
k = 1;

} else k = 0;
for (; k < n; k++) {

comp(x[k]); comp(y[k]); comp(carry); /∗ generate inverse gates ∗/
do4 (z[k], OR,

make3 (AND, x[k], comp (y[k]), comp (carry)),
make3 (AND, comp(x[k]), y[k], comp(carry)),
make3 (AND, comp(x[k]), comp(y[k]), carry),
make3 (AND, x[k], y[k], carry));

do3 (carry , OR,
make2 (AND, even comp(add , x[k]), y[k]),
make2 (AND, even comp(add , x[k]), carry),
make2 (AND, y[k], carry));

}
z[n] = carry ;

}

§39 GB GATES SERIAL ADDITION 19

39. OK, now we can add. What good does that do us? In the first place, we need a 4-bit adder to compute
the least significant bits of old dest + SRC. The other 12 bits of that sum are simpler.
〈Set inc dest to old dest plus SRC 39 〉 ≡

make adder (4L, old dest ,mem , inc dest , Λ, 1);
up = make2 (AND, inc dest [4], comp(mem [3])); /∗ remaining bits must increase ∗/
down = make2 (AND, comp(inc dest [4]),mem [3]); /∗ remaining bits must decrease ∗/
for (k = 4; ; k++) {

comp(up); comp(down);
do3 (inc dest [k], OR,

make2 (AND, comp(old dest [k]), up),
make2 (AND, comp(old dest [k]), down),
make3 (AND, old dest [k], comp(up), comp(down)));

if (k < 15) {
up = make2 (AND, up , old dest [k]);
down = make2 (AND, down , comp(old dest [k]));

} else break;
}

This code is used in section 22.

40. 〈Local variables for risc 9 〉 +≡
Vertex ∗up , ∗down ; /∗ gates used when computing inc dest ∗/

41. In the second place, we need a 16-bit adder and a 16-bit subtracter for the four addition/subtraction
commands.
〈Create gates for the arithmetic operations 41 〉 ≡

start prefix ("A");
〈Create gates for the shift operations 42 〉;
make adder (16L, old dest , source , sum ,make2 (AND, carry ,mod [0]), 1); /∗ adder ∗/
make adder (16L, old dest , source , diff ,make2 (AND, carry ,mod [0]), 0); /∗ subtracter ∗/
do2 (sum [17], OR,

make3 (AND, old dest [15], source [15], comp (sum [15])),
make3 (AND, comp(old dest [15]), comp (source [15]), sum [15])); /∗ overflow ∗/

do2 (diff [17], OR,
make3 (AND, old dest [15], comp(source [15]), comp(diff [15])),
make3 (AND, comp(old dest [15]), source [15], diff [15])); /∗ overflow ∗/

This code is used in section 17.

20 SERIAL ADDITION GB GATES §42

42. 〈Create gates for the shift operations 42 〉 ≡
for (k = 0; k < 16; k++)

do4 (shift [k], OR,
(k ≡ 0 ? make4 (AND, source [15],mod [0], comp(mod [1]), comp (mod [2])) :

make3 (AND, source [k − 1], comp(mod [1]), comp(mod [2]))),
(k < 4 ? make4 (AND, source [k + 12],mod [0],mod [1], comp(mod [2])) :

make3 (AND, source [k − 4],mod [1], comp(mod [2]))),
(k ≡ 15 ? make4 (AND, source [15], comp(mod [0]), comp(mod [1]),mod [2]) :

make3 (AND, source [k + 1], comp(mod [1]),mod [2])),
(k > 11 ? make4 (AND, source [15], comp(mod [0]),mod [1],mod [2]) :

make3 (AND, source [k + 4],mod [1],mod [2])));
do4 (shift [16], OR,

make2 (AND, comp(mod [2]), source [15]),
make3 (AND, comp(mod [2]),mod [1],make3 (OR, source [14], source [13], source [12])),
make3 (AND,mod [2], comp(mod [1]), source [0]),
make3 (AND,mod [2],mod [1], source [3])); /∗ “carry” ∗/

do3 (shift [17], OR,
make3 (AND, comp(mod [2]), comp (mod [1]),make xor (source [15], source [14])),
make4 (AND, comp(mod [2]),mod [1],

make5 (OR, source [15], source [14], source [13], source [12], source [11]),
make5 (OR, comp(source [15]), comp (source [14]), comp(source [13]),

comp(source [12]), comp (source [11]))),
make3 (AND,mod [2],mod [1],make3 (OR, source [0], source [1], source [2]))); /∗ “overflow” ∗/

This code is used in section 41.

§43 GB GATES RISC MANAGEMENT 21

43. RISC management. The run risc procedure takes a gate graph output by risc and simulates its
behavior, given the contents of its read-only memory. (See the demonstration program TAKE RISC, which
appears in a module by itself, for a typical illustration of how run risc might be used.)

This procedure clears the simulated machine and begins executing the program that starts at address 0.
It stops when it gets to an address greater than the size of read-only memory supplied. One way to stop it
is therefore to execute a command such as #0f00, which will transfer control to location #ffff; even better
is #0f8f, which transfers to location #ffff without changing the status of S and N. However, if the given
read-only memory contains a full set of 216 words, run risc will never stop.

When run risc does stop, it returns 0 and puts the final contents of the simulated registers into the global
array risc state . Or, if g was not a decent graph, run risc returns a negative value and leaves risc state
untouched.
〈The run risc routine 43 〉 ≡

long run risc(g, rom , size , trace regs)
Graph ∗g; /∗ graph output by risc ∗/
unsigned long rom []; /∗ contents of read-only memory ∗/
unsigned long size ; /∗ length of rom vector ∗/
unsigned long trace regs ; /∗ if nonzero, this many registers will be traced ∗/

{ register unsigned long l; /∗ memory address ∗/
register unsigned long m; /∗ memory or register contents ∗/
register Vertex ∗v; /∗ the current gate of interest ∗/
register Arc ∗a; /∗ the current output list element of interest ∗/
register long k, r; /∗ general-purpose indices ∗/
long x, s, n, c, o; /∗ status bits ∗/
if (trace regs) 〈Print a headline 44 〉;
r = gate eval (g, "0", Λ); /∗ reset the RISC by turning off the RUN bit ∗/
if (r < 0) return r; /∗ not a valid gate graph! ∗/
g~vertices~val = 1; /∗ turn the RUN bit on ∗/
while (1) {

for (a = g~outs , l = 0; a; a = a~next) l = 2 ∗ l + a~tip~val ; /∗ set l = memory address ∗/
if (trace regs) 〈Print register contents 46 〉;
if (l ≥ size) break; /∗ stop if memory check occurs ∗/
for (v = g~vertices + 1, m = rom [l]; v ≤ g~vertices + 16; v++, m �= 1) v~val = m & 1;

/∗ store bits of memory word in the input gates ∗/
gate eval (g, Λ, Λ); /∗ do another RISC cycle ∗/

}
if (trace regs) 〈Print a footline 45 〉;
〈Dump the register contents into risc state 47 〉;
return 0;

}
This code is used in section 7.

44. If tracing is requested, we write on the standard output file.
〈Print a headline 44 〉 ≡
{

for (r = 0; r < trace regs ; r++) printf (" r%−2ld ", r); /∗ register names ∗/
printf (" P XSNKV MEM\n"); /∗ prog , extra , status bits, memory ∗/

}
This code is used in section 43.

22 RISC MANAGEMENT GB GATES §45

45. 〈Print a footline 45 〉 ≡
printf ("Execution terminated with memory address %04lx.\n", l);

This code is used in section 43.

46. Here we peek inside the circuit to see what values are about to be latched.
〈Print register contents 46 〉 ≡
{

for (r = 0; r < trace regs ; r++) {
v = g~vertices + (16 ∗ r + 47); /∗ most significant bit of register r ∗/
m = 0;
if (v~ typ ≡ ’L’)

for (k = 0, m = 0; k < 16; k++, v−−) m = 2 ∗ m + v~alt~val ;
printf ("%04lx ", m);

}
for (k = 0, m = 0, v = g~vertices + 26; k < 10; k++, v−−) m = 2 ∗ m + v~alt~val ; /∗ prog ∗/
x = (g~vertices + 31)~alt~val ; /∗ extra ∗/
s = (g~vertices + 27)~alt~val ; /∗ sign ∗/
n = (g~vertices + 28)~alt~val ; /∗ nonzero ∗/
c = (g~vertices + 29)~alt~val ; /∗ carry ∗/
o = (g~vertices + 30)~alt~val ; /∗ overflow ∗/
printf ("%03lx%c%c%c%c%c ", m � 2, x ? ’X’ : ’.’, s ? ’S’ : ’.’, n ? ’N’ : ’.’, c ? ’K’ : ’.’,

o ? ’V’ : ’.’);
if (l ≥ size) printf ("????\n");
else printf ("%04lx\n", rom [l]);

}
This code is used in section 43.

47. 〈Dump the register contents into risc state 47 〉 ≡
for (r = 0; r < 16; r++) {

v = g~vertices + (16 ∗ r + 47); /∗ most significant bit of register r ∗/
m = 0;
if (v~ typ ≡ ’L’)

for (k = 0, m = 0; k < 16; k++, v−−) m = 2 ∗ m + v~alt~val ;
risc state [r] = m;

}
for (k = 0, m = 0, v = g~vertices + 26; k < 10; k++, v−−) m = 2 ∗ m + v~alt~val ; /∗ prog ∗/
m = 4 ∗ m + (g~vertices + 31)~alt~val ; /∗ extra ∗/
m = 2 ∗ m + (g~vertices + 27)~alt~val ; /∗ sign ∗/
m = 2 ∗ m + (g~vertices + 28)~alt~val ; /∗ nonzero ∗/
m = 2 ∗ m + (g~vertices + 29)~alt~val ; /∗ carry ∗/
m = 2 ∗ m + (g~vertices + 30)~alt~val ; /∗ overflow ∗/
risc state [16] = m; /∗ program register and status bits go here ∗/
risc state [17] = l; /∗ this is the out-of-range address that caused termination ∗/

This code is used in section 43.

48. 〈Global variables 48 〉 ≡
unsigned long risc state [18];

This code is used in section 7.

§49 GB GATES GENERALIZED GATE GRAPHS 23

49. Generalized gate graphs. For intermediate computations, it is convenient to allow two additional
types of gates:
’C’ denotes a constant gate of value z.I.
’=’ denotes a copy of a previous gate; utility field alt points to that previous gate.

Such gates might appear anywhere in the graph, possibly interspersed with the inputs and latches.
Here is a simple subroutine that prints a symbolic representation of a generalized gate graph on the

standard output file:
#define bit z.I /∗ field containing the constant value of a ’C’ gate ∗/
#define print gates p gates /∗ abbreviation makes chopped-off name unique ∗/
〈The print gates routine 49 〉 ≡

static void pr gate (v)
Vertex ∗v;

{ register Arc ∗a;
printf ("%s = ", v~name);
switch (v~ typ) {
case ’I’: printf ("input"); break;
case ’L’: printf ("latch");

if (v~alt) printf ("ed %s", v~alt~name);
break;

case ’~’: printf ("~ "); break;
case ’C’: printf ("constant %ld", v~bit);

break;
case ’=’: printf ("copy of %s", v~alt~name);
}
for (a = v~arcs ; a; a = a~next) {

if (a 6= v~arcs) printf (" %c ", (char) v~ typ);
printf (a~ tip~name);

}
printf ("\n");

}
void print gates (g)

Graph ∗g;
{ register Vertex ∗v;

register Arc ∗a;
for (v = g~vertices ; v < g~vertices + g~n; v++) pr gate (v);
for (a = g~outs ; a; a = a~next)

if (is boolean (a~tip)) printf ("Output %ld\n", the boolean (a~ tip));
else printf ("Output %s\n", a~ tip~name);

}
This code is used in section 7.

50. 〈 gb_gates.h 1 〉 +≡
#define bit z.I

24 GENERALIZED GATE GRAPHS GB GATES §51

51. The reduce routine takes a generalized graph g and uses the identities x = x and

x ∧ 0 = 0, x ∧ 1 = x, x ∧ x = x, x ∧ x = 0,
x ∨ 0 = x, x ∨ 1 = 1, x ∨ x = x, x ∨ x = 1,
x ⊕ 0 = x, x ⊕ 1 = x, x ⊕ x = 0, x ⊕ x = 1,

to create an equivalent graph having no ’C’ or ’=’ or obviously redundant gates. The reduced graph also
excludes any gates that are not used directly or indirectly in the computation of the output values.
〈 Internal subroutines 11 〉 +≡

static Graph ∗reduce (g)
Graph ∗g;

{ register Vertex ∗u, ∗v; /∗ the current vertices of interest ∗/
register Arc ∗a, ∗b; /∗ the current arcs of interest ∗/
Arc ∗aa , ∗bb ; /∗ their predecessors ∗/
Vertex ∗latch ptr ; /∗ top of the latch list ∗/
long n = 0; /∗ the number of marked gates ∗/
Graph ∗new graph ; /∗ the reduced gate graph ∗/
Vertex ∗next vert = Λ, ∗max next vert = Λ; /∗ allocation of new vertices ∗/
Arc ∗avail arc = Λ; /∗ list of recycled arcs ∗/
Vertex ∗sentinel ; /∗ end of the vertices ∗/
if (g ≡ Λ) panic (missing operand); /∗ where is g? ∗/
sentinel = g~vertices + g~n;
while (1) {

latch ptr = Λ;
for (v = g~vertices ; v < sentinel ; v++) 〈Reduce gate v, if possible, or put it on the latch list 53 〉;
〈Check to see if any latch has become constant; if not, break 52 〉;

}
〈Mark all gates that are used in some output 60 〉;
〈Copy all marked gates to a new graph 62 〉;
gb recycle (g);
return new graph ;

}

52. We will link latches together via their v.V fields.
〈Check to see if any latch has become constant; if not, break 52 〉 ≡
{ char no constants yet = 1;

for (v = latch ptr ; v; v = v~v.V) {
u = v~alt ; /∗ the gate whose value will be latched ∗/
if (u~ typ ≡ ’=’) v~alt = u~alt ;
else if (u~typ ≡ ’C’) {

v~ typ = ’C’; v~bit = u~bit ; no constants yet = 0;
}

}
if (no constants yet) break;

}
This code is used in section 51.

§53 GB GATES GENERALIZED GATE GRAPHS 25

53. #define foo x.V /∗ link field used to find all the gates later ∗/
〈Reduce gate v, if possible, or put it on the latch list 53 〉 ≡

{
switch (v~ typ) {
case ’L’: v~v.V = latch ptr ; latch ptr = v; break;
case ’I’: case ’C’: break;
case ’=’: u = v~alt ;

if (u~ typ ≡ ’=’) v~alt = u~alt ;
else if (u~typ ≡ ’C’) {

v~bit = u~bit ; goto make v constant ;
}
break;

case NOT: 〈Try to reduce an inverter, then goto done 54 〉;
case AND: 〈Try to reduce an AND gate 55 〉; goto test single arg ;
case OR: 〈Try to reduce an OR gate 56 〉; goto test single arg ;
case XOR: 〈Try to reduce an EXCLUSIVE-OR gate 57 〉;
test single arg :

if (v~arcs~next) break;
v~alt = v~arcs~ tip ;

make v eq : v~ typ = ’=’; goto make v arcless ;
make v 1 : v~bit = 1; goto make v constant ;
make v 0 : v~bit = 0;
make v constant : v~typ = ’C’;
make v arcless : v~arcs = Λ;
}
v~bar = Λ; /∗ this field will point to the complement, if computed later ∗/

done : v~ foo = v + 1; /∗ this field will link all the vertices together ∗/
}

This code is used in section 51.

54. 〈Try to reduce an inverter, then goto done 54 〉 ≡
u = v~arcs~ tip ;
if (u~ typ ≡ ’=’) u = v~arcs~ tip = u~alt ;
if (u~ typ ≡ ’C’) {

v~bit = 1 − u~bit ; goto make v constant ;
} else if (u~bar) { /∗ this inverse already computed ∗/

v~alt = u~bar ; goto make v eq ;
} else {

u~bar = v; v~bar = u; goto done ;
}

This code is used in section 53.

26 GENERALIZED GATE GRAPHS GB GATES §55

55. 〈Try to reduce an AND gate 55 〉 ≡
for (a = v~arcs , aa = Λ; a; a = a~next) {

u = a~tip ;
if (u~ typ ≡ ’=’) u = a~ tip = u~alt ;
if (u~ typ ≡ ’C’) {

if (u~bit ≡ 0) goto make v 0 ;
goto bypass and ;

} else for (b = v~arcs ; b 6= a; b = b~next) {
if (b~tip ≡ u) goto bypass and ;
if (b~tip ≡ u~bar) goto make v 0 ;

}
aa = a; continue;

bypass and :
if (aa) aa~next = a~next ;
else v~arcs = a~next ;

}
if (v~arcs ≡ Λ) goto make v 1 ;

This code is used in section 53.

56. 〈Try to reduce an OR gate 56 〉 ≡
for (a = v~arcs , aa = Λ; a; a = a~next) {

u = a~tip ;
if (u~ typ ≡ ’=’) u = a~ tip = u~alt ;
if (u~ typ ≡ ’C’) {

if (u~bit) goto make v 1 ;
goto bypass or ;

} else for (b = v~arcs ; b 6= a; b = b~next) {
if (b~tip ≡ u) goto bypass or ;
if (b~tip ≡ u~bar) goto make v 1 ;

}
aa = a; continue;

bypass or :
if (aa) aa~next = a~next ;
else v~arcs = a~next ;

}
if (v~arcs ≡ Λ) goto make v 0 ;

This code is used in section 53.

§57 GB GATES GENERALIZED GATE GRAPHS 27

57. 〈Try to reduce an EXCLUSIVE-OR gate 57 〉 ≡
{ long cmp = 0;

for (a = v~arcs , aa = Λ; a; a = a~next) {
u = a~tip ;
if (u~ typ ≡ ’=’) u = a~ tip = u~alt ;
if (u~ typ ≡ ’C’) {

if (u~bit) cmp = 1 − cmp ;
goto bypass xor ;

} else for (bb = Λ, b = v~arcs ; b 6= a; b = b~next) {
if (b~tip ≡ u) goto double bypass ;
if (b~tip ≡ u~bar) {

cmp = 1 − cmp ;
goto double bypass ;

}
bb = b; continue;

double bypass :
if (bb) bb~next = b~next ;
else v~arcs = b~next ;
goto bypass xor ;

}
aa = a; continue;

bypass xor :
if (aa) aa~next = a~next ;
else v~arcs = a~next ;
a~a.A = avail arc ;
avail arc = a;

}
if (v~arcs ≡ Λ) {

v~bit = cmp ;
goto make v constant ;

}
if (cmp) 〈Complement one argument of v 58 〉;

}
This code is used in section 53.

58. 〈Complement one argument of v 58 〉 ≡
{

for (a = v~arcs ; ; a = a~next) {
u = a~tip ;
if (u~bar) break; /∗ good, the complement is already known ∗/
if (a~next ≡ Λ) { /∗ oops, this is our last chance ∗/
〈Create a new vertex for complement of u 59 〉;
break;

}
}
a~ tip = u~bar ;

}
This code is used in section 57.

28 GENERALIZED GATE GRAPHS GB GATES §59

59. Here we’ve come to a subtle point: If a lot of XOR gates involve an input that is set to the constant
value 1, the “reduced” graph might actually be larger than the original, in the sense of having more vertices
(although fewer arcs). Therefore we must have the ability to allocate new vertices during the reduction
phase of reduce . At least one arc has been added to the avail arc list whenever we reach this portion of the
program.
〈Create a new vertex for complement of u 59 〉 ≡

if (next vert ≡ max next vert) {
next vert = gb typed alloc (7,Vertex, g~aux data);
if (next vert ≡ Λ) {

gb recycle (g);
panic (no room + 1); /∗ can’t get auxiliary storage! ∗/

}
max next vert = next vert + 7;

}
next vert~ typ = NOT;
sprintf (name buf , "%s~", u~name);
next vert~name = gb save string (name buf);
next vert~arcs = avail arc ; /∗ this is known to be non-Λ ∗/
avail arc~ tip = u;
avail arc = avail arc~a.A;
next vert~arcs~next = Λ;
next vert~bar = u;
next vert~ foo = u~ foo ;
u~ foo = u~bar = next vert ++;

This code is used in section 58.

60. During the marking phase, we will use the w.V field to link the list of nodes-to-be-marked. That
field will turn out to be non-Λ only in the marked nodes. (We no longer use its former meaning related to
complementation, so we call it lnk instead of bar .)
#define lnk w.V /∗ stack link for marking ∗/
〈Mark all gates that are used in some output 60 〉 ≡
{

for (v = g~vertices ; v 6= sentinel ; v = v~foo) v~ lnk = Λ;
for (a = g~outs ; a; a = a~next) {

v = a~ tip ;
if (is boolean (v)) continue;
if (v~ typ ≡ ’=’) v = a~tip = v~alt ;
if (v~ typ ≡ ’C’) { /∗ this output is constant, so make it boolean ∗/

a~ tip = (Vertex ∗) v~bit ;
continue;

}
〈Mark all gates that are used to compute v 61 〉;

}
}

This code is used in section 51.

§61 GB GATES GENERALIZED GATE GRAPHS 29

61. 〈Mark all gates that are used to compute v 61 〉 ≡
if (v~ lnk ≡ Λ) {

v~ lnk = sentinel ; /∗ v now represents the top of the stack of nodes to be marked ∗/
do {

n++;
b = v~arcs ;
if (v~ typ ≡ ’L’) {

u = v~alt ; /∗ latch vertices have a “hidden” dependency ∗/
if (u < v) n++; /∗ latched input value will get a special gate ∗/
if (u~ lnk ≡ Λ) {

u~ lnk = v~ lnk ;
v = u;

} else v = v~ lnk ;
} else v = v~ lnk ;
for (; b; b = b~next) {

u = b~ tip ;
if (u~ lnk ≡ Λ) {

u~ lnk = v;
v = u;

}
}

} while (v 6= sentinel);
}

This code is used in section 60.

30 GENERALIZED GATE GRAPHS GB GATES §62

62. It is easier to copy a directed acyclic graph than to copy a general graph, but we do have to contend
with the feedback in latches.
#define reverse arc list (alist)

{ for (aa = alist , b = Λ; aa ; b = aa , aa = a) {
a = aa~next ;
aa~next = b;

}
alist = b; }

〈Copy all marked gates to a new graph 62 〉 ≡
new graph = gb new graph (n);
if (new graph ≡ Λ) {

gb recycle (g);
panic (no room + 2); /∗ out of memory ∗/

}
strcpy (new graph~ id , g~ id);
strcpy (new graph~util types , "ZZZIIVZZZZZZZA");
next vert = new graph~vertices ;
for (v = g~vertices , latch ptr = Λ; v 6= sentinel ; v = v~ foo) {

if (v~ lnk) { /∗ yes, v is marked ∗/
u = v~ lnk = next vert ++; /∗ make note of where we’ve copied it ∗/
〈Make u a copy of v; put it on the latch list if it’s a latch 63 〉;

}
}
〈Fix up the alt fields of the newly copied latches 64 〉;
reverse arc list (g~outs);
for (a = g~outs ; a; a = a~next) {

b = gb virgin arc();
b~ tip = is boolean (a~tip) ? a~ tip : a~ tip~ lnk ;
b~next = new graph~outs ;
new graph~outs = b;

}
This code is used in section 51.

63. 〈Make u a copy of v; put it on the latch list if it’s a latch 63 〉 ≡
u~name = gb save string (v~name);
u~ typ = v~ typ ;
if (v~ typ ≡ ’L’) {

u~alt = latch ptr ; latch ptr = v;
}
reverse arc list (v~arcs);
for (a = v~arcs ; a; a = a~next) gb new arc(u, a~ tip~ lnk , a~ len);

This code is used in section 62.

§64 GB GATES GENERALIZED GATE GRAPHS 31

64. 〈Fix up the alt fields of the newly copied latches 64 〉 ≡
while (latch ptr) {

u = latch ptr~ lnk ; /∗ the copy of a latch ∗/
v = u~alt ;
u~alt = latch ptr~alt~ lnk ;
latch ptr = v;
if (u~alt < u) 〈Replace u~alt by a new gate that copies an input 65 〉;

}
This code is used in section 62.

65. Suppose we had a latch whose value was originally the AND of two inputs, where one of those inputs
has now been set to 1. Then the latch should still refer to a subsequent gate, equal to the value of the other
input on the previous cycle. We create such a gate here, making it an OR of two identical inputs. We do
this because we’re not supposed to leave any ’=’ in the result of reduce , and because every OR is supposed
to have at least two inputs.
〈Replace u~alt by a new gate that copies an input 65 〉 ≡

{
v = u~alt ; /∗ the input gate that should be copied for latching ∗/
u~alt = next vert ++;
sprintf (name buf , "%s>%s", v~name , u~name);
u = u~alt ;
u~name = gb save string (name buf);
u~ typ = OR;
gb new arc(u, v, DELAY); gb new arc (u, v, DELAY);

}
This code is used in section 64.

32 PARALLEL MULTIPLICATION GB GATES §66

66. Parallel multiplication. Now comes the prod routine, which constructs a rather different network
of gates, based this time on a divide-and-conquer paradigm. Let’s take a breather before we tackle it.

(Deep breath.)
The subroutine call prod (m, n) creates a network for the binary multiplication of unsigned m-bit numbers

by n-bit numbers, assuming that m ≥ 2 and n ≥ 2. There is no upper limit on the sizes of m and n, except
of course the limits imposed by the size of memory in which this routine is run.

The overall strategy used by prod is to start with a generalized gate graph for multiplication in which
many of the gates are identically zero or copies of other gates. Then the reduce routine will perform local
optimizations leading to the desired result. Since there are no latches, some of the complexities of the general
reduce routine are avoided.

All of the AND, OR, and XOR gates of the network returned by prod have exactly two inputs. The depth of the
circuit (i.e., the length of its longest path) is 3 logm/log 1.5+log(m+n)/log φ+O(1), where φ = (1+

√
5)/2

is the golden ratio. The grand total number of gates is 6mn + 5m2 + O
(
(m + n) log(m + n)

)
.

There is a demonstration program called MULTIPLY that uses prod to compute products of large integers.
〈The prod routine 66 〉 ≡

Graph ∗prod (m, n)
unsigned long m, n; /∗ lengths of the binary numbers to be multiplied ∗/

{ 〈Local variables for prod 68 〉
if (m < 2) m = 2;
if (n < 2) n = 2;
〈Allocate space for a temporary graph g and for auxiliary tables 67 〉;
〈Fill g with generalized gates that do parallel multiplication 70 〉;
if (gb trouble code) {

gb recycle (g); panic (alloc fault); /∗ too big ∗/
}
g = reduce (g);
return g; /∗ if g ≡ Λ, the panic code was set by reduce ∗/

}
This code is used in section 7.

§67 GB GATES PARALLEL MULTIPLICATION 33

67. The divide-and-conquer recurrences used in this network lead to interesting patterns. First we use a
method for parallel column addition that reduces the sum of three numbers to the sum of two numbers.
Repeated use of this reduction makes it possible to reduce the sum of m numbers to a sum of just two
numbers, with a total circuit depth that satisfies the recurrence T (3N) = T (2N) + O(1). Then when the
result has been reduced to a sum of two numbers, we use a parallel addition scheme based on recursively
“golden sectioning the data”; in other words, the recursion partitions the data into two parts such that the
ratio of the larger part to the smaller part is approximately φ. This technique proves to be slightly better
than a binary partition would be, both asymptotically and for small values of m + n.

We define flog N , the Fibonacci logarithm of N , to be the smallest nonnegative integer k such that
N ≤ Fk+1. Let N = m + n. Our parallel adder for two numbers of N bits will turn out to have depth at
most 2+flog N . The unreduced graph g in our circuit for multiplication will have fewer than (6m+3 flogN)N
gates.
〈Allocate space for a temporary graph g and for auxiliary tables 67 〉 ≡

m plus n = m + n; 〈Compute f = flog(m + n) 69 〉;
g = gb new graph ((6 ∗ m − 7 + 3 ∗ f) ∗ m plus n);
if (g ≡ Λ) panic (no room); /∗ out of memory before we’re even started ∗/
sprintf (g~id , "prod(%lu,%lu)", m, n);
strcpy (g~util types , "ZZZIIVZZZZZZZA");
long tables = gb typed alloc (2 ∗ m plus n + f, long, g~aux data);
vert tables = gb typed alloc (f ∗ m plus n ,Vertex ∗, g~aux data);
if (gb trouble code) {

gb recycle (g);
panic (no room + 1); /∗ out of memory trying to create auxiliary tables ∗/

}
This code is used in section 66.

68. 〈Local variables for prod 68 〉 ≡
unsigned long m plus n ; /∗ guess what this variable holds ∗/
long f ; /∗ initially flog(m + n), later flog of other things ∗/
Graph ∗g; /∗ graph of generalized gates, to be reduced eventually ∗/
long ∗long tables ; /∗ beginning of auxiliary array of long numbers ∗/
Vertex ∗∗vert tables ; /∗ beginning of auxiliary array of gate pointers ∗/

See also sections 71 and 77.

This code is used in section 66.

69. 〈Compute f = flog(m + n) 69 〉 ≡
f = 4; j = 3; k = 5; /∗ j = Ff , k = Ff+1 ∗/
while (k < m plus n) {

k = k + j;
j = k − j;
f ++;

}
This code is used in section 67.

34 PARALLEL MULTIPLICATION GB GATES §70

70. The well-known formulas for a “full adder,”

x + y + z = s + 2c, where s = x ⊕ y ⊕ z and c = xy ∨ yz ∨ zx,

can be applied to each bit of an N -bit number, thereby providing us with a way to reduce the sum of three
numbers to the sum of two.

The input gates of our network will be called x0, x1, . . . , xm−1, y0, y1, . . . , yn−1, and the outputs will be
called z0, z1, . . . , zm+n−1. The logic of the prod network will compute

(zm+n−1 . . . z1z0)2 = (xm−1 . . . x1x0)2 · (yn−1 . . . y1y0)2 ,

by first considering the product to be the m-fold sum A0 + A1 + · · · + Am−1, where

Aj = 2jxj · (yn−1 . . . y1y0)2 , 0 ≤ j < m.

Then the three-to-two rule for addition is used to define further numbers Am, Am+1, . . . , A3m−5 by the
scheme

Am+2j + Am+2j+1 = A3j + A3j+1 + A3j+2 , 0 ≤ j ≤ m − 3.

[A similar but slightly less efficient scheme was used by Pratt and Stockmeyer in Journal of Computer and
System Sciences 12 (1976), Proposition 5.3. The recurrence used here is related to the Josephus problem
with step-size 3; see Concrete Mathematics, §3.3.] For this purpose, we compute intermediate results Pj ,
Qj , and Rj by the rules

Pj = A3j ⊕ A3j+1 ;
Qj = A3j ∧ A3j+1 ;

Am+2j = Pj ⊕ A3j+2 ;
Rj = Pj ∧ A3j+2 ;

Am+2j+1 = 2(Qj ∨ Rj) .

Finally we let
U = A3m−6 ⊕ A3m−5 ,

V = A3m−6 ∧ A3m−5 ;

these are the values that would be Pm−2 and Qm−2 if the previous formulas were allowed to run past
j = m − 3. The final result Z = (zm+n−1 . . . z1z0)2 can now be expressed as

Z = U + 2V .

The gates of the first part of the network are conveniently obtained in groups of N = m + n, representing
the bits of the quantities Aj , Pj , Qj , Rj , U , and V . We will put the least significant bit of Aj in gate
position g~vertices + a(j) ∗ N , where a(j) = j + 1 for 0 ≤ j < m and a(m + 2j + t) = m + 5j + 3 + 2t for
0 ≤ j ≤ m − 3, 0 ≤ t ≤ 1.
〈Fill g with generalized gates that do parallel multiplication 70 〉 ≡

next vert = g~vertices ;
start prefix ("X"); x = first of (m, ’I’);
start prefix ("Y"); y = first of (n, ’I’);
〈Define Aj for 0 ≤ j < m 72 〉;
〈Define Pj , Qj , Am+2j , Rj , and Am+2j+1 for 0 ≤ j ≤ m − 3 73 〉;
〈Define U and V 74 〉;
〈Compute the final result Z by parallel addition 75 〉;

This code is used in section 66.

§71 GB GATES PARALLEL MULTIPLICATION 35

71. 〈Local variables for prod 68 〉 +≡
register long i, j, k, l; /∗ all-purpose indices ∗/
register Vertex ∗v; /∗ current vertex of interest ∗/
Vertex ∗x, ∗y; /∗ least-significant bits of the input gates ∗/
Vertex ∗alpha , ∗beta ; /∗ least-significant bits of arguments ∗/

72. 〈Define Aj for 0 ≤ j < m 72 〉 ≡
for (j = 0; j < m; j++) {

numeric prefix (’A’, j);
for (k = 0; k < j; k++) {

v = new vert (’C’); v~bit = 0; /∗ this gate is the constant 0 ∗/
}
for (k = 0; k < n; k++) make2 (AND, x + j, y + k);
for (k = j + n; k < m plus n ; k++) {

v = new vert (’C’); v~bit = 0; /∗ this gate is the constant 0 ∗/
}

}
This code is used in section 70.

73. Since m is unsigned, it is necessary to say ‘j < m − 2’ here instead of ‘j ≤ m − 3’.
#define a pos (j) (j < m ? j + 1 : m + 5 ∗ ((j − m) � 1) + 3 + (((j − m) & 1) � 1))
〈Define Pj , Qj , Am+2j , Rj , and Am+2j+1 for 0 ≤ j ≤ m − 3 73 〉 ≡

for (j = 0; j < m − 2; j++) {
alpha = g~vertices + (a pos (3 ∗ j) ∗ m plus n);
beta = g~vertices + (a pos (3 ∗ j + 1) ∗ m plus n);
numeric prefix (’P’, j);
for (k = 0; k < m plus n ; k++) make2 (XOR, alpha + k, beta + k);
numeric prefix (’Q’, j);
for (k = 0; k < m plus n ; k++) make2 (AND, alpha + k, beta + k);
alpha = next vert − 2 ∗ m plus n ;
beta = g~vertices + (a pos (3 ∗ j + 2) ∗ m plus n);
numeric prefix (’A’, (long) m + 2 ∗ j);
for (k = 0; k < m plus n ; k++) make2 (XOR, alpha + k, beta + k);
numeric prefix (’R’, j);
for (k = 0; k < m plus n ; k++) make2 (AND, alpha + k, beta + k);
alpha = next vert − 3 ∗ m plus n ;
beta = next vert − m plus n ;
numeric prefix (’A’, (long) m + 2 ∗ j + 1);
v = new vert (’C’); v~bit = 0; /∗ another 0, it multiplies Q ∨ R by 2 ∗/
for (k = 0; k < m plus n − 1; k++) make2 (OR, alpha + k, beta + k);

}
This code is used in section 70.

36 PARALLEL MULTIPLICATION GB GATES §74

74. Actually vm+n−1 will never be used (it has to be zero); but we compute it anyway. We don’t have to
worry about such nitty gritty details because reduce will get rid of all the obvious redundancy.
〈Define U and V 74 〉 ≡

alpha = g~vertices + (a pos (3 ∗ m − 6) ∗ m plus n);
beta = g~vertices + (a pos (3 ∗ m − 5) ∗ m plus n);
start prefix ("U");
for (k = 0; k < m plus n ; k++) make2 (XOR, alpha + k, beta + k);
start prefix ("V");
for (k = 0; k < m plus n ; k++) make2 (AND, alpha + k, beta + k);

This code is used in section 70.

§75 GB GATES PARALLEL ADDITION 37

75. Parallel addition. It’s time now to take another deep breath. We have finished the parallel
multiplier except for one last step, the design of a parallel adder.

The adder is based on the following theory: We want to perform the binary addition

uN−1 . . . u2 u1 u0

vN−2 . . . v1 v0

zN−1 . . . z2 z1 z0

where we know that uk + vk ≤ 1 for all k. It follows that zk = uk ⊕ wk, where w0 = 0 and

wk = vk−1 ∨ uk−1vk−2 ∨ uk−1uk−2vk−3 ∨ · · · ∨ uk−1 . . . u1v0

for k > 0. The problem has therefore been reduced to the evaluation of w1, w2, . . . , wN−1.
Let c j

k denote the OR of the first j terms in the formula that defines wk, and let d j
k denote the j-fold

product uk−1uk−2 . . . uk−j . Then wk = ck
k, and we can use a recursive scheme of the form

c j
k = c i

k ∨ d i
kc j−i

k−i , d j
k = d i

kd j−i
k−i , j ≥ 2,

to do the evaluation.
It turns out that this recursion behaves very nicely if we choose i = down[j], where down[j] is defined for

j > 1 by the formula
down[j] = j − F(flog j)−1 .

For example, flog 18 = 7 because F7 = 13 < 18 ≤ 21 = F8, hence down[18] = 18 − F6 = 10.
Let us write j → down[j], and consider the oriented tree on the set of all positive integers that is defined

by this relation. One of the paths in this tree, for example, is 18 → 10 → 5 → 3 → 2 → 1. Our recurrence
for w18 = c18

18 involves c10
18, which involves c5

18, which involves c3
18, and so on. In general, we will compute c j

k

for all j with k →∗ j, and we will compute d j
k for all j with k →+ j. It is not difficult to prove that

k →∗ j → i implies k − i →∗ j − i ;

therefore the auxiliary factors c j−i
k−i and d j−i

k−i needed in the recurrence scheme will already have been
evaluated. (Indeed, one can prove more: Let l = flog k. If the complete path from k to 1 in the tree is
k = k0 → k1 → · · · → kt = 1, then the differences k0 − k1, k1 − k2, . . . , kt−2 − kt−1 will consist of precisely
the Fibonacci numbers Fl−1, Fl−2, . . . , F2, except for the numbers that appear when Fl+1 − k is written as
a sum of non-consecutive Fibonacci numbers.)

It can also be shown that, when k > 1, we have

flog k = min
0<j<n

max
(
1 + flog j, 2 + flog(k − j)

)
,

and that down[k] is the smallest j such that the minimum is achieved in this equation. Therefore the depth
of the circuit for computing wk from the u’s and v’s is exactly flog k.

In particular, we can be sure that at most 3 flogN gates will be created when computing zk, and that
there will be at most 3N flog N gates in the parallel addition portion of the circuit.
〈Compute the final result Z by parallel addition 75 〉 ≡

〈Set up auxiliary tables to handle Fibonacci-based recurrences 76 〉;
〈Create the gates for W , remembering intermediate results that might be reused later 78 〉;
〈Compute the last gates Z = U ⊕ W , and record their locations as outputs of the network 83 〉;
g~n = next vert − g~vertices ; /∗ reduce to the actual number of gates used ∗/

This code is used in section 70.

38 PARALLEL ADDITION GB GATES §76

76. After we have created a gate for wk, we will store its address as the value of w[k] in an auxiliary table.
After we’ve created a gate for c i

k where i < k is a Fibonacci number Fl+1 and l = flog i ≥ 2, we will store
its address as the value of c[k + (l − 2)N]; the gate d i

k will immediately follow this one. Tables of flog j and
down[j] will facilitate all these manipulations.
〈Set up auxiliary tables to handle Fibonacci-based recurrences 76 〉 ≡

w = vert tables ;
c = w + m plus n ;
flog = long tables ;
down = flog + m plus n + 1;
anc = down + m plus n ;
flog [1] = 0; flog [2] = 2;
down [1] = 0; down [2] = 1;
for (i = 3, j = 2, k = 3, l = 3; l ≤ m plus n ; l++) {

if (l > k) {
k = k + j;
j = k − j;
i++; /∗ Fi = j < l ≤ k = Fi+1 ∗/

}
flog [l] = i;
down [l] = l − k + j;

}
This code is used in section 75.

77. 〈Local variables for prod 68 〉 +≡
Vertex ∗uu , ∗vv ; /∗ pointer to u0 and v0 ∗/
Vertex ∗∗w; /∗ table of pointers to wk ∗/
Vertex ∗∗c; /∗ table of pointers to potentially important intermediate values c i

k ∗/
Vertex ∗cc , ∗dd ; /∗ pointers to c i

k and d i
k ∗/

long ∗flog ; /∗ table of flog values ∗/
long ∗down ; /∗ table of down values ∗/
long ∗anc ; /∗ table of ancestors of the current k ∗/

§78 GB GATES PARALLEL ADDITION 39

78. 〈Create the gates for W , remembering intermediate results that might be reused later 78 〉 ≡
vv = next vert − m plus n ; uu = vv − m plus n ;
start prefix ("W");
v = new vert (’C’); v~bit = 0; w[0] = v; /∗ w0 = 0 ∗/
v = new vert (’=’); v~alt = vv ; w[1] = v; /∗ w1 = v0 ∗/
for (k = 2; k < m plus n ; k++) {

〈Set the anc table to a list of the ancestors of k in decreasing order, stopping with anc [l] = 2 79 〉;
i = 1; cc = vv + k − 1; dd = uu + k − 1;
while (1) {

j = anc [l]; /∗ now i = down[j] ∗/
〈Compute the gate b j

k = d i
k ∧ c j−i

k−i 80 〉;
〈Compute the gate c j

k = c i
k ∨ b j

k 81 〉;
if (flog [j] < flog [j + 1]) /∗ j is a Fibonacci number ∗/

c[k + (flog [j] − 2) ∗ m plus n] = v;
if (l ≡ 0) break;
cc = v;
〈Compute the gate d j

k = d i
k ∧ d j−i

k−i 82 〉;
dd = v;
i = j;
l−−;

}
w[k] = v;

}
This code is used in section 75.

79. If k → j, we call j an “ancestor” of k because we are thinking of the tree defined by ‘→’; this tree is
rooted at 2 → 1.
〈Set the anc table to a list of the ancestors of k in decreasing order, stopping with anc [l] = 2 79 〉 ≡

for (l = 0, j = k; ; l++, j = down [j]) {
anc [l] = j;
if (j ≡ 2) break;

}
This code is used in section 78.

80. #define spec gate (v, a, k, j, t) v = next vert ++;
sprintf (name buf , "%c%ld:%ld", a, k, j);
v~name = gb save string (name buf);
v~ typ = t;

〈Compute the gate b j
k = d i

k ∧ c j−i
k−i 80 〉 ≡

spec gate (v, ’B’, k, j, AND);
gb new arc(v, dd , DELAY); /∗ first argument is d i

k ∗/
f = flog [j − i]; /∗ get ready to compute the second argument, c j−i

k−i ∗/
gb new arc(v, f > 0 ? c[k − i + (f − 2) ∗ m plus n] : vv + k − i − 1, DELAY);

This code is used in section 78.

40 PARALLEL ADDITION GB GATES §81

81. 〈Compute the gate c j
k = c i

k ∨ b j
k 81 〉 ≡

if (l) {
spec gate (v, ’C’, k, j, OR);

} else v = new vert (OR); /∗ if l is zero, this gate is ck
k = wk ∗/

gb new arc(v, cc , DELAY); /∗ first argument is c i
k ∗/

gb new arc(v,next vert − 2, DELAY); /∗ second argument is b j
k ∗/

This code is used in section 78.

82. Here we reuse the value f = flog(j − i) computed a minute ago.
〈Compute the gate d j

k = d i
k ∧ d j−i

k−i 82 〉 ≡
spec gate (v, ’D’, k, j, AND);
gb new arc(v, dd , DELAY); /∗ first argument is d i

k ∗/
gb new arc(v, f > 0 ? c[k − i + (f − 2) ∗ m plus n] + 1 : uu + k − i − 1, DELAY); /∗ d j−i

k−i ∗/
This code is used in section 78.

83. The output list will contain the gates in “big-endian order” zm+n−1, . . . , z1, z0, because we insert
them into the outs list in little-endian order.
〈Compute the last gates Z = U ⊕ W , and record their locations as outputs of the network 83 〉 ≡

start prefix ("Z");
for (k = 0; k < m plus n ; k++) { register Arc ∗a = gb virgin arc();

a~ tip = make2 (XOR, uu + k, w[k]);
a~next = g~outs ;
g~outs = a;

}
This code is used in section 75.

§84 GB GATES PARTIAL EVALUATION 41

84. Partial evaluation. The subroutine call partial gates (g, r, prob , seed , buf) creates a new gate graph
from a given gate graph g by “partial evaluation,” i.e., by setting some of the inputs to constant values and
simplifying the result. The new graph is usually smaller than g; it might, in fact, be a great deal smaller.
Graph g is destroyed in the process.

The first r inputs of g are retained unconditionally. Each remaining input is retained with probability
prob/65536, and if not retained it is assigned a random constant value. For example, about half of the inputs
will become constant if prob = 32768. The seed parameter defines a machine-independent source of random
numbers, and it may be given any value between 0 and 231 − 1.

If the buf parameter is non-null, it should be the address of a string. In such a case, partial gates will put
a record of its partial evaluation into that string; buf will contain one character for each input gate after the
first r, namely ’*’ if the input was retained, ’0’ if it was set to 0, or ’1’ if it was set to 1.

The new graph will contain only gates that contribute to the computation of at least one output value.
Therefore some input gates might disappear even though they were supposedly “retained,” i.e., even though
their value has not been set constant. The name field of a vertex can be used to determine exactly which
input gates have survived.

If graph g was created by risc , users will probably want to make r ≥ 1, since the whole RISC circuit
collapses to zero whenever its first input ‘RUN’ is set to 0.

An interesting class of graphs is produced by the function call partial gates (prod (m, n), m, 0, seed , Λ),
which creates a graph corresponding to a circuit that multiplies a given m-bit number by a fixed (but
randomly selected) n-bit constant. If the constant is not zero, all m of the “retained” input gates necessarily
survive. The demo program called MULTIPLY illustrates such circuits.

The graph g might be a generalized network; that is, it might involve the ’C’ or ’=’ gates described earlier.
Notice that if r is sufficiently large, partial gates becomes equivalent to the reduce routine. Therefore we
need not make that private routine public.

As usual, the result will be Λ, and panic code will be set, if partial gates is unable to complete its task.
〈The partial gates routine 84 〉 ≡

Graph ∗partial gates (g, r, prob , seed , buf)
Graph ∗g; /∗ generalized gate graph ∗/
unsigned long r; /∗ the number of initial gates to leave untouched ∗/
unsigned long prob ; /∗ scaled probability of not touching subsequent input gates ∗/
long seed ; /∗ seed value for random number generation ∗/
char ∗buf ; /∗ optional parameter for information about partial assignment ∗/

{ register Vertex ∗v; /∗ the current gate of interest ∗/
if (g ≡ Λ) panic (missing operand); /∗ where is g? ∗/
gb init rand (seed); /∗ get them random numbers rolling ∗/
for (v = g~vertices + r; v < g~vertices + g~n; v++)

switch (v~typ) {
case ’C’: case ’=’: continue; /∗ input gates might still follow ∗/
case ’I’:

if ((gb next rand () � 15) ≥ prob) {
v~ typ = ’C’; v~bit = gb next rand () � 30;
if (buf) ∗buf ++ = v~bit + ’0’;

} else if (buf) ∗buf ++ = ’*’;
break;

default: goto done ; /∗ no more input gates can follow ∗/
}

done :
if (buf) ∗buf = 0; /∗ terminate the string ∗/
g = reduce (g);
〈Give the reduced graph a suitable id 85 〉;
return g; /∗ if (g ≡ Λ), a panic code has been set by reduce ∗/

}

42 PARTIAL EVALUATION GB GATES §84

This code is used in section 7.

85. The buf parameter is not recorded in the graph’s id field, since it has no effect on the graph itself.
〈Give the reduced graph a suitable id 85 〉 ≡

if (g) {
strcpy (name buf , g~ id);
if (strlen (name buf) > 54) strcpy (name buf + 51, "...");
sprintf (g~ id , "partial_gates(%s,%lu,%lu,%ld)",name buf , r, prob , seed);

}
This code is used in section 84.

§86 GB GATES INDEX 43

86. Index. Here is a list that shows where the identifiers of this program are defined and used.

a: 3, 36, 43, 49, 51, 83.
a pos : 73, 74.
aa : 51, 55, 56, 57, 62.
add : 38.
alist : 62.
alloc fault : 8, 66.
alpha : 71, 73, 74.
alt : 2, 3, 32, 46, 47, 49, 52, 53, 54, 55, 56, 57,

60, 61, 63, 64, 65, 78.
anc : 76, 77, 78, 79.
AND: 2, 6, 15, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34,

35, 36, 38, 39, 41, 42, 53, 66, 72, 73, 74, 80, 82.
arcs : 6, 49, 53, 54, 55, 56, 57, 58, 59, 61, 63.
aux data : 59, 67.
avail arc : 51, 57, 59.
b: 51.
bar : 14, 53, 54, 55, 56, 57, 58, 59, 60.
bb : 51, 57.
beta : 71, 73, 74.
bit : 49, 50, 52, 53, 54, 55, 56, 57, 60, 72, 73, 78, 84.
buf : 84, 85.
bypass and : 55.
bypass or : 56.
bypass xor : 57.
c: 43, 77.
carry : 18, 19, 27, 35, 38, 41, 46, 47.
cc : 77, 78, 81.
change : 27, 28, 31, 32, 34, 36.
cmp : 57.
comp : 14, 15, 21, 26, 27, 30, 31, 32, 34, 35,

36, 38, 39, 41, 42.
cond : 20, 21, 27, 31, 32, 33, 35, 36.
count : 11, 12, 19.
dd : 77, 78, 80, 82.
DELAY: 13, 23, 24, 65, 80, 81, 82.
dest : 20, 21, 23, 32.
dest match : 23, 25, 34.
diff : 25, 31, 41.
dir : 20, 21, 22.
done : 53, 54, 84.
double bypass : 57.
down : 39, 40, 76, 77, 79.
do2 : 20, 21, 31, 32, 34, 36, 41.
do3 : 20, 21, 27, 31, 38, 39, 42.
do4 : 20, 22, 23, 26, 27, 35, 36, 38, 42.
do5 : 20, 24, 31, 35.
even comp : 14, 23, 24, 38.
extra : 18, 19, 21, 22, 32, 44, 46, 47.
f : 68.
Fibonacci, Leonardo, numbers: 67.
first of : 19, 70.

flog : 76, 77, 78, 80.
foo : 53, 59, 60, 62.
g: 3, 43, 49, 51, 68, 84.
gate eval : 1, 3, 10, 43.
gb init rand : 84.
gb new arc : 13, 14, 23, 24, 63, 65, 80, 81, 82.
gb new graph : 16, 62, 67.
gb next rand : 84.
gb recycle : 8, 51, 59, 62, 66, 67.
gb save string : 11, 14, 59, 63, 65, 80.
gb trouble code : 8, 66, 67.
gb typed alloc : 59, 67.
gb virgin arc : 36, 62, 83.
hop : 36, 37.
i: 71.
id : 16, 62, 67, 85.
imm : 20, 21, 22.
impossible : 17.
in vec : 3, 4.
inc dest : 22, 25, 39, 40.
ind : 20, 21, 32, 34, 35, 36.
is boolean : 2, 49, 60, 62.
j: 71.
Josephus, Flavius, problem: 70.
jump : 31, 33, 35, 36.
k: 9, 38, 43, 71.
l: 43, 71.
latch : 32.
latch ptr : 51, 52, 53, 62, 63, 64.
latchit : 32, 34, 35, 36.
len : 63.
lnk : 60, 61, 62, 63, 64.
log : 25, 26, 31.
long tables : 67, 68, 76.
m: 43, 66.
m plus n : 67, 68, 69, 72, 73, 74, 76, 78, 80, 82, 83.
make adder : 38, 39, 41.
make v arcless : 53.
make v constant : 53, 54, 57.
make v eq : 53, 54.
make v 0 : 53, 55, 56.
make v 1 : 53, 55, 56.
make xor : 15, 30, 38, 42.
make2 : 13, 15, 20, 21, 22, 23, 27, 30, 31, 32, 34,

35, 36, 38, 39, 41, 42, 72, 73, 74, 83.
make3 : 13, 20, 26, 27, 31, 36, 38, 39, 41, 42.
make4 : 13, 20, 32, 35, 36, 42.
make5 : 13, 20, 31, 35, 36, 42.
max next vert : 51, 59.
mem : 18, 19, 21, 22, 24, 32, 39.
missing operand : 51, 84.

44 INDEX GB GATES §86

mod : 20, 21, 26, 27, 31, 35, 41, 42.
n: 38, 43, 51, 66.
name : 11, 14, 49, 59, 63, 65, 80, 84.
name buf : 11, 12, 14, 59, 65, 80, 85.
new graph : 8, 9, 16, 17, 36, 51, 62.
new vert : 11, 13, 19, 23, 24, 72, 73, 78, 81.
next : 5, 6, 36, 43, 49, 53, 55, 56, 57, 58, 59,

60, 61, 62, 63, 83.
next loc : 25, 30, 31, 36.
next next loc : 25, 30, 32, 36.
next vert : 11, 12, 14, 16, 17, 51, 59, 62, 65, 70,

73, 75, 78, 80, 81.
nextra : 32, 33.
no constants yet : 52.
no room : 16, 59, 62, 67.
nonzero : 18, 19, 27, 35, 46, 47.
normal : 36, 37.
NOT: 2, 6, 14, 53, 59.
numeric prefix : 12, 19, 72, 73.
nzd : 32, 33, 36.
nzs : 32, 33, 36.
o: 43.
old dest : 23, 25, 26, 39, 41.
old src : 22, 23, 24, 25, 36.
op : 20, 21, 27, 31, 35.
OR: 2, 6, 15, 21, 22, 23, 24, 26, 27, 31, 32, 34, 35,

36, 38, 39, 41, 42, 53, 65, 66, 73, 81.
out vec : 3, 5.
outs : 2, 5, 36, 43, 49, 60, 62, 83.
overflow : 18, 19, 27, 35, 46, 47.
p gates : 1, 49.
panic : 8, 16, 17, 51, 59, 62, 66, 67, 84.
panic code : 8, 66, 84.
partial gates : 1, 84.
pr gate : 49.
Pratt, Vaughan Ronald: 70.
prefix : 11, 12, 19.
print gates : 1, 49.
printf : 44, 45, 46, 49.
prob : 84, 85.
prod : 1, 2, 38, 66, 70, 84.
prog : 18, 19, 21, 32, 44, 46, 47.
r: 9, 43, 84.
reduce : 51, 59, 65, 66, 74, 84.
reg : 18, 19, 23, 24, 30, 34, 36.
regs : 8, 16, 19, 23, 24, 34.
rel : 20, 21, 22.
result : 20, 25, 31, 34, 35, 36.
reverse arc list : 62, 63.
risc : 1, 2, 8, 9, 38, 43, 84.
risc state : 1, 43, 47, 48.
rom : 43, 46.

run bit : 18, 19, 32, 36.
run risc : 1, 43.
s: 43.
seed : 84, 85.
sentinel : 51, 60, 61, 62.
shift : 25, 31, 42.
sign : 18, 19, 27, 35, 46, 47.
size : 43, 46.
skip : 36, 37.
source : 22, 25, 26, 31, 36, 41, 42.
spec gate : 80, 81, 82.
special : 36, 37.
sprintf : 11, 12, 14, 16, 59, 65, 67, 80, 85.
start prefix : 12, 19, 21, 22, 26, 27, 29, 41, 70,

74, 78, 83.
Stockmeyer, Larry Joseph: 70.
strcpy : 12, 16, 19, 62, 67, 85.
strlen : 85.
sum : 25, 31, 41.
t: 3, 11, 13.
test single arg : 53.
the boolean : 2, 49.
tip : 2, 5, 6, 36, 43, 49, 53, 54, 55, 56, 57, 58,

59, 60, 61, 62, 63, 83.
tip value : 2, 5.
tmp : 20, 23, 24, 27.
trace regs : 43, 44, 46.
typ : 2, 3, 11, 14, 46, 47, 49, 52, 53, 54, 55, 56,

57, 59, 60, 61, 63, 65, 80, 84.
t1 : 15, 20, 38.
t2 : 15, 20, 38.
t3 : 20, 34, 38.
t4 : 20, 34, 36, 38.
t5 : 20, 30, 34, 35, 36.
u: 14, 15, 51.
up : 39, 40.
util types : 16, 62, 67.
uu : 77, 78, 82, 83.
v: 3, 11, 13, 14, 15, 43, 49, 51, 71, 84.
val : 2, 3, 4, 6, 43, 46, 47.
vert tables : 67, 68, 76.
vertices : 3, 4, 16, 17, 43, 46, 47, 49, 51, 60, 62,

70, 73, 74, 75, 84.
vv : 77, 78, 80.
v1 : 13, 20.
v2 : 13, 20.
v3 : 13, 20.
v4 : 13, 20.
v5 : 13, 20.
w: 77.
x: 38, 43, 71.
XOR: 2, 6, 53, 59, 66, 73, 74, 83.

§86 GB GATES INDEX 45

y: 38, 71.
z: 38.
zz : 2.

46 NAMES OF THE SECTIONS GB GATES

〈Add the RISC data to new graph 17 〉 Used in section 8.

〈Allocate space for a temporary graph g and for auxiliary tables 67 〉 Used in section 66.

〈Check to see if any latch has become constant; if not, break 52 〉 Used in section 51.

〈Complement one argument of v 58 〉 Used in section 57.

〈Compute f = flog(m + n) 69 〉 Used in section 67.

〈Compute the final result Z by parallel addition 75 〉 Used in section 70.

〈Compute the gate b j
k = d i

k ∧ c j−i
k−i 80 〉 Used in section 78.

〈Compute the gate c j
k = c i

k ∨ b j
k 81 〉 Used in section 78.

〈Compute the gate d j
k = d i

k ∧ d j−i
k−i 82 〉 Used in section 78.

〈Compute the last gates Z = U ⊕ W , and record their locations as outputs of the network 83 〉 Used in

section 75.

〈Compute the value t of a classical logic gate 6 〉 Used in section 3.

〈Copy all marked gates to a new graph 62 〉 Used in section 51.

〈Create a new vertex for complement of u 59 〉 Used in section 58.

〈Create gates for fetching the source value 22 〉 Used in section 17.

〈Create gates for instruction decoding 21 〉 Used in section 17.

〈Create gates for the arithmetic operations 41 〉 Used in section 17.

〈Create gates for the conditional load operations 27 〉 Used in section 17.

〈Create gates for the general logic operation 26 〉 Used in section 17.

〈Create gates for the new values of S, N, K, and V 35 〉 Used in section 29.

〈Create gates for the new values of register 0 and the memory address register 36 〉 Used in section 29.

〈Create gates for the new values of registers 1 to regs 34 〉 Used in section 29.

〈Create gates for the new values of the program register and extra 32 〉 Used in section 29.

〈Create gates for the shift operations 42 〉 Used in section 41.

〈Create gates for the next loc and next next loc bits 30 〉 Used in section 29.

〈Create gates for the result bits 31 〉 Used in section 29.

〈Create gates that bring everything together properly 29 〉 Used in section 17.

〈Create the gates for W , remembering intermediate results that might be reused later 78 〉 Used in section 75.

〈Create the inputs and latches 19 〉 Used in section 17.

〈Define Aj for 0 ≤ j < m 72 〉 Used in section 70.

〈Define Pj , Qj , Am+2j , Rj , and Am+2j+1 for 0 ≤ j ≤ m − 3 73 〉 Used in section 70.

〈Define U and V 74 〉 Used in section 70.

〈Dump the register contents into risc state 47 〉 Used in section 43.

〈Fill g with generalized gates that do parallel multiplication 70 〉 Used in section 66.

〈Fix up the alt fields of the newly copied latches 64 〉 Used in section 62.

〈Give the reduced graph a suitable id 85 〉 Used in section 84.

〈Global variables 48 〉 Used in section 7.

〈 Initialize new graph to an empty graph of the appropriate size 16 〉 Used in section 8.

〈 Internal subroutines 11, 13, 14, 15, 38, 51 〉 Used in section 7.

〈Local variables for prod 68, 71, 77 〉 Used in section 66.

〈Local variables for risc 9, 18, 20, 25, 28, 33, 37, 40 〉 Used in section 8.

〈Make u a copy of v; put it on the latch list if it’s a latch 63 〉 Used in section 62.

〈Mark all gates that are used in some output 60 〉 Used in section 51.

〈Mark all gates that are used to compute v 61 〉 Used in section 60.

〈Print a footline 45 〉 Used in section 43.

〈Print a headline 44 〉 Used in section 43.

〈Print register contents 46 〉 Used in section 43.

〈Private variables 12 〉 Used in section 7.

〈Read a sequence of input values from in vec 4 〉 Used in section 3.

〈Reduce gate v, if possible, or put it on the latch list 53 〉 Used in section 51.

〈Replace u~alt by a new gate that copies an input 65 〉 Used in section 64.

GB GATES NAMES OF THE SECTIONS 47

〈Set the anc table to a list of the ancestors of k in decreasing order, stopping with anc [l] = 2 79 〉 Used in

section 78.

〈Set up auxiliary tables to handle Fibonacci-based recurrences 76 〉 Used in section 75.

〈Set inc dest to old dest plus SRC 39 〉 Used in section 22.

〈Set old dest to the present value of the destination register 23 〉 Used in section 22.

〈Set old src to the present value of the source register 24 〉 Used in section 22.

〈Store the sequence of output values in out vec 5 〉 Used in section 3.

〈The gate eval routine 3 〉 Used in section 7.

〈The partial gates routine 84 〉 Used in section 7.

〈The print gates routine 49 〉 Used in section 7.

〈The prod routine 66 〉 Used in section 7.

〈The risc routine 8 〉 Used in section 7.

〈The run risc routine 43 〉 Used in section 7.

〈Try to reduce an inverter, then goto done 54 〉 Used in section 53.

〈Try to reduce an AND gate 55 〉 Used in section 53.

〈Try to reduce an EXCLUSIVE-OR gate 57 〉 Used in section 53.

〈Try to reduce an OR gate 56 〉 Used in section 53.

〈 gb_gates.h 1, 2, 50 〉

January 12, 1994 at 23:12

GB GATES
Section Page

Introduction . 1 1
The RISC netlist . 8 5
Serial addition . 38 18
RISC management . 43 21
Generalized gate graphs . 49 23
Parallel multiplication . 66 32
Parallel addition . 75 37
Partial evaluation . 84 41
Index . 86 43

c© 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

