
§1 GB IO INTRODUCTION 1

1. Introduction. This is GB IO, the input/output module used by all GraphBase routines to access
data files. It doesn’t actually do any output; but somehow ‘input/output’ sounds like a more useful title
than just ‘input’.

All files of GraphBase data are designed to produce identical results on almost all existing computers and
operating systems. Each line of each file contains at most 79 characters. Each character is either a blank
or a digit or an uppercase letter or a lowercase letter or a standard punctuation mark. Blank characters at
the end of each line are “invisible”; that is, they have no perceivable effect. Hence identical results will be
obtained on record-oriented systems that pad every line with blanks.

The data is carefully sum-checked so that defective input files have little chance of being accepted.

2. Changes might be needed when these routines are ported to different systems. Sections of the program
that are most likely to require such changes are listed under ‘system dependencies’ in the index.

A validation program is provided so that installers can tell if GB IO is working properly. To make the test,
simply run test_io.
〈 test_io.c 2 〉 ≡
#include "gb_io.h" /∗ all users of GB IO should include this header file ∗/
#define exit test (m) /∗ we invoke this macro if something goes wrong ∗/

{ fprintf (stderr , "%s!\n(Error code = %ld)\n", m, io errors); return −1; }

int main ()
{
〈Test the gb open routine; exit if there’s trouble 28 〉;
〈Test the sample data lines; exit if there’s trouble 27 〉;
〈Test the gb close routine; exit if there’s trouble 38 〉;
printf ("OK, the gb_io routines seem to work!\n");
return 0;

}

3. The external variable io errors mentioned in the previous section will be set nonzero if any anomalies
are detected. Errors won’t occur in normal use of GraphBase programs, so no attempt has been made to
provide a user-friendly way to decode the nonzero values that io errors might assume. Information is simply
gathered in binary form; system wizards who might need to do a bit of troubleshooting should be able to
decode io errors without great pain.
#define cant open file #1 /∗ bit set in io errors if fopen fails ∗/
#define cant close file #2 /∗ bit set if fclose fails ∗/
#define bad first line #4 /∗ bit set if the data file’s first line isn’t legit ∗/
#define bad second line #8 /∗ bit set if the second line doesn’t pass muster ∗/
#define bad third line #10 /∗ bit set if the third line is awry ∗/
#define bad fourth line #20 /∗ guess when this bit is set ∗/
#define file ended prematurely #40 /∗ bit set if fgets fails ∗/
#define missing newline #80 /∗ bit set if line is too long or ’\n’ is missing ∗/
#define wrong number of lines #100 /∗ bit set if the line count is wrong ∗/
#define wrong checksum #200 /∗ bit set if the check sum is wrong ∗/
#define no file open #400 /∗ bit set if user tries to close an unopened file ∗/
#define bad last line #800 /∗ bit set if final line has incorrect form ∗/

2 INTRODUCTION GB IO §4
4. The C code for GB IO doesn’t have a main routine; it’s just a bunch of subroutines to be incorporated
into programs at a higher level via the system loading routine. Here is the general outline of gb_io.c:
〈Header files to include 7 〉
〈Preprocessor definitions 〉
〈External declarations 5 〉
〈Private declarations 8 〉
〈 Internal functions 9 〉
〈External functions 12 〉

5. Every external variable is declared twice in this CWEB file: once for GB IO itself (the “real” declaration
for storage allocation purposes) and once in gb_io.h (for cross-references by GB IO users).
〈External declarations 5 〉 ≡

long io errors ; /∗ record of anomalies noted by GB IO routines ∗/
This code is used in section 4.

6. 〈 gb_io.h 6 〉 ≡
〈Header files to include 7 〉
extern long io errors ; /∗ record of anomalies noted by GB IO routines ∗/

See also sections 13, 16, 19, 21, 23, 25, 29, and 41.

7. We will stick to standard C-type input conventions. We’ll also have occasion to use some of the standard
string operations.
〈Header files to include 7 〉 ≡
#include <stdio.h>

#ifdef SYSV

#include <string.h>

#else
#include <strings.h>

#endif
This code is used in sections 4 and 6.

§8 GB IO INPUTTING A LINE 3

8. Inputting a line. The GB IO routines get their input from an array called buffer . This array is
internal to GB IO—its contents are hidden from user programs. We make it 81 characters long, since the
data is supposed to have at most 79 characters per line, followed by newline and null.
〈Private declarations 8 〉 ≡

static char buffer [81]; /∗ the current line of input ∗/
static char ∗cur pos = buffer ; /∗ the current character of interest ∗/
static FILE ∗cur file ; /∗ current file, or Λ is none is open ∗/

See also sections 10, 11, and 33.

This code is used in section 4.

9. Here’s a basic subroutine to fill the buffer . The main feature of interest is the removal of trailing blanks.
We assume that cur file is open.

Notice that a line of 79 characters (followed by ’\n’) will just fit into the buffer, and will cause no errors.
A line of 80 characters will be split into two lines and the missing newline message will occur, because of
the way fgets is defined. A missing newline error will also occur if the file ends in the middle of a line, or if
a null character (’\0’) occurs within a line.
〈 Internal functions 9 〉 ≡

static void fill buf ()
{ register char ∗p;

if (¬fgets (buffer , 81, cur file)) {
io errors |= file ended prematurely ;
buffer [0] = more data = 0;

}
for (p = buffer ; ∗p; p++) ; /∗ advance to first null character ∗/
if (p−− ≡ buffer ∨ ∗p 6= ’\n’) {

io errors |= missing newline ;
p++;

}
while (−−p ≥ buffer ∧ ∗p ≡ ’ ’) ; /∗ move back over trailing blanks ∗/
∗++p = ’\n’;
∗++p = 0; /∗ newline and null are always present at end of line ∗/
cur pos = buffer ; /∗ get ready to read buffer [0] ∗/

}
See also section 15.

This code is used in section 4.

4 CHECKSUMS GB IO §10

10. Checksums. Each data file has a “magic number,” which is defined to be

(∑
l

2lcl

)
mod p .

Here p is a large prime number, and cl denotes the internal code corresponding to the lth-from-last data
character read (including newlines but not nulls).

The “internal codes” cl are computed in a system-independent way: Each character c in the actual encoding
scheme being used has a corresponding icode , which is the same on all systems. For example, the icode of ’0’
is zero, regardless of whether ’0’ is actually represented in ASCII or EBCDIC or some other scheme. (We
assume that every modern computer system is capable of printing at least 95 different characters, including
a blank space.)

We will accept a data file as error-free if it has the correct number of lines and ends with the proper magic
number.
〈Private declarations 8 〉 +≡

static char icode [256]; /∗ mapping of characters to internal codes ∗/
static long checksum prime = (1L � 30) − 83; /∗ large prime such that 2p + 100 won’t overflow ∗/
static long magic ; /∗ current checksum value ∗/
static long line no ; /∗ current line number in file ∗/
static long final magic ; /∗ desired final magic number ∗/
static long tot lines ; /∗ total number of data lines ∗/
static char more data ; /∗ is there data still waiting to be read? ∗/

11. The icode mapping is defined by a single string, imap , such that character imap [k] has icode value k.
There are 96 characters in imap , namely the 94 standard visible ASCII codes plus space and newline. If
EBCDIC code is used instead of ASCII, the cents sign /c should take the place of single-left-quote ‘, and
¬ should take the place of ~.

All characters that don’t appear in imap are given the same icode value, called unexpected char . Such
characters should be avoided in GraphBase files whenever possible. (If they do appear, they can still get
into a user’s data, but we don’t distinguish them from each other for checksumming purposes.)

The icode table actually plays a dual role, because we’ve rigged it so that codes 0–15 come from the
characters "0123456789ABCDEF". This facilitates conversion of decimal and hexadecimal data. We can also
use it for radices higher than 16.
#define unexpected char 127 /∗ default icode value ∗/
〈Private declarations 8 〉 +≡

static char ∗imap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw\

xyz_^~&@,;.:?!%#$+−*/|\\<=>()[]{}‘’\" \n";

§12 GB IO CHECKSUMS 5

12. Users of GB IO can look at the imap , but they can’t change it.
〈External functions 12 〉 ≡

char imap chr (d)
long d;

{
return d < 0 ∨ d > strlen (imap) ? ’\0’ : imap [d];

}
long imap ord (c)

char c;
{
〈Make sure that icode has been initialized 14 〉;
return (c < 0 ∨ c > 255) ? unexpected char : icode [c];

}
See also sections 17, 18, 20, 22, 24, 26, 30, 32, 39, and 42.

This code is used in section 4.

13. 〈 gb_io.h 6 〉 +≡
#define unexpected char 127

extern char imap chr (); /∗ the character that maps to a given character ∗/
extern long imap ord (); /∗ the ordinal number of a given character ∗/

14. 〈Make sure that icode has been initialized 14 〉 ≡
if (¬icode [’1’]) icode setup();

This code is used in sections 12 and 30.

15. 〈 Internal functions 9 〉 +≡
static void icode setup()
{ register long k;

register char ∗p;
for (k = 0; k < 256; k++) icode [k] = unexpected char ;
for (p = imap , k = 0; ∗p; p++, k++) icode [∗p] = k;

}

16. Now we’re ready to specify some external subroutines that do input. Calling gb newline () will read
the next line of data into buffer and update the magic number accordingly.
〈 gb_io.h 6 〉 +≡

extern void gb newline (); /∗ advance to next line of the data file ∗/
extern long new checksum (); /∗ compute change in magic number ∗/

17. Users can compute checksums as gb newline does, but they can’t change the (private) value of magic .
〈External functions 12 〉 +≡

long new checksum (s, old checksum)
char ∗s; /∗ a string ∗/
long old checksum ;

{ register long a = old checksum ;
register char ∗p;
for (p = s; ∗p; p++) a = (a + a + icode [∗p]) % checksum prime ;
return a;

}

6 CHECKSUMS GB IO §18

18. The magic checksum is not affected by lines that begin with *.
〈External functions 12 〉 +≡

void gb newline ()
{

if (++line no > tot lines) more data = 0;
if (more data) {

fill buf ();
if (buffer [0] 6= ’*’) magic = new checksum (buffer ,magic);

}
}

19. Another simple routine allows a user to read (but not write) the variable more data .
〈 gb_io.h 6 〉 +≡

extern long gb eof (); /∗ has the data all been read? ∗/

20. 〈External functions 12 〉 +≡
long gb eof ()
{

return ¬more data ;
}

§21 GB IO PARSING A LINE 7

21. Parsing a line. The user can input characters from the buffer in several ways. First, there’s a basic
gb char () routine, which returns a single character. The character is ’\n’ if the last character on the line
has already been read (and it continues to be ’\n’ until the user calls gb newline).

The current position in the line, cur pos , always advances when gb char is called, unless cur pos was
already at the end of the line. There’s also a gb backup() routine, which moves cur pos one place to the left
unless it was already at the beginning.
〈 gb_io.h 6 〉 +≡

extern char gb char (); /∗ get next character of current line, or ’\n’ ∗/
extern void gb backup (); /∗ move back ready to scan a character again ∗/

22. 〈External functions 12 〉 +≡
char gb char ()
{

if (∗cur pos) return (∗cur pos ++);
return ’\n’;

}
void gb backup ()
{

if (cur pos > buffer) cur pos −−;
}

23. There are two ways to read numerical data. The first, gb digit (d), expects to read a single character
in radix d, using icode values to specify digits greater than 9. (Thus, for example, ’A’ represents the
hexadecimal digit for decimal 10.) If the next character is a valid d-git, cur pos moves to the next character
and the numerical value is returned. Otherwise cur pos stays in the same place and −1 is returned.

The second routine, gb number (d), reads characters and forms an unsigned radix-d number until the first
non-digit is encountered. The resulting number is returned; it is zero if no digits were found. No errors are
possible with this routine, because it uses unsigned long arithmetic.
〈 gb_io.h 6 〉 +≡

extern long gb digit (); /∗ gb digit (d) reads a digit between 0 and d − 1 ∗/
extern unsigned long gb number (); /∗ gb number (d) reads a radix-d number ∗/

24. The value of d should be at most 127, if users want their programs to be portable, because C does not
treat larger char values in a well-defined manner. In most applications, d is of course either 10 or 16.
〈External functions 12 〉 +≡

long gb digit (d)
char d;

{
if (icode [∗cur pos] < d) return icode [∗cur pos ++];
return −1;

}
unsigned long gb number (d)

char d;
{ register unsigned long a = 0;

icode [0] = d; /∗ make sure ’\0’ is a nondigit ∗/
while (icode [∗cur pos] < d) a = a ∗ d + icode [∗cur pos ++];
return a;

}

8 PARSING A LINE GB IO §25

25. The final subroutine for fetching data is gb string (p, c), which stores a null-terminated string into
locations starting at p. The string starts at cur pos and ends just before the first appearance of character c.
If c ≡ ’\n’, the string will stop at the end of the line. If c doesn’t appear in the buffer at or after cur pos ,
the last character of the string will be the ’\n’ that is always inserted at the end of a line, unless the entire
line has already been read. (If the entire line has previously been read, the empty string is always returned.)
After the string has been copied, cur pos advances past it.

In order to use this routine safely, the user should first check that there is room to store up to 81
characters beginning at location p. A suitable place to put the result, called str buf , is provided for the
user’s convenience.

The location following the stored string is returned. Thus, if the stored string has length l (not counting
the null character that is stored at the end), the value returned will be p + l + 1.
〈 gb_io.h 6 〉 +≡
#define STR_BUF_LENGTH 160

extern char str buf []; /∗ safe place to receive output of gb string ∗/
extern char ∗gb string (); /∗ gb string (p, c) reads a string delimited by c into bytes starting at p ∗/

26. #define STR_BUF_LENGTH 160
〈External functions 12 〉 +≡

char str buf [STR_BUF_LENGTH]; /∗ users can put strings here if they wish ∗/
char ∗gb string (p, c)

char ∗p; /∗ where to put the result ∗/
char c; /∗ character following the string ∗/

{
while (∗cur pos ∧ ∗cur pos 6= c) ∗p++ = ∗cur pos ++;
∗p++ = 0;
return p;

}

§27 GB IO PARSING A LINE 9

27. Here’s how we test those routines in test_io: The first line of test data consists of 79 characters,
beginning with 64 zeroes and ending with ‘123456789ABCDEF’. The second line is completely blank. The
third and final line says ‘Oops:(intentional mistake)’.
〈Test the sample data lines; exit if there’s trouble 27 〉 ≡

if (gb number (10) 6= 123456789) io errors |= 1L � 20; /∗ decimal number not working ∗/
if (gb digit (16) 6= 10) io errors |= 1L � 21; /∗ we missed the A following the decimal number ∗/
gb backup(); gb backup(); /∗ get set to read ‘9A’ again ∗/
if (gb number (16) 6= #9ABCDEF) io errors |= 1L � 22; /∗ hexadecimal number not working ∗/
gb newline (); /∗ now we should be scanning a blank line ∗/
if (gb char () 6= ’\n’) io errors |= 1L � 23; /∗ newline not inserted at end ∗/
if (gb char () 6= ’\n’) io errors |= 1L � 24; /∗ newline not implied after end ∗/
if (gb number (60) 6= 0) io errors |= 1L � 25; /∗ number should stop at null character ∗/
{ char temp [100];

if (gb string (temp , ’\n’) 6= temp + 1) io errors |= 1L � 26;
/∗ string should be null after end of line ∗/

gb newline ();
if (gb string (temp , ’:’) 6= temp + 5 ∨ strcmp(temp , "Oops")) io errors |= 1L � 27;

/∗ string not read properly ∗/
}
if (io errors) exit test ("Sorry, it failed. Look at the error code for clues");
if (gb digit (10) 6= −1) exit test ("Digit error not detected");
if (gb char () 6= ’:’) io errors |= 1L � 28; /∗ lost synch after gb string and gb digit ∗/
if (gb eof ()) io errors |= 1L � 29; /∗ premature end-of-file indication ∗/
gb newline ();
if (¬gb eof ()) io errors |= 1L � 30; /∗ postmature end-of-file indication ∗/

This code is used in section 2.

10 OPENING A FILE GB IO §28

28. Opening a file. The call gb raw open ("foo") will open file "foo" and initialize the checksumming
process. If the file cannot be opened, io errors will be set to cant open file , otherwise io errors will be
initialized to zero.

The call gb open ("foo") is a stronger version of gb raw open , which is used for standard GraphBase data
files like "words.dat" to make doubly sure that they have not been corrupted. It returns the current value
of io errors , which will be nonzero if any problems were detected at the beginning of the file.
〈Test the gb open routine; exit if there’s trouble 28 〉 ≡

if (gb open ("test.dat") 6= 0) exit test ("Can’t open test.dat");
This code is used in section 2.

29. #define gb raw open gb r open /∗ abbreviation for Procrustean external linkage ∗/
〈 gb_io.h 6 〉 +≡
#define gb raw open gb r open

extern void gb raw open (); /∗ open a file for GraphBase input ∗/
extern long gb open (); /∗ open a GraphBase data file; return 0 if OK ∗/

30. 〈External functions 12 〉 +≡
void gb raw open (f)

char ∗f ;
{
〈Make sure that icode has been initialized 14 〉;
〈Try to open f 31 〉;
if (cur file) {

io errors = 0;
more data = 1;
line no = magic = 0;
tot lines = #7fffffff; /∗ allow “infinitely many” lines ∗/
fill buf ();

} else io errors = cant open file ;
}

31. Here’s a possibly system-dependent part of the code: We try first to open the data file by using the
file name itself as the path name; failing that, we try to prefix the file name with the name of the standard
directory for GraphBase data, if the program has been compiled with DATA_DIRECTORY defined.
〈Try to open f 31 〉 ≡

cur file = fopen (f, "r");
#ifdef DATA_DIRECTORY

if (¬cur file ∧ (strlen (DATA_DIRECTORY) + strlen (f) < STR_BUF_LENGTH)) {
sprintf (str buf , "%s%s", DATA_DIRECTORY, f);
cur file = fopen (str buf , "r");

}
#endif DATA_DIRECTORY

This code is used in section 30.

§32 GB IO OPENING A FILE 11

32. 〈External functions 12 〉 +≡
long gb open (f)

char ∗f ;
{

strncpy (file name , f , 19); /∗ save the name for use by gb close ∗/
gb raw open (f);
if (cur file) {
〈Check the first line; return if unsuccessful 34 〉;
〈Check the second line; return if unsuccessful 35 〉;
〈Check the third line; return if unsuccessful 36 〉;
〈Check the fourth line; return if unsuccessful 37 〉;
gb newline (); /∗ the first line of real data is now in the buffer ∗/

}
return io errors ;

}

33. 〈Private declarations 8 〉 +≡
static char file name [20]; /∗ name of the data file, without a prefix ∗/

34. The first four lines of a typical data file should look something like this:

* File "words.dat" from the Stanford GraphBase (C) 1993 Stanford University

* A database of English 5−letter words

* This file may be freely copied but please do not change it in any way!

* (Checksum parameters 5757,526296596)

We actually verify only that the first four lines of a data file named "foo" begin respectively with the
characters

* File "foo"

*

*

* (Checksum parameters l, m)

where l and m are decimal numbers. The values of l and m are stored away as tot lines and final magic , to
be matched at the end of the file.
〈Check the first line; return if unsuccessful 34 〉 ≡

sprintf (str buf , "* File \"%s\"", f);
if (strncmp(buffer , str buf , strlen (str buf))) return (io errors |= bad first line);

This code is used in section 32.

35. 〈Check the second line; return if unsuccessful 35 〉 ≡
fill buf ();
if (∗buffer 6= ’*’) return (io errors |= bad second line);

This code is used in section 32.

36. 〈Check the third line; return if unsuccessful 36 〉 ≡
fill buf ();
if (∗buffer 6= ’*’) return (io errors |= bad third line);

This code is used in section 32.

12 OPENING A FILE GB IO §37

37. 〈Check the fourth line; return if unsuccessful 37 〉 ≡
fill buf ();
if (strncmp(buffer , "* (Checksum parameters ", 23)) return (io errors |= bad fourth line);
cur pos += 23;
tot lines = gb number (10);
if (gb char () 6= ’,’) return (io errors |= bad fourth line);
final magic = gb number (10);
if (gb char () 6= ’)’) return (io errors |= bad fourth line);

This code is used in section 32.

§38 GB IO CLOSING A FILE 13

38. Closing a file. After all data has been input, or should have been input, we check that the file
was open and that it had the correct number of lines, the correct magic number, and a correct final line.
The subroutine gb close , like gb open , returns the value of io errors , which will be nonzero if at least one
problem was noticed.
〈Test the gb close routine; exit if there’s trouble 38 〉 ≡

if (gb close () 6= 0) exit test ("Bad checksum, or difficulty closing the file");
This code is used in section 2.

39. 〈External functions 12 〉 +≡
long gb close ()
{

if (¬cur file) return (io errors |= no file open);
fill buf ();
sprintf (str buf , "* End of file \"%s\"",file name);
if (strncmp(buffer , str buf , strlen (str buf))) io errors |= bad last line ;
more data = buffer [0] = 0; /∗ now the GB IO routines are effectively shut down ∗/

/∗ we have cur pos = buffer ∗/
if (fclose (cur file) 6= 0) return (io errors |= cant close file);
cur file = Λ;
if (line no 6= tot lines + 1) return (io errors |= wrong number of lines);
if (magic 6= final magic) return (io errors |= wrong checksum);
return io errors ;

}

40. There is also a less paranoid routine, gb raw close , that closes user-generated files. It simply closes
the current file, if any, and returns the value of the magic checksum.

Example: The restore graph subroutine in GB SAVE uses gb raw open and gb raw close to provide system-
independent input that is almost as foolproof as the reading of standard GraphBase data.

41. #define gb raw close gb r close /∗ for Procrustean external linkage ∗/
〈 gb_io.h 6 〉 +≡
#define gb raw close gb r close

extern long gb close (); /∗ close a GraphBase data file; return 0 if OK ∗/
extern long gb raw close (); /∗ close file and return the checksum ∗/

42. 〈External functions 12 〉 +≡
long gb raw close ()
{

if (cur file) {
fclose (cur file);
more data = buffer [0] = 0;
cur pos = buffer ;
cur file = Λ;

}
return magic ;

}

14 INDEX GB IO §43

43. Index. Here is a list that shows where the identifiers of this program are defined and used.

a: 17, 24.
bad first line : 3, 34.
bad fourth line : 3, 37.
bad last line : 3, 39.
bad second line : 3, 35.
bad third line : 3, 36.
buffer : 8, 9, 16, 18, 22, 34, 35, 36, 37, 39, 42.
c: 12, 26.
cant close file : 3, 39.
cant open file : 3, 28, 30.
checksum prime : 10, 17.
cur file : 8, 9, 30, 31, 32, 39, 42.
cur pos : 8, 9, 21, 22, 23, 24, 25, 26, 37, 39, 42.
d: 12, 24.
DATA_DIRECTORY: 31.
exit test : 2, 27, 28, 38.
f : 30, 32.
fclose : 3, 39, 42.
fgets : 3, 9.
file ended prematurely : 3, 9.
file name : 32, 33, 39.
fill buf : 9, 18, 30, 35, 36, 37, 39.
final magic : 10, 34, 37, 39.
fopen : 3, 31.
fprintf : 2.
gb backup : 21, 22, 27.
gb char : 21, 22, 27, 37.
gb close : 32, 38, 39, 41.
gb digit : 23, 24, 27.
gb eof : 19, 20, 27.
gb newline : 16, 17, 18, 21, 27, 32.
gb number : 23, 24, 27, 37.
gb open : 28, 29, 32, 38.
gb r close : 41.
gb r open : 29.
gb raw close : 40, 41, 42.
gb raw open : 28, 29, 30, 32, 40.
gb string : 25, 26, 27.
icode : 10, 11, 12, 14, 15, 17, 23, 24.
icode setup : 14, 15.
imap : 11, 12, 15.
imap chr : 12, 13.
imap ord : 12, 13.
io errors : 2, 3, 5, 6, 9, 27, 28, 30, 32, 34, 35,

36, 37, 38, 39.
k: 15.
line no : 10, 18, 30, 39.
magic : 10, 17, 18, 30, 39, 40, 42.
main : 2.
missing newline : 3, 9.
more data : 9, 10, 18, 19, 20, 30, 39, 42.

new checksum : 16, 17, 18.
no file open : 3, 39.
old checksum : 17.
p: 9, 15, 17, 26.
printf : 2.
restore graph : 40.
s: 17.
sprintf : 31, 34, 39.
stderr : 2.
str buf : 25, 26, 31, 34, 39.
STR_BUF_LENGTH: 25, 26, 31.
strcmp : 27.
strlen : 12, 31, 34, 39.
strncmp : 34, 37, 39.
strncpy : 32.
system dependencies: 31.
SYSV: 7.
temp : 27.
tot lines : 10, 18, 30, 34, 37, 39.
unexpected char : 11, 12, 13, 15.
wrong checksum : 3, 39.
wrong number of lines : 3, 39.

GB IO NAMES OF THE SECTIONS 15

〈Check the first line; return if unsuccessful 34 〉 Used in section 32.

〈Check the fourth line; return if unsuccessful 37 〉 Used in section 32.

〈Check the second line; return if unsuccessful 35 〉 Used in section 32.

〈Check the third line; return if unsuccessful 36 〉 Used in section 32.

〈External declarations 5 〉 Used in section 4.

〈External functions 12, 17, 18, 20, 22, 24, 26, 30, 32, 39, 42 〉 Used in section 4.

〈Header files to include 7 〉 Used in sections 4 and 6.

〈 Internal functions 9, 15 〉 Used in section 4.

〈Make sure that icode has been initialized 14 〉 Used in sections 12 and 30.

〈Private declarations 8, 10, 11, 33 〉 Used in section 4.

〈Test the sample data lines; exit if there’s trouble 27 〉 Used in section 2.

〈Test the gb close routine; exit if there’s trouble 38 〉 Used in section 2.

〈Test the gb open routine; exit if there’s trouble 28 〉 Used in section 2.

〈Try to open f 31 〉 Used in section 30.

〈 gb_io.h 6, 13, 16, 19, 21, 23, 25, 29, 41 〉
〈 test_io.c 2 〉

January 12, 1994 at 23:13

GB IO
Section Page

Introduction . 1 1
Inputting a line . 8 3
Checksums . 10 4
Parsing a line . 21 7
Opening a file . 28 10
Closing a file . 38 13
Index . 43 14

c© 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

