
§1 GB MILES INTRODUCTION 1

Important: Before reading GB MILES, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module contains the miles subroutine, which creates a family of
undirected graphs based on highway mileage data between North American cities. Examples of the use of
this procedure can be found in the demo programs MILES SPAN and GB PLANE.
〈 gb_miles.h 1 〉 ≡

extern Graph ∗miles ();
See also sections 2, 16, and 21.

2. The subroutine call miles (n, north weight , west weight , pop weight , max distance , max degree , seed)
constructs a graph based on the information in miles.dat. Each vertex of the graph corresponds to one of
the 128 cities whose name is alphabetically greater than or equal to ‘Ravenna, Ohio’ in the 1949 edition of
Rand McNally & Company’s Standard Highway Mileage Guide. Edges between vertices are assigned lengths
representing distances between cities, in miles. In most cases these mileages come from the Rand McNally
Guide, but several dozen entries needed to be changed drastically because they were obviously too large or
too small; in such cases an educated guess was made. Furthermore, about 5% of the entries were adjusted
slightly in order to ensure that all distances satisfy the “triangle inequality”: The graph generated by miles
has the property that the distance from u to v plus the distance from v to w always exceeds or equals the
distance from u to w.

The constructed graph will have min(n, 128) vertices; the default value n = 128 is substituted if n = 0. If
n is less than 128, the n cities will be selected by assigning a weight to each city and choosing the n with
largest weight, using random numbers to break ties in case of equal weights. Weights are computed by the
formula

north weight · lat + west weight · lon + pop weight · pop ,

where lat is latitude north of the equator, lon is longitude west of Greenwich, and pop is the population in
1980. Both lat and lon are given in “decidegrees” (hundredths of degrees). For example, San Francisco has
lat = 3778, lon = 12242, and pop = 678974; this means that, before the recent earthquake, it was located
at 37.78◦ north latitude and 122.42◦ west longitude, and that it had 678,974 residents in the 1980 census.
The weight parameters must satisfy

|north weight | ≤ 100,000, |west weight | ≤ 100,000, |pop weight | ≤ 100.

The constructed graph will be “complete”—that is, it will have edges between every pair of vertices—
unless special values are given to the parameters max distance or max degree . If max distance 6= 0, edges
with more than max distance miles will not appear; if max degree 6= 0, each vertex will be limited to at most
max degree of its shortest edges.

Vertices of the graph will appear in order of decreasing weight. The seed parameter defines the pseudo-
random numbers used wherever a “random” choice between equal-weight vertices or equal-length edges needs
to be made.
#define MAX_N 128
〈 gb_miles.h 1 〉 +≡
#define MAX_N 128 /∗ maximum and default number of cities ∗/

2 INTRODUCTION GB MILES §3
3. Examples: The call miles (100, 0, 0, 1, 0, 0, 0) will construct a complete graph on 100 vertices, representing
the 100 most populous cities in the database. It turns out that San Diego, with a population of 875,538, is
the winning city by this criterion, followed by San Antonio (population 786,023), San Francisco (678,974),
and Washington D.C. (638,432).

To get n cities in the western United States and Canada, you can say miles (n, 0, 1, 0, . . .); to get n cities
in the Northeast, use a call like miles (n, 1,−1, 0, . . .). A parameter setting like (50,−500, 0, 1, . . .) produces
mostly Southern cities, except for a few large metropolises in the north.

If you ask for miles (n, a, b, c, 0, 1, 0), you get an edge between cities if and only if each city is the nearest
to the other, among the n cities selected. (The graph is always undirected: There is an arc from u to v if
and only if there’s an arc of the same length from v to u.)

A random selection of cities can be obtained by calling miles (n, 0, 0, 0, m, d, s). Different choices of the seed
number s will produce different selections, in a system-independent manner; identical results will be obtained
on all computers when identical parameters have been specified. Equivalent experiments on algorithms for
graph manipulation can therefore be performed by researchers in different parts of the world. Any value of
s between 0 and 231 − 1 is permissible.

4. If the miles routine encounters a problem, it returns Λ (NULL), after putting a code number into the
external variable panic code . This code number identifies the type of failure. Otherwise miles returns
a pointer to the newly created graph, which will be represented with the data structures explained in
GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)
#define panic (c) { panic code = c; gb trouble code = 0; return Λ; }

5. The C file gb_miles.c has the following overall shape:
#include "gb_io.h" /∗ we will use the GB IO routines for input ∗/
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ we will use the GB GRAPH data structures ∗/
#include "gb_sort.h" /∗ and the linksort routine ∗/
〈Preprocessor definitions 〉
〈Type declarations 9 〉
〈Private variables 10 〉
Graph ∗miles (n,north weight ,west weight , pop weight ,max distance ,max degree , seed)

unsigned long n; /∗ number of vertices desired ∗/
long north weight ; /∗ coefficient of latitude in the weight function ∗/
long west weight ; /∗ coefficient of longitude in the weight function ∗/
long pop weight ; /∗ coefficient of population in the weight function ∗/
unsigned long max distance ; /∗ maximum distance in an edge, if nonzero ∗/
unsigned long max degree ; /∗ maximum number of edges per vertex, if nonzero ∗/
long seed ; /∗ random number seed ∗/

{ 〈Local variables 6 〉
gb init rand (seed);
〈Check that the parameters are valid 7 〉;
〈Set up a graph with n vertices 8 〉;
〈Read the data file miles.dat and compute city weights 11 〉;
〈Determine the n cities to use in the graph 14 〉;
〈Put the appropriate edges into the graph 17 〉;
if (gb trouble code) {

gb recycle (new graph);
panic (alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

§6 GB MILES INTRODUCTION 3

6. 〈Local variables 6 〉 ≡
Graph ∗new graph ; /∗ the graph constructed by miles ∗/
register long j, k; /∗ all-purpose indices ∗/

This code is used in section 5.

7. 〈Check that the parameters are valid 7 〉 ≡
if (n ≡ 0 ∨ n > MAX_N) n = MAX_N;
if (max degree ≡ 0 ∨ max degree ≥ n) max degree = n − 1;
if (north weight > 100000∨ west weight > 100000∨ pop weight > 100

∨ north weight < −100000∨ west weight < −100000∨ pop weight < −100) panic (bad specs);
/∗ the magnitude of at least one weight is too big ∗/

This code is used in section 5.

8. 〈Set up a graph with n vertices 8 〉 ≡
new graph = gb new graph (n);
if (new graph ≡ Λ) panic (no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph~id , "miles(%lu,%ld,%ld,%ld,%lu,%lu,%ld)", n,north weight ,west weight ,

pop weight ,max distance ,max degree , seed);
strcpy (new graph~util types , "ZZIIIIZZZZZZZZ");

This code is used in section 5.

4 VERTICES GB MILES §9
9. Vertices. As we read in the data, we construct a list of nodes, each of which contains a city’s name,
latitude, longitude, population, and weight. These nodes conform to the specifications stipulated in the
GB SORT module. After the list has been sorted by weight, the top n entries will be the vertices of the new
graph.
〈Type declarations 9 〉 ≡

typedef struct node struct { /∗ records to be sorted by gb linksort ∗/
long key ; /∗ the nonnegative sort key (weight plus 230) ∗/
struct node struct ∗link ; /∗ pointer to next record ∗/
long kk ; /∗ index of city in the original database ∗/
long lat , lon , pop ; /∗ latitude, longitude, population ∗/
char name [30]; /∗ "City Name, ST" ∗/

} node;
This code is used in section 5.

10. The constants defined here are taken from the specific data in miles.dat, because this routine is not
intended to be perfectly general.
〈Private variables 10 〉 ≡

long min lat = 2672, max lat = 5042, min lon = 7180, max lon = 12312, min pop = 2521,
max pop = 875538; /∗ tight bounds on data entries ∗/

node ∗node block ; /∗ array of nodes holding city info ∗/
long ∗distance ; /∗ array of distances ∗/

This code is used in section 5.

§11 GB MILES VERTICES 5

11. The data in miles.dat appears in 128 groups of lines, one for each city, in reverse alphabetical order.
These groups have the general form

City Name, ST[lat,lon]pop
d1 d2 d3 d4 d5 d6 ... (possibly several lines’ worth)

where City Name is the name of the city (possibly including spaces); ST is the two-letter state code; lat and
lon are latitude and longitude in hundredths of degrees; pop is the population; and the remaining numbers
d1, d2, . . . are distances to the previously named cities in reverse order. Each distance is separated from
the previous item by either a blank space or a newline character. For example, the line

San Francisco, CA[3778,12242]678974

specifies the data about San Francisco that was mentioned earlier. From the first few groups

Youngstown, OH[4110,8065]115436
Yankton, SD[4288,9739]12011
966
Yakima, WA[4660,12051]49826
1513 2410
Worcester, MA[4227,7180]161799
2964 1520 604

we learn that the distance from Worcester, Massachusetts, to Yakima, Washington, is 2964 miles; from
Worcester to Youngstown it is 604 miles.

The following two-letter “state codes” are used for Canadian provinces: BC = British Columbia, MB =
Manitoba, ON = Ontario, SA = Saskatchewan. (Please don’t ask what code would have been used to
distinguish New Brunswick from Nebraska if the need had arisen.)
〈Read the data file miles.dat and compute city weights 11 〉 ≡

node block = gb typed alloc (MAX_N,node,new graph~aux data);
distance = gb typed alloc (MAX_N ∗ MAX_N, long,new graph~aux data);
if (gb trouble code) {

gb free (new graph~aux data);
panic (no room + 1); /∗ no room to copy the data ∗/

}
if (gb open ("miles.dat") 6= 0) panic (early data fault);

/∗ couldn’t open "miles.dat" using GraphBase conventions; io errors tells why ∗/
for (k = MAX_N − 1; k ≥ 0; k−−) 〈Read and store data for city k 12 〉;
if (gb close () 6= 0) panic (late data fault); /∗ something’s wrong with "miles.dat"; see io errors ∗/

This code is used in section 5.

6 VERTICES GB MILES §12

12. The bounds we’ve imposed on north weight , west weight , and pop weight guarantee that the key value
computed here will be between 0 and 231.
〈Read and store data for city k 12 〉 ≡
{ register node ∗p;

p = node block + k;
p~kk = k;
if (k) p~ link = p − 1;
gb string (p~name , ’[’);
if (gb char () 6= ’[’) panic (syntax error); /∗ out of sync in miles.dat ∗/
p~ lat = gb number (10);
if (p~ lat < min lat ∨ p~ lat > max lat ∨ gb char () 6= ’,’) panic (syntax error + 1);

/∗ latitude data was clobbered ∗/
p~ lon = gb number (10);
if (p~ lon < min lon ∨ p~ lon > max lon ∨ gb char () 6= ’]’) panic (syntax error + 2);

/∗ longitude data was clobbered ∗/
p~pop = gb number (10);
if (p~pop < min pop ∨ p~pop > max pop) panic (syntax error + 3);

/∗ population data was clobbered ∗/
p~key = north weight ∗ (p~ lat − min lat) + west weight ∗ (p~ lon − min lon) + pop weight ∗ (p~pop −

min pop) + #40000000;
〈Read the mileage data for city k 13 〉;
gb newline ();

}
This code is used in section 11.

13. #define d(j, k) ∗(distance + (MAX_N ∗ j + k))
〈Read the mileage data for city k 13 〉 ≡
{

for (j = k + 1; j < MAX_N; j++) {
if (gb char () 6= ’ ’) gb newline ();
d(j, k) = d(k, j) = gb number (10);

}
}

This code is used in section 12.

14. Once all the nodes have been set up, we can use the gb linksort routine to sort them into the desired
order. This routine, which is part of the gb graph module, builds 128 lists from which the desired nodes are
readily accessed in decreasing order of weight, using random numbers to break ties.

We set the population to zero in every city that isn’t chosen. Then that city will be excluded when edges
are examined later.
〈Determine the n cities to use in the graph 14 〉 ≡
{ register node ∗p; /∗ the current node being considered ∗/

register Vertex ∗v = new graph~vertices ; /∗ the first unfilled vertex ∗/
gb linksort (node block + MAX_N − 1);
for (j = 127; j ≥ 0; j−−)

for (p = (node ∗) gb sorted [j]; p; p = p~ link) {
if (v < new graph~vertices + n) 〈Add city p~kk to the graph 15 〉
else p~pop = 0; /∗ this city is not being used ∗/

}
}

This code is used in section 5.

§15 GB MILES VERTICES 7

15. Utility fields x and y for each vertex are set to coordinates that can be used in geometric computations;
these coordinates are obtained by simple linear transformations of latitude and longitude (not by any kind
of sophisticated polyconic projection). We will have

0 ≤ x ≤ 5132, 0 ≤ y ≤ 3555.

Utility field z is set to the city’s index number (0 to 127) in the original database. Utility field w is set to
the city’s population.

The coordinates computed here are compatible with those in the TEX file cities.texmap. Users might
want to incorporate edited copies of that file into documents that display results obtained with miles graphs.
#define x coord x.I
#define y coord y.I
#define index no z.I
#define people w.I

〈Add city p~kk to the graph 15 〉 ≡
{

v~x coord = max lon − p~ lon ; /∗ x coordinate is complement of longitude ∗/
v~y coord = p~ lat − min lat ;
v~y coord += (v~y coord) � 1; /∗ y coordinate is 1.5 times latitude ∗/
v~index no = p~kk ;
v~people = p~pop ;
v~name = gb save string (p~name);
v++;

}
This code is used in section 14.

16. 〈 gb_miles.h 1 〉 +≡
#define x coord x.I /∗ utility field definitions for the header file ∗/
#define y coord y.I
#define index no z.I
#define people w.I

8 ARCS GB MILES §17

17. Arcs. We make the distance negative in the matrix entry for an arc that is not to be included.
Nothing needs to be done in this regard unless the user has specified a maximum degree or a maximum edge
length.
〈Put the appropriate edges into the graph 17 〉 ≡

if (max distance > 0 ∨max degree > 0) 〈Prune unwanted edges by negating their distances 18 〉;
{ register Vertex ∗u, ∗v;

for (u = new graph~vertices ; u < new graph~vertices + n; u++) {
j = u~index no ;
for (v = u + 1; v < new graph~vertices + n; v++) {

k = v~ index no ;
if (d(j, k) > 0 ∧ d(k, j) > 0) gb new edge (u, v, d(j, k));

}
}

}
This code is used in section 5.

18. 〈Prune unwanted edges by negating their distances 18 〉 ≡
{ register node ∗p;

if (max degree ≡ 0) max degree = MAX_N;
if (max distance ≡ 0) max distance = 30000;
for (p = node block ; p < node block + MAX_N; p++)

if (p~pop) { /∗ this city not deleted ∗/
k = p~kk ;
〈Blank out all undesired edges from city k 19 〉;

}
}

This code is used in section 17.

19. Here we reuse the key fields of the nodes, storing complementary distances there instead of weights.
We also let the sorting routine change the link fields. The other fields, however—especially pop—remain
unchanged. Yes, the author knows this is a wee bit tricky, but why not?
〈Blank out all undesired edges from city k 19 〉 ≡
{ register node ∗q;

register node ∗s = Λ; /∗ list of nodes containing edges from city k ∗/
for (q = node block ; q < node block + MAX_N; q++)

if (q~pop ∧ q 6= p) { /∗ another city not deleted ∗/
j = d(k, q~kk); /∗ distance from p to q ∗/
if (j > max distance) d(k, q~kk) = −j;
else {

q~key = max distance − j;
q~ link = s;
s = q;

}
}

gb linksort (s); /∗ now all the surviving edges from p are in the list gb sorted [0] ∗/
j = 0; /∗ j counts how many edges have been accepted ∗/
for (q = (node ∗) gb sorted [0]; q; q = q~ link)

if (++j > max degree) d(k, q~kk) = −d(k, q~kk);
}

This code is used in section 18.

§20 GB MILES ARCS 9

20. Random access to the distance matrix is provided to users via the external function miles distance .
Caution: This function can be used only with the graph most recently made by miles , and only when the
graph’s aux data has not been recycled, and only when the z utility fields have not been used for another
purpose.

The result might be negative when an edge has been suppressed. Moreover, we can in fact have miles distance (u, v) <
0 when miles distance (v, u) > 0, if the distance in question was suppressed by the max degree constraint
on u but not on v.

long miles distance (u, v)
Vertex ∗u, ∗v;

{
return d(u~index no , v~ index no);

}

21. 〈 gb_miles.h 1 〉 +≡
extern long miles distance ();

10 INDEX GB MILES §22

22. Index. As usual, we close with an index that shows where the identifiers of gb miles are defined and
used.

alloc fault : 5.
aux data : 11, 20.
bad specs : 7.
cities.texmap: 15.
d: 13.
distance : 10, 11, 13.
early data fault : 11.
gb char : 12, 13.
gb close : 11.
gb free : 11.
gb init rand : 5.
gb linksort : 9, 14, 19.
gb new edge : 17.
gb new graph : 8.
gb newline : 12, 13.
gb number : 12, 13.
gb open : 11.
gb recycle : 5.
gb save string : 15.
gb sorted : 14, 19.
gb string : 12.
gb trouble code : 4, 5, 11.
gb typed alloc : 11.
id : 8.
index no : 15, 16, 17, 20.
io errors : 11.
j: 6.
k: 6.
key : 9, 12, 19.
kk : 9, 12, 15, 18, 19.
lat : 2, 9, 12, 15.
late data fault : 11.
link : 9, 12, 14, 19.
lon : 2, 9, 12, 15.
max degree : 2, 5, 7, 8, 17, 18, 19, 20.
max distance : 2, 5, 8, 17, 18, 19.
max lat : 10, 12.
max lon : 10, 12, 15.
MAX_N: 2, 7, 11, 13, 14, 18, 19.
max pop : 10, 12.
miles : 1, 2, 3, 4, 5, 6, 15, 20.
miles distance : 20, 21.
min lat : 10, 12, 15.
min lon : 10, 12.
min pop : 10, 12.
n: 5.
name : 9, 12, 15.
new graph : 5, 6, 8, 11, 14, 17.
no room : 8, 11.
node: 9, 10, 11, 12, 14, 18, 19.

node block : 10, 11, 12, 14, 18, 19.
node struct: 9.
north weight : 2, 5, 7, 8, 12.
p: 12, 14, 18.
panic : 4, 5, 7, 8, 11, 12.
panic code : 4.
people : 15, 16.
pop : 2, 9, 12, 14, 15, 18, 19.
pop weight : 2, 5, 7, 8, 12.
q: 19.
s: 19.
seed : 2, 5, 8.
sprintf : 8.
strcpy : 8.
syntax error : 12.
u: 17, 20.
util types : 8.
v: 14, 17, 20.
vertices : 14, 17.
west weight : 2, 5, 7, 8, 12.
x coord : 15, 16.
y coord : 15, 16.

GB MILES NAMES OF THE SECTIONS 11

〈Add city p~kk to the graph 15 〉 Used in section 14.

〈Blank out all undesired edges from city k 19 〉 Used in section 18.

〈Check that the parameters are valid 7 〉 Used in section 5.

〈Determine the n cities to use in the graph 14 〉 Used in section 5.

〈Local variables 6 〉 Used in section 5.

〈Private variables 10 〉 Used in section 5.

〈Prune unwanted edges by negating their distances 18 〉 Used in section 17.

〈Put the appropriate edges into the graph 17 〉 Used in section 5.

〈Read and store data for city k 12 〉 Used in section 11.

〈Read the data file miles.dat and compute city weights 11 〉 Used in section 5.

〈Read the mileage data for city k 13 〉 Used in section 12.

〈Set up a graph with n vertices 8 〉 Used in section 5.

〈Type declarations 9 〉 Used in section 5.

〈 gb_miles.h 1, 2, 16, 21 〉

January 12, 1994 at 23:13

GB MILES
Section Page

Introduction . 1 1
Vertices . 9 4
Arcs . 17 8
Index . 22 10

c© 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

