
§1 TEST SAMPLE INTRODUCTION 1

1. Introduction. This GraphBase program is intended to be used only when the Stanford GraphBase
is being installed. It invokes the most critical subroutines and creates a file that can be checked against
the correct output. The testing is not exhaustive by any means, but it is designed to detect errors of
portability—cases where different results might occur on different systems. Thus, if nothing goes wrong, one
can assume that the GraphBase routines are probably installed satisfactorily.

The basic idea of TEST SAMPLE is quite simple: We generate a graph, then print out a few of its salient
characteristics. Then we recycle the graph and generate another, etc. The test is passed if the output file
matches a “correct” output file generated at Stanford by the author.

Actually there are two output files. The main one, containing samples of graph characteristics, is the
standard output. The other, called test.gb, is a graph that has been saved in ASCII format with save graph .
#include "gb_graph.h" /∗ we use the GB GRAPH data structures ∗/
#include "gb_io.h" /∗ and the GraphBase input/output routines ∗/
〈 Include headers for all of the GraphBase generation modules 2 〉
〈Private variables 7 〉
〈Procedures 13 〉

int main ()
{ Graph ∗g, ∗gg ; long i; Vertex ∗v; /∗ temporary registers ∗/

printf ("GraphBase samples generated by test_sample:\n");
〈Save a graph to be restored later 6 〉;
〈Print samples of generated graphs 3 〉;
return 0; /∗ normal exit ∗/

}

2. 〈 Include headers for all of the GraphBase generation modules 2 〉 ≡
#include "gb_basic.h" /∗ we test the basic graph operations ∗/
#include "gb_books.h" /∗ and the graphs based on literature ∗/
#include "gb_econ.h" /∗ and the graphs based on economic data ∗/
#include "gb_games.h" /∗ and the graphs based on football scores ∗/
#include "gb_gates.h" /∗ and the graphs based on logic circuits ∗/
#include "gb_lisa.h" /∗ and the graphs based on Mona Lisa ∗/
#include "gb_miles.h" /∗ and the graphs based on mileage data ∗/
#include "gb_plane.h" /∗ and the planar graphs ∗/
#include "gb_raman.h" /∗ and the Ramanujan graphs ∗/
#include "gb_rand.h" /∗ and the random graphs ∗/
#include "gb_roget.h" /∗ and the graphs based on Roget’s Thesaurus ∗/
#include "gb_save.h" /∗ and we save results in ASCII format ∗/
#include "gb_words.h" /∗ and we also test five-letter-word graphs ∗/
This code is used in section 1.

3. The subroutine print sample (g, n) will be specified later. It prints global characteristics of g and local
characteristics of the nth vertex.

We begin the test cautiously by generating a graph that requires no input data and no pseudo-random
numbers. If this test fails, the fault must lie either in GB GRAPH or GB RAMAN.
〈Print samples of generated graphs 3 〉 ≡

print sample (raman (31L, 3L, 0L, 4L), 4);
See also sections 4, 5, 8, 9, 10, and 11.

This code is used in section 1.

2 INTRODUCTION TEST SAMPLE §4
4. Next we test part of GB BASIC that relies on a particular interpretation of the operation ‘w �= 1’. If
this part of the test fails, please look up ‘system dependencies’ in the index to GB BASIC, and correct the
problem on your system by making a change file gb_basic.ch. (See queen_wrap.ch for an example of a
change file.)

On the other hand, if TEST SAMPLE fails only in this particular test while passing all those that follow,
chances are excellent that you have a pretty good implementation of the GraphBase anyway, because the
bug detected here will rarely show up in practice. Ask yourself: Can I live comfortably with such a bug?
〈Print samples of generated graphs 3 〉 +≡

print sample (board (1L, 1L, 2L,−33L, 1L,−#40000000L − #40000000L, 1L), 2000);
/∗ coordinates 32 and 33 (only) should wrap around ∗/

5. Another system-dependent part of GB BASIC is tested here, this time involving character codes.
〈Print samples of generated graphs 3 〉 +≡

print sample (subsets (32L, 18L, 16L, 0L, 999L,−999L, #80000000L, 1L), 1);

6. If test.gb fails to match test.correct, the most likely culprit is vert offset , a “pointer hack” in
GB BASIC. That macro absolutely must be made to work properly, because it is used heavily. In particular,
it is used in the complement routine tested here, and in the gunion routine tested below.
〈Save a graph to be restored later 6 〉 ≡

g = random graph (3L, 10L, 1L, 1L, 0L, Λ, dst , 1L, 2L, 1L);
/∗ a random multigraph with 3 vertices, 10 edges ∗/

gg = complement (g, 1L, 1L, 0L); /∗ a copy of g, without multiple edges ∗/
v = gb typed alloc (1,Vertex, gg~data); /∗ we create a stray vertex too ∗/
v~name = gb save string ("Testing");
gg~util types [10] = ’V’;
gg~ww .V = v; /∗ the stray vertex is now part of gg ∗/
save graph (gg , "test.gb"); /∗ so it will appear in test.gb (we hope) ∗/
gb recycle (g); gb recycle (gg);

This code is used in section 1.

7. 〈Private variables 7 〉 ≡
static long dst [] = {#20000000, #10000000, #10000000};

/∗ a probability distribution with frequencies 50%, 25%, 25% ∗/
See also section 12.

This code is used in section 1.

8. Now we try to reconstruct the graph we saved before, and we also randomize its lengths.
〈Print samples of generated graphs 3 〉 +≡

g = restore graph ("test.gb");
if (i = random lengths (g, 0L, 10L, 12L, dst , 2L))

printf ("\nFailure code %ld returned by random_lengths!\n", i);
else {

gg = random graph (3L, 10L, 1L, 1L, 0L, Λ, dst , 1L, 2L, 1L); /∗ same as before ∗/
print sample (gunion (g, gg , 1L, 0L), 2);
gb recycle (g); gb recycle (gg);

}

9. Partial evaluation of a RISC circuit involves fairly intricate pointer manipulation, so this step should
help to test the portability of the author’s favorite programming tricks.
〈Print samples of generated graphs 3 〉 +≡

print sample (partial gates (risc (0L), 1L, 43210L, 98765L, Λ), 79);

§10 TEST SAMPLE INTRODUCTION 3

10. Now we’re ready to test the mechanics of reading data files, sorting with GB SORT, and heavy
randomization. Lots of computation takes place in this section.
〈Print samples of generated graphs 3 〉 +≡

print sample (book ("homer", 500L, 400L, 2L, 12L, 10000L,−123456L, 789L), 81);
print sample (econ (40L, 0L, 400L,−111L), 11);
print sample (games (60L, 70L, 80L,−90L,−101L, 60L, 0L, 999999999L), 14);
print sample (miles (50L,−500L, 100L, 1L, 500L, 5L, 314159L), 20);
print sample (plane lisa (100L, 100L, 50L, 1L, 300L, 1L, 200L, 50L ∗ 299L ∗ 199L, 200L ∗ 299L ∗ 199L), 1294);
print sample (plane miles (50L, 500L,−100L, 1L, 1L, 40000L, 271818L), 14);
print sample (random bigraph (300L, 3L, 1000L,−1L, 0L, dst ,−500L, 500L, 666L), 3);
print sample (roget (1000L, 3L, 1009L, 1009L), 40);

11. Finally, here’s a picky, picky test that is supposed to fail the first time, succeed the second. (The
weight vector just barely exceeds the maximum weight threshold allowed by GB WORDS. That test is
ultraconservative, but eminently reasonable nevertheless.)
〈Print samples of generated graphs 3 〉 +≡

print sample (words (100L,wt vector , 70000000L, 69L), 5);
wt vector [1]++;
print sample (words (100L,wt vector , 70000000L, 69L), 5);
print sample (words (0L, Λ, 0L, 69L), 5555);

12. 〈Private variables 7 〉 +≡
static long wt vector [] = {100,−80589, 50000, 18935,−18935, 18935, 18935, 18935, 18935};

4 PRINTING THE SAMPLE DATA TEST SAMPLE §13

13. Printing the sample data. Given a graph g in GraphBase format and an integer n, the subroutine
print sample (g, n) will output global characteristics of g, such as its name and size, together with detailed
information about its nth vertex. Then g will be shredded and recycled; the calling routine should not refer
to it again.
〈Procedures 13 〉 ≡

static void pr vert (); /∗ a subroutine for printing a vertex is declared below ∗/
static void pr arc (); /∗ likewise for arcs ∗/
static void pr util (); /∗ and for utility fields in general ∗/
static void print sample (g, n)

Graph ∗g; /∗ graph to be sampled and destroyed ∗/
int n; /∗ index to the sampled vertex ∗/

{
printf ("\n");
if (g ≡ Λ) {

printf ("Ooops, we just ran into panic code %ld!\n", panic code);
if (io errors) printf ("(The I/O error code is 0x%lx)\n", (unsigned long) io errors);

} else {
〈Print global characteristics of g 18 〉;
〈Print information about the nth vertex 17 〉;
gb recycle (g);

}
}

See also sections 14, 15, and 16.

This code is used in section 1.

§14 TEST SAMPLE PRINTING THE SAMPLE DATA 5

14. The graph’s util types are used to determine how much information should be printed. A level
parameter also helps control the verbosity of printout. In the most verbose mode, each utility field that
points to a vertex or arc, or contains integer or string data, will be printed.
〈Procedures 13 〉 +≡

static void pr vert (v, l, s)
Vertex ∗v; /∗ vertex to be printed ∗/
int l; /∗ ≤ 0 if the output should be terse ∗/
char ∗s; /∗ format for graph utility fields ∗/

{
if (v ≡ Λ) printf ("NULL");
else if (is boolean (v)) printf ("ONE"); /∗ see GB GATES ∗/
else {

printf ("\"%s\"", v~name);
pr util (v~u, s[0], l − 1, s);
pr util (v~v, s[1], l − 1, s);
pr util (v~w, s[2], l − 1, s);
pr util (v~x, s[3], l − 1, s);
pr util (v~y, s[4], l − 1, s);
pr util (v~z, s[5], l − 1, s);
if (l > 0) { register Arc ∗a;

for (a = v~arcs ; a; a = a~next) {
printf ("\n ");
pr arc(a, 1, s);

}
}

}
}

15. 〈Procedures 13 〉 +≡
static void pr arc (a, l, s)

Arc ∗a; /∗ non-null arc to be printed ∗/
int l; /∗ ≤ 0 if the output should be terse ∗/
char ∗s; /∗ format for graph utility fields ∗/

{
printf ("−>");
pr vert (a~ tip , 0, s);
if (l > 0) {

printf (", %ld", a~ len);
pr util (a~a, s[6], l − 1, s);
pr util (a~b, s[7], l − 1, s);

}
}

6 PRINTING THE SAMPLE DATA TEST SAMPLE §16

16. 〈Procedures 13 〉 +≡
static void pr util (u, c, l, s)

util u; /∗ a utility field to be printed ∗/
char c; /∗ its type code ∗/
int l; /∗ 0 if output should be terse, −1 if pointers omitted ∗/
char ∗s; /∗ utility types for overall graph ∗/

{
switch (c) {
case ’I’: printf ("[%ld]", u.I); break;
case ’S’: printf ("[\"%s\"]", u.S ? u.S : "(null)"); break;
case ’A’:

if (l < 0) break;
printf ("[");
if (u.A ≡ Λ) printf ("NULL");
else pr arc(u.A, l, s);
printf ("]");
break;

case ’V’:
if (l < 0) break; /∗ avoid infinite recursion ∗/
printf ("[");
pr vert (u.V , l, s);
printf ("]");

default: break; /∗ case ’Z’ does nothing, other cases won’t occur ∗/
}

}

17. 〈Print information about the nth vertex 17 〉 ≡
printf ("V%d: ", n);
if (n ≥ g~n ∨ n < 0) printf ("index is out of range!\n");
else {

pr vert (g~vertices + n, 1, g~util types);
printf ("\n");

}
This code is used in section 13.

18. 〈Print global characteristics of g 18 〉 ≡
printf ("\"%s\"\n%ld vertices, %ld arcs, util_types %s", g~ id , g~n, g~m, g~util types);
pr util (g~uu , g~util types [8], 0, g~util types);
pr util (g~vv , g~util types [9], 0, g~util types);
pr util (g~ww , g~util types [10], 0, g~util types);
pr util (g~xx , g~util types [11], 0, g~util types);
pr util (g~yy , g~util types [12], 0, g~util types);
pr util (g~zz , g~util types [13], 0, g~util types);
printf ("\n");

This code is used in section 13.

§19 TEST SAMPLE INDEX 7

19. Index. We end with the customary list of identifiers, showing where they are used and where they
are defined.

a: 14, 15.
arcs : 14.
board : 4.
book : 10.
c: 16.
complement : 6.
data : 6.
dst : 6, 7, 8, 10.
econ : 10.
g: 1, 13.
games : 10.
gb recycle : 6, 8, 13.
gb save string : 6.
gb typed alloc : 6.
gg : 1, 6, 8.
gunion : 6, 8.
i: 1.
id : 18.
io errors : 13.
is boolean : 14.
l: 14, 15, 16.
len : 15.
main : 1.
miles : 10.
n: 13.
name : 6, 14.
next : 14.
panic code : 13.
partial gates : 9.
plane lisa : 10.
plane miles : 10.
pr arc : 13, 14, 15, 16.
pr util : 13, 14, 15, 16, 18.
pr vert : 13, 14, 15, 16, 17.
print sample : 3, 4, 5, 8, 9, 10, 11, 13.
printf : 1, 8, 13, 14, 15, 16, 17, 18.
raman : 3.
random bigraph : 10.
random graph : 6, 8.
random lengths : 8.
restore graph : 8.
risc : 9.
roget : 10.
s: 14, 15, 16.
save graph : 1, 6.
subsets : 5.
tip : 15.
u: 16.
util types : 6, 14, 17, 18.
uu : 18.

v: 1, 14.
vert offset : 6.
vertices : 17.
vv : 18.
words : 11.
wt vector : 11, 12.
ww : 6, 18.
xx : 18.
yy : 18.
zz : 18.

8 NAMES OF THE SECTIONS TEST SAMPLE

〈 Include headers for all of the GraphBase generation modules 2 〉 Used in section 1.

〈Print global characteristics of g 18 〉 Used in section 13.

〈Print information about the nth vertex 17 〉 Used in section 13.

〈Print samples of generated graphs 3, 4, 5, 8, 9, 10, 11 〉 Used in section 1.

〈Private variables 7, 12 〉 Used in section 1.

〈Procedures 13, 14, 15, 16 〉 Used in section 1.

〈Save a graph to be restored later 6 〉 Used in section 1.

January 12, 1994 at 23:16

TEST SAMPLE
Section Page

Introduction . 1 1
Printing the sample data . 13 4
Index . 19 7

c© 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

